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In the present scenario of ever-changing syllabus and the test pattern of  
JEE Main & Advanced, the NEW EDITION of this book is an effort to 
cater all the difficulties being faced by the students during their 
preparation of JEE Main & Advanced. The exercises in this book have 
been divided into two sections viz., JEE Main & Advanced. Almost all 
types and levels of questions are included in this book. My aim is to 
present the students a fully comprehensive textbook which will help and 
guide them for all types of examinations. An attempt has been made to 
remove all the printing errors that had crept in the previous editions. I 
am extremely thankful to (Dr.) Mrs. Sarita Pandey, Mr. Anoop Dhyani, 
Nisar Ahmad for their endless efforts during the project. 

The overwhelming response to the previous editions of this book gives 
me an immense feeling of satisfaction and I take this an opportunity to 
thank all the teachers and the whole student community who have found 
this book really beneficial.

Comments and criticism from readers will be highly appreciated and 
incorporated in the subsequent editions.

DC Pandey
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Electric field  Electric field due to a point charge, Electric field lines, Electric dipole, 
Electric field due to a dipole, Torque on a dipole in a uniform electric field.

ELECTROSTATICS

Conductors and insulators, Dielectrics and electric polarization, Capacitor, 
Combination of Capacitors in series and in parallel, Capacitance of a parallel plate 
capacitor with and without dielectric medium between the plates, Energy stored in a 
capacitor.

Electric charges  Conservation of charge, Coulomb’s law-forces between two point 
charges, forces between multiple charges; Superposition principle and continuous 
charge distribution.

CURRRENT  ELECTRICITY

Electric flux, Gauss’s law and its applications to find field due to infinitely long 
uniformly charged straight wire, Uniformly charged infinite plane sheet and 
uniformly charged thin spherical shell. Electric potential and its calculation for a 
point charge, Electric dipole and system of charges; Equipotential surfaces, Electrical 
potential energy of a system of two point charges in an electrostatic field.

Electric current, Drift velocity, Ohm’s law, Electrical resistance, Resistances of 
different materials, V-I characteristics of Ohmic and non-ohmic conductors, 
Electrical energy and power, Electrical resistivity, Colour code for resistors; Series 
and parallel combinations of resistors; Temperature dependence of resistance. 
Electric cell and its Internal resistance, Potential difference and emf of a cell, 
combination of cells in series and in parallel. Kirchhoff ’s laws and their applications. 
Wheatstone bridge, Meter bridge. Potentiometer – principle and its applications.
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Biot-Savart law and its application to current carrying circular loop. Ampere’s 
law and its applications to infinitely long current carrying straight wire and 
solenoid. Force on a moving charge in uniform magnetic and electric fields. 
Cyclotron.

Current loop as a magnetic dipole and its magnetic dipole moment. Bar 
magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field 
and magnetic elements. Para-, dia- and ferro- magnetic substances.

Magnetic susceptibility and permeability, Hysteresis, Electromagnets and 
permanent magnets.

MAGNETIC EFFECTS OF CURRENT AND 
MAGNETISM

Force on a current-carrying conductor in a uniform magnetic field. Force 
between two parallel current-carrying conductors-definition of ampere. 
Torque experienced by a current loop in uniform magnetic field; Moving coil 
galvanometer, its current sensitivity and conversion to ammeter and voltmeter.

ALTERNATING CURRENTS
Electromagnetic induction; Faraday’s law, Induced emf and current; Lenz’s law, 
Eddy currents. Self and mutual inductance. Alternating currents, Peak and rms 
value of alternating current/voltage; Reactance and impedance; LCR series 
circuit, Resonance; Quality factor, power in AC circuits, Wattless current. AC 
generator and transformer.

ELECTROMAGNETIC INDUCTION AND 
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ELECTRICITY AND MAGNETISM

ELECTROMAGNETIC INDUCTION

GENERAL

Coulomb’s law, Electric field and potential, Electrical potential energy of a system of 
point charges and of electrical dipoles in a uniform electrostatic field, Electric field 
lines, Flux of electric field, Gauss’s law and its application in simple cases, such as, to 
find field due to infinitely long straight wire, Uniformly charged infinite plane sheet 
and uniformly charged thin spherical shell.

Biot-Savart’s law and Ampere’s law, Magnetic field near a current-carrying straight 
wire, Along the axis of a circular coil and inside a long straight solenoid, Force on a 
moving charge and on a current-carrying wire in a uniform magnetic field.

Capacitance, Parallel plate capacitor with and without dielectrics, Capacitors in 
series and parallel, Energy stored in a capacitor.

Magnetic moment of a current loop, Effect of a uniform magnetic field on a current 
loop, Moving coil galvanometer, Voltmeter, Ammeter and their conversions.

Faraday’s law, Lenz’s law, Self and mutual inductance, RC, LR and LC circuits with 
DC and AC sources.

Verification of Ohm’s law using voltmeter and ammeter. Specific resistance of the 
material of a wire using meter bridge and post office box.

Electric current, Ohm’s law, Series and parallel arrangements of resistances and cells, 
Kirchhoff ’s laws and simple applications, Heating effect of current.
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23.1 Introduction
An electrical circuit consists of some active and passive elements. The active elements such as a

battery or a cell, supply electric energy to the circuit. On the contrary, passive elements consume or

store the electric energy. The basic passive elements are resistor, capacitor and inductor.

A resistor opposes the flow of current through it and if some current is passed by maintaining a

potential difference across it, some energy is dissipated in the form of heat. A capacitor is a device

which stores energy in the form of electric potential energy. It opposes the variations in voltage. An

inductor opposes the variations in current. It does not oppose the steady current through it.

Fundamentally, electric circuits are a means for conveying energy from one place to another. As

charged particles move within a circuit, electric potential energy is transferred from a source (such as

a battery or a cell) to a device in which that energy is either stored or converted to another form, like

sound in a stereo system or heat and light in a toaster or light bulb. Electric circuits are useful because

they allow energy to be transported without any moving parts (other than the moving charged

particles themselves).

In this chapter, we will study the basic properties of electric currents. We’ll study the properties of

batteries and how they cause current and energy transfer in a circuit. In this analysis, we will use the

concepts of current, potential difference, resistance and electromotive force.

23.2 Electric Current
Flow of charge is called electric current. The direction of electric current is in the direction of flow of

positive charge or in the opposite direction of flow of negative charge.

Current is defined quantitatively in terms of the rate at which net charge passes through a

cross-section area of the conductor.

Thus, I
dq

dt
= or i

dq

dt
=

We can have the following two concepts of current, as in the case of velocity, instantaneous current

and average current.

Instantaneous current = =
dq

dt
current at any point of time and

Average current =
q

t

Hence-forth unless otherwise referred to, current would signify instantaneous current. By

convention, the direction of the current is assumed to be that in which positive charge moves. In the SI

system, the unit of current is ampere (A).

1 1A C/s=
Household currents are of the order of few amperes.

Flow of Charge
If current is passing through a wire then it implies that a charge is flowing through that wire. Further,

i
dq

dt
= ⇒ dq idt= …(i)

2 � Electricity and Magnetism



Now, three cases are possible :

Case 1 If given current is constant, then from Eq. (i) we can see that flow of charge can be obtained

directly by multiplying that constant current with the given time interval. Or,

∆ ∆q i t= ×

Case 2 If given current is a function of time, then charge flow can be obtained by integration. Or,

∆q i dt

t

t

i

f

= ∫

Case 3 If current versus time is given, then flow of charge can be obtained by the area under the

graph.

∆q i t= area under - graph

� The current is the same for all cross-sections of a conductor of non-uniform cross-section. Similar to the

water flow, charge flows faster where the conductor is smaller in cross-section and slower where the

conductor is larger in cross-section, so that charge rate remains unchanged.

� Electric current is very similar to water current, consider a water tank kept at some height and a pipe is

connected to the water tank. The rate of flow of water through the pipe depends on the height of the tank.

As the level of water in the tank falls, the rate of flow of water through the pipe also gets reduced. Just as

the flow of water depends on the height of the tank or the level of water in the tank, the flow of current

through a wire depends on the potential difference between the end points of the wire. As the potential

difference is changed, the current will change. For example, during the discharging of a capacitor

potential difference and hence, the current in the circuit decreases with time. To maintain a constant

current in a circuit a constant potential difference will have to be maintained and for this a battery is used

which maintains a constant potential difference in a circuit.

� Though conventionally a direction is associated with current (opposite to

the motion of electrons), it is not a vector as the direction merely represents

the sense of charge flow and not a true direction. Further, current does not

obey the law of parallelogram of vectors, i.e. if two currents i1 and i2 reach

a point we always have i i i= +1 2 whatever be the angle between i1 and i2.

� According to its magnitude and direction, current is usually divided into two

types :

(i) Direct current (DC) If the magnitude and direction of current does not vary with time, it is said to be

direct current (DC). Cell, battery or DC dynamo are its sources.

(ii) Alternating current (AC) If a current is periodic (with constant amplitude) and has half cycle positive

and half negative, it is said to be alternating current (AC). AC dynamo is the source of it.

� If a charge q revolves in a circle with frequency f, the equivalent current,

i q f=

� In a conductor, normally current flow or charge flow is due to flow of free electrons.

� Charge is quantised. The quantum of charge ise. The charge on any body will be some integral multiple of

e, i.e.

q ne= ±
where, n = 1 2 3, , K

Chapter 23 Current Electricity � 3
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V Example 23.1 In a given time of 10 s, 40 electrons pass from right to left. In
the same interval of time 40 protons also pass from left to right. Is the average
current zero? If not, then find the value of average current.

Solution No, the average current is not zero. Direction of current is the direction of motion of

positive charge or in the opposite direction of motion of negative charge. So, both currents are

from left to right and both currents will be added.

∴ I I Iav electron proton= +

= +
q

t

q

t

1

1

2

2

= +40

10

40

10

e e
( )q ne=

= 8 e

= × × −8 10 191.6 A

= × −1.28 A10 18 Ans.

V Example 23.2 A constant current of 4 A passes through a wire for 8 s. Find
total charge flowing through that wire in the given time interval.

Solution Since, i = constant

∴ ∆ ∆q i t= ×
= ×4 8

= 32 C

V Example 23.3 A wire carries a current of 2.0 A. What is the charge that has
flowed through its cross-section in 1.0 s ? How many electrons does this
correspond to?

Solution Q i
q

t
=

∴ q it= = =( ( )2.0 A) 1.0s 2.0 C Ans.

q ne=

∴ n
q

e
= =

×
2.0

1.6 10 19–

= ×1.25 1019
Ans.

V Example 23.4 The current in a wire varies with time according to the relation

i A A s t= +( ) ( )3.0 2.0 /

(a) How many coulombs of charge pass a cross-section of the wire in the time interval

between t = 0 and t s= 4.0 ?

(b) What constant current would transport the same charge in the same time

interval?

4 � Electricity and Magnetism



Solution (a) i
dq

dt
=

∴ dq idt
q

= ∫∫ 00

4

∴ q t dt= +∫ ( )3 2
0

4

= + = +[ ] [ ]3 12 162

0

4
t t

= 28 C Ans.

(b) i
q

t
= = 28

4
= 7 A Ans.

V Example 23.5 Current passing through a wire decreases linearly from 10 A to
0 in 4 s. Find total charge flowing through the wire in the given time interval.

Solution Current versus time graph is as shown in figure.

Area under this graph will give us net charge flow.

Hence,

∆q = Area

= × ×1

2
base height

= × ×1

2
4 10

= 20 C Ans.

1. How many electrons per second pass through a section of wire carrying a current of 0.7 A?

2. A current of 3.6 A flows through an automobile headlight. How many coulombs of charge flow

through the headlight in 3.0 h?

3. A current of 7.5 A is maintained in wire for 45 s. In this time,

(a) how much charge and

(b) how many electrons flow through the wire?

4. In the Bohr model, the electron of a hydrogen atom moves in a circular orbit of radius

5.3 m× −10 11 with a speed of 2.2 m/s× 106 . Determine its frequency f and the current I in the

orbit.

5. The current through a wire depends on time as, i t= +( )10 4

Here, i is in ampere and t in seconds. Find the charge crossed through a section in time interval

between t = 0 to t = 10 s.

6. In an electrolyte, the positive ions move from left to right and the negative ions from right to left.

Is there a net current? If yes, in what direction?

Chapter 23 Current Electricity � 5
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23.3 Electric Currents in Conductors
Conductors are those materials which can conduct electricity. Conductors can be broadly classified

into two groups :

(i) Solid conductors

(ii) Electrolyte conductors

Normally in atoms and molecules, the negatively charged electrons and the positively charged nuclei

are bound to each other and are thus not free to move. In solid conductors (notably metals), some of

the electrons (called free electrons) are free to move within the bulk materials. In these conductors,

current flow takes place due to these free electrons. Positive ions in these conductors are almost

fixed. They do not move. So, they do not contribute in the current. In electrolyte solutions however,

both positive and negative ions can move.

In our following discussions, we will focus only on solid conductors so that the current is carried by

the negatively charged free electrons in the background of fixed positive ions.

Theory of Current Flow through Solid Conductors
At room temperature, the free electrons in a conductor move randomly with speeds of the order of

105 m/s.Since, the motion of the electrons is random, there is no net charge flow in any direction. For

any imaginary plane passing through the conductor, the number of electrons crossing the plane in one

direction is equal to the number crossing it in the other direction. Therefore, net current is zero from

any section.

When a constant potential difference V is applied between the ends of the conductor as shown in

Fig. 23.4, an electric field E is produced inside the conductor. The conduction electrons within the

conductor are then subjected to a force – eEand move overall in the direction of increasing potential.

However, this force does not cause the electrons to move faster and faster. Instead, a conduction

electron accelerates through a very small distance (about 5 10 8× − m) and then collides with fixed

ions or atoms of the conductor. Each collision transfers some of the electron’s kinetic energy to the

ions (or atoms). Because of the collision, electron moves slowly along the conductor or we can say

that it acquires a drift velocity vd in the direction opposite to E (in addition to its random motion.)

The drift motion of free electrons produce an electric current in the opposite direction of this motion

or in the direction of electric field (from higher potential to lower potential). It is interesting to note

6 � Electricity and Magnetism
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that the magnitude of the drift velocity is of the order of 10 4– m/s or about 109 times smaller than the

average speed of the electrons of their random (or thermal) motion. The above discussion can be

summarized as follows :

1. Free electrons inside a solid conductor can have two motions :

(i) random or thermal motion (speed of the order of 105 m/s)

(ii) drift motion (speed of the order of 10 4– m/s)

2. Net current due to random (or thermal motion) is zero from any section, whereas net current due to

drift motion is non-zero.

3. In the absence of any electric field (or a potential difference across the conductor) free electrons

have only random motion. Hence, net current from any section is zero.

4. In the presence of an electric field (or a potential difference across the conductor) free electrons

have both motions (random and drift). Therefore, current is non-zero due to drift motion.

5. Drift motion of free electrons is opposite to the electric field. Therefore, direction of current is in

the direction of electric field from higher potential to lower potential.

V Example 23.6 Electric field inside a conductor is always zero. Is this
statement true or false?

Solution False. Under electrostatic conditions when there is no charge flow (or no current) in

the conductor, electric field is zero. If current is non-zero, then electric field is also non-zero.

Because the drift motion (of free electrons) which produces a net current starts only due to

electric force on them.

1. All points of a conductor are always at same potential. Is this statement true or false?

23.4 Drift Velocity and Relaxation Time
As discussed before, in the presence of electric field, the free electrons experience an electric force of

magnitude.

F qE= or eE (as q e= )

This will produce an acceleration of magnitude,

a
F

m

eE

m
= = ( )m = mass of electron

Direction of force (and acceleration) is opposite to the direction of electric field.

After accelerating to some distance an electron will suffer collisions with the heavy fixed ions. The

collisions of the electrons do not occur at regular intervals but at random times.

Relaxation time τ is the average time between two successive collisions. Its value is of the order of

10 14− second.

After every collision, let us assume that drift motion velocity of electron becomes zero. Then, it

accelerates for a time interval τ, then again it collides and its drift motion velocity becomes zero and

so on.

Chapter 23 Current Electricity � 7
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Extra Points to Remember

If vd is the average constant velocity (called drift velocity) in the direction of drift motion, then

relation between vd and τ is given by

v
eE

m
d =

τ

� In some standard books of Indian authors, the relation is given as

v
eE

2m
d = τ

Initially, I was also convinced with this expression. But later on after consulting many more literatures in

this. I found that v
eE

m
d = τ

is correct. But at this stage it is very difficult for me to give its correct proof.

Because the correct proof requires a knowledge of high level of physics which is difficult to understand for

a class XII student.

Current and Drift Velocity
Consider a cylindrical conductor of cross-sectional area A in which an electric field E exists. Drift

velocity of free electrons is vd and n is number of free electrons per unit volume (called free electron

density).

Consider a length v td ∆ of the conductor.

The volume of this portion is Av td ∆ .

Number of free electrons in this volume = (free electron density ) × (volume)

= ( ) ( )n Av td ∆
= nAv td ∆

All these electrons cross the area A in time ∆t.

Thus, the charge crossing this area in time ∆t is

∴ ∆ ∆q nAv t ed= ( ) ( )

or i
q

t
neAvd= =

∆
∆

or i neAvd=

Thus, this is the relation between current and drift velocity.

8 � Electricity and Magnetism
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Current Density

Current per unit area (taken normal to the current), i A/ is called current density and is denoted by j.

The SI units of current density are A/m 2 . Current density is a vector quantity j directed along E.

j
i

A
=

But i neAvd= , therefore

j nevd=

� Drift velocity of electrons in a conductor is of the order of 10 4− m/s, then question arises in everybody’s

mind that why a bulb glows instantly when switched on? Reason is : when we close the circuit, electric field

is set up in the entire closed circuit instantly (with the speed of light). Due to this electric field, the free

electrons instantly get drift velocity in the entire circuit and a current is established in the circuit instantly.

The current so set up does not wait for the electrons to flow from one end of the conductor to the other end.

� If a current i is flowing through a wire of non-uniform cross-section,

then current will remain constant at all cross-sections. But drift velocity

and current density are inversely proportional to the area of

cross-section. This is because

i neAvd= or v
i

neA
d = or v

A
d ∝ 1

Further, j
i

A
= or j

A
∝ 1

So, in the figure i i i1 2= = but, ( ) ( )v vd d2 1> and j j2 1> because A A2 1<

Note Later we can also prove that electric field at 2 is also more than electric field at 1 .

V Example 23.7 An electron beam has an aperture of 1.0 mm2 . A total of

6.0 × 1016 electrons go through any perpendicular cross-section per second. Find

(a) the current and (b) the current density in the beam.

Solution (a) The current is given by

i
q

t

ne

t
= =

Substituting the values we have,

i = × × −( . ) ( . )60 10 16 10

1

16 19

= × −9.6 A10 3
Ans.

(b) The current density is

j
i

A
= = × −

−
9.6 10

10

3

6

= ×9.6 A/m103 2
Ans.

Chapter 23 Current Electricity � 9
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V Example 23.8 Calculate the drift speed of the electrons when 1 A of current

exists in a copper wire of cross-section 2 2mm . The number of free electrons in

1 3cm of copper is 8.5 × 1022 .

Solution n = free electron density,

= ×8.5 per cm1022 3 (Given)

= ×( ) ( )8.5 per m10 1022 6 3

= ×8.5 per m1028 3

From i neAvd= , we get

v
i

neA
d =

Substituting the values in SI units we have,

vd =
× × ×− −

1

10 10 2 1028 19 6( )( )( )8.5 1.6

= × −3.6 m/s10 5 Answer

1. When a wire carries a current of 1.20 A, the drift velocity is 1.20 m/s× −10 4 . What is the drift

velocity when the current is 6.00 A?

2. Find the velocity of charge leading to 1 A current which flows in a copper conductor of

cross-section 1 2cm and length 10 km. Free electron density of copper is 8.5 m× 1028 3/ . How

long will it take the electric charge to travel from one end of the conductor to the other?

23.5 Resistance of a Wire
Resistance of a wire is always required between two points or two surfaces (say P and Q).

Here, l = length of wire, A = area of cross-section

Now, R l∝ …(i)

and R
A

∝
1

…(ii)

Combining Eqs. (i) and (ii), we get

R
l

A
= ρ …(iii)
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Here, ρ is called resistivity of the material of the wire. This depends on number of free electrons

present in the material. With increase in number of free electrons the value of ρ decreases.

Note (i) ρ
σ

= 1
, where σ = conductivity.

(ii) SI units of resistivity are Ω-m (ohm-metre).

(iii) SI units of conductivity are ( )Ω-m −1 .

(iv) In Eq. (iii), l is that dimension of conductor which is parallel to P and Q and A is that cross-sectional area,

which is perpendicular to P and Q.

V Example 23.9 Two copper wires of the same length have got different
diameters,

(a) which wire has greater resistance?

(b) greater specific resistance?

Solution (a) For a given wire, R
l

A
= ρ , i.e. R

A
∝ 1

So, the thinner wire will have greater resistance.

(b) Specific resistance ( )ρ is a material property. It does not depend on l or A.

So, both the wires will have same specific resistance.

V Example 23.10 A wire has a resistance R. What will be its resistance if it is
stretched to double its length?

Solution Let V be the volume of wire, then

V Al=

∴ A
V

l
=

Substituting this in R
l

A
= ρ , we have R

l

V
= ρ

2

So, for given volume and material (i.e.V and ρ are constants)

R l∝ 2

When l is doubled, resistance will become four times, or the new resistance will be 4R.

V Example 23.11 The dimensions of a conductor of specific resistance ρ are

shown below. Find the resistance of the conductor across AB, CD and EF.
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Solution R
l

A
= ρ

Resistance across AB, CD and EF in tabular form is shown below.

Table 23.1

I A B

AB c a b× ρ c

ab

CD b a c× ρ b

ac

EF a b c× ρ a

bc

V Example 23.12 A copper wire is stretched to make it 0.1% longer. What is the
percentage change in its resistance? (JEE 1978)

Solution R
l

A

l

V l
= =ρ ρ

/
(V = volume of wire)

= ρl

V

2

∴ R l∝ 2 ( ρ andV = constant)

For small percentage change

% change R = 2 (% change in l ) = 2 01( . %) = 02. %

Since R l∝ 2 , with increase in the value of l, resistance will also increase.

1. In household wiring, copper wire 2.05 mm in diameter is often used. Find the resistance of a

35.0 m long wire. Specific resistance of copper is 1.72 m× −10 8 Ω- .

2. The product of resistivity and conductivity of a conductor is constant. Is this statement true or

false?

3. You need to produce a set of cylindrical copper wires 3.50 m long that will have a resistance of

0.125 Ω each. What will be the mass of each of these wires? Specific resistance of

copper 1.72 m= × Ω10 8– - , density of copper = ×8.9 103 kg/m3.

4. Consider a thin square sheet of side L and thickness t, made of a

material of resistivity ρ. The resistance between two opposite faces,

shown by the shaded areas in the figure is (JEE 2010)

(a) directly proportional to L

(b) directly proportional to t

(c) independent of L

(d) independent of t
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23.6 Temperature Dependence of Resistance
If we increase the temperature of any material, the following two effects can be observed :

(i) Numbers of free electrons increase. Due to this effect conductivity of the material increases. So,

resistivity or resistance decreases.

(ii) The ions of the material vibrate with greater amplitude and the collision between electrons and

ions become more frequent. Due to this effect resistivity or resistance of the material increases.

In Conductors
There are already a large number of free electrons. So, with increase in temperature effect-(i) is not so

dominant as effect-(ii). Hence, resistivity or resistance of conductors increase with increase in

temperature.

Over a small temperature range (upto 100°C), the resistivity of a metal (or conductors) can be

represented approximately by the equation,

ρ ρ α( ) [ ( – )]T T T= +0 01 …(i)

where, ρ0 is the resistivity at a reference temperature T0 (often taken as 0°C or 20°C) and ρ ( )T is the

resistivity at temperature T, which may be higher or lower than T0 . The factor α is called the

temperature coefficient of resistivity.

The resistance of a given conductor depends on its length and area of cross-section besides the

resistivity. As temperature changes, the length and area also change. But these changes are quite

small and the factor l A/ may be treated as constant.

Then, R ∝ ρ and hence, R T R T T( ) [ ( – )]= +0 01 α …(ii)

In this equation, R T( ) is the resistance at temperature T and R0 is the resistance at temperature T0 ,

often taken to be 0°C or 20°C. The temperature coefficient of resistance α is the same constant that

appears in Eq. (i), if the dimensions l and A in equation R
l

A
= ρ do not change with temperature.

In Semiconductors
At room temperature, numbers of free electrons in semiconductors (like silicon, germanium etc.) are

very less. So, with increase in temperature, effect-(i) is very dominant. Hence, resistivity or resistance

of semiconductors decreases with increase in temperature or we can say that temperature coefficient

of resistivity α for semiconductors is negative.

V Example 23.13 The resistance of a thin silver wire is 1.0 Ω at 20°C. The wire
is placed in a liquid bath and its resistance rises to 1.2 Ω. What is the

temperature of the bath? α for silver is 3.8 × 10 3– /°C.

Solution R T R T T( ) [ ( )]= + −0 01 α
Here, R T( ) = 1.2 Ω, R0 = Ω1.0 , α = × °38 10 3. C– / and T0 20= ° C

Substituting the values, we have 1.2 1.0 3.8= + ×[ ( – )]–1 10 203 T

or 3.8 0.2× =10 203– ( – )T

Solving this, we get T = °72.6 C Ans.
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V Example 23.14 Read the following statements carefully (JEE 1993)

Y : The resistivity of semiconductor decreases with increase of temperature.

Z : In a conducting solid, the rate of collisions between free electrons and ions

increases with increase of temperature.

Select the correct statement (s) from the following

(a) Y is true but Z is false (b) Y is false but Z is true

(c) Both Y and Z are true (d) Y is true and Z is the correct reason for Y

Solution Resistivity of conductors increases with increase in temperature because rate of

collisions between free electrons and ions increase with increase of temperature. However, the

resistivity of semiconductors decreases with increase in temperature, because more and more

covalent bonds are broken at higher temperatures and free electrons increase with increase in

temperature. Therefore, the correct option is (c).

V Example 23.15 An electric toaster uses nichrome for its heating element.

When a negligibly small current passes through it. Its resistance at room

temperature ( )27.0 oC is found to be 75 3. Ω. When the toaster is connected to a

230 V supply, the current settles, after a few seconds, to a steady value of

2.68 A. What is the steady temperature of the nichrome element? The

temperature coefficient of resistance of nichrome averaged over the temperature

range involved, is 1.70 × − −10 4 1o

C .

Solution Given, T0 27= ° C and R0 753= . Ω

At temperature T, R
V

i
T

T

T

= R
V

i
=





= 230

268.
= 8582. Ω

Using the equation, R R T TT = + −0 01[ ( )]α
We have 85.82 75.3 1.70= + × −−[ ( )( )]1 10 274 T

Solving this equation, we get T ≈ 850 oC Ans.

Thus, the steady temperature of the nichrome element is 850 oC.

1. A piece of copper and another of germanium are cooled from room temperature to 80 K. The

resistance of (JEE 1988)

(a) each of them increases

(b) each of them decreases

(c) copper increases and germanium decreases

(d) copper decreases and germanium increases

2. The resistance of a copper wire and an iron wire at 20°C are 4.1Ω and 3.9 Ω, respectively.

Neglecting any thermal expansion, find the temperature at which resistances of both are equal.

α Cu 4.0 K= × − −10 3 1 and αFe 5.0 K= × − −10 3 1.
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23.7 Ohm’s Law
The equation,V iR= is not Ohm’s law. It is a mathematical relation between current passing through

a resistance, value of resistance R and the potential difference V across it.

According to Ohm’s law, there are some of the materials (like metals or

conductors) or some circuits for which, current passing through them is

proportional to the potential difference applied across them or

i V∝ or V i∝

⇒ V iR= or
V

i
R= =constant

orV i- graph for such materials and circuits is a straight line passing through

origin. Slope of this graph is called its resistance. The materials or circuits

which follow this law are called ohmic.

The materials or circuits which do not follow this law are called non-ohmic.V i- graph for non-ohmic

circuits is not a straight line passing through origin.
V

i
or R is not constant and i is not proportional toV .

Note Equation V iR= is applicable for even non-ohmic circuits also.

For example,
V

i
R resistance at P1

1

1= = .

V

i
R resistance at Q but2

2

2= = ,

R R1 2≠

V Example 23.16 The current-voltage graphs for a given metallic wire at two
different temperatures T1 and T2 are shown in the figure. The temperature T2 is
greater than T1. Is this statement true or false? (JEE 1985)
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Solution
I

V R
= =Slope of given graph

1

or R = 1

Slope
⇒ ( ) ( )Slope SlopeT T2 1

< ⇒ 1 1

2 1
( ) ( )Slope SlopeT T

>

Resistance of a metallic wire increases with increase in temperature.

or R RT T2 1
> or T T2 1>

Therefore, the statement is true.

23.8 The Battery and the Electromotive Force
Before studying the electromotive force (emf) of a cell let us take an example of

a pump which is more easy to understand. Suppose we want to recycle water

between a overhead tank and a ground water tank. Water flows from overhead

tank to ground water tank by itself (by gravity). No external agent is required

for this purpose. But to raise the water from ground water tank to overhead tank

a pump is required or some external work has to be done. In an electric circuit, a

battery or a cell plays the same role as the pump played in the above example.

Suppose a resistance (R) is connected across the terminals of a battery.

A potential difference is developed across its ends. Current (or

positive charge) flows from higher potential to lower potential across

the resistance by itself. But inside the battery, work has to be done to

bring the positive charge from lower potential to higher potential. The

influence that makes current flow from lower to higher potential

(inside the battery) is called electromotive force (abbreviated emf). If

W work is done by the battery in taking a charge q from negative

terminal to positive terminal, then work done by the battery per unit

charge is called emf (E) of the battery.

Thus, E
W

q
=

The name electromotive force is misleading in the sense that emf is not a force it is work done per unit

charge. The SI unit of emf is J/C or V ( 1 V 1 J/C= ).

23.9 Direct Current Circuits, Kirchhoff’s Laws
Single current in a simple circuit (single loop) can be found by the relation,
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i
E

R
= =

net emf

net resistance

net

net

For example :

In Fig. (a) Net emf is 6 V and net resistance is 3 Ω. Therefore,

i = =
6

3
2 A

In Fig. (b) Net emf = =( – )10 6 4V V

and Net resistance = Ω2

Therefore, i = =
4

2
2 A

In Fig. (c) We have n cells each of emf E. Of these polarity of m cells (where n m>2 ) is reversed.

Then, net emf in the circuit is ( – )n m E2 and resistance of the circuit is R. Therefore,

i
n m E

R
=

( – )2

Resistors in Series and in Parallel

In series :

Figure represents a circuit consisting of a source of emf and two resistors connected in series. We are

interested in finding the resistance R of the network lying between A and B. That is, what single

equivalent resistor R would have the same resistance as the two resistors linked together.

Because there is only one path for electric current to follow, i must have the same value everywhere in

the circuit. The potential difference between A and B is V. This potential difference must somehow be

divided into two parts V1 andV2 as shown,

∴ V V V= +1 2 = +iR iR1 2

or V i R R= +( )1 2 …(i)

Let R be the equivalent resistance between A and B, then

V iR= …(ii)

From Eqs. (i) and (ii),

R R R= +1 2 for resistors in series

This result can be readily extended to a network consisting of n resistors in series.

∴ R R R Rn= + + +1 2 KK
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In parallel :

In Fig. 23.17, the two resistors are connected in parallel. The voltage drop across each resistor is equal

to the source voltage V. The current i, however, divides into two branches, which carry currents i1 and

i2 .

i i i= +1 2 …(iii)

If R be the equivalent resistance, then

i
V

R
= , i

V

R
1

1

= and i
V

R
2

2

=

Substituting in Eq. (iii), we get

1 1 1

1 2R R R
= + for resistors in parallel

This result can also be extended to a network consisting of n resistors in parallel. The result is

1 1 1 1

1 2R R R Rn

= + +… +K

V Example 23.17 Compute the equivalent resistance of the network shown in
figure and find the current i drawn from the battery.

Solution The 6 Ω and 3 Ω resistances are in parallel. Their equivalent resistance is
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1 1

6

1

3R
= + or R = Ω2

Now, this 2 Ω and 4 Ω resistances are in series and their equivalent resistance is 4 2 6+ = Ω.

Therefore, equivalent resistance of the network = Ω6 . Ans.

Current drawn from the battery is

i = =net emf

net resistance

18

6

= 3 A Ans.

Kirchhoff’s Laws
Many electric circuits cannot be reduced to simple series-parallel combinations. For example, two

circuits that cannot be so broken down are shown in Fig. 23.21.

However, it is always possible to analyze such circuits by applying two rules, devised by Kirchhoff in

1845 and 1846 when he was still a student.

First there are two terms that we will use often.

Junction

A junction in a circuit is a point where three or more conductors meet. Junctions are also called nodes

or branch points.

For example, in Fig. (a) points D and C are junctions. Similarly, in Fig. (b) points B and F are junctions.

Loop

A loop is any closed conducting path. For example, in Fig. (a) ABCDA, DCEFD and ABEFA are

loops. Similarly, in Fig. (b), CBFEC, BDGFB are loops.
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Kirchhoff’s rules consist of the following two statements :

Kirchhoff’s Junction Rule

The algebraic sum of the currents into any junction is zero.

That is,
junction
Σ i =0

This law can also be written as, “the sum of all the currents directed towards a

point in a circuit is equal to the sum of all the currents directed away from that

point.”

Thus, in figure i i i i1 2 3 4+ = +
The junction rule is based on conservation of electric charge. No charge can

accumulate at a junction, so the total charge entering the junction per unit

time must equal to charge leaving per unit time. Charge per unit time is

current, so if we consider the currents entering to be positive and those

leaving to be negative, the algebraic sum of currents into a junction must be

zero.

Kirchhoff’s Loop Rule

The algebraic sum of the potential differences in any loop including those associated emf’s and those

of resistive elements, must equal zero.

That is,
closed loop

Σ ∆V =0

Kirchhoff’s second rule is based on the fact that the

electrostatic field is conservative in nature. This result

states that there is no net change in electric potential

around a closed path. Kirchhoff’s second rule applies only

for circuits in which an electric potential is defined at each

point. This criterion may not be satisfied if changing

electromagnetic fields are present.

In applying the loop rule, we need sign conventions. First assume a direction for the current in each

branch of the circuit. Then starting at any point in the circuit, we imagine, travelling around a loop,

adding emf’s and iR terms as we come to them.

When we travel through a source in the direction from – to +, the emf is considered to be positive,

when we travel from + to –, the emf is considered to be negative.

When we travel through a resistor in the same direction as the assumed current, the iR term is negative

because the current goes in the direction of decreasing potential. When we travel through a resistor in

the direction opposite to the assumed current, the iR term is positive because this represents a rise of

potential.
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Note It is advised to write H (for higher potential) and L (for lower potential) across all the batteries and

resistances of the loop under consideration while using the loop law. Then write – while moving from H to L

and + for L to H. Across a battery write H on positive terminal and L on negative terminal. Across a

resistance keep in mind the fact that current always flows from higher potential (H) to lower potential (L).

For example, in the loop shown in figure we have marked H and L across all batteries and resistances. Now

let us apply the second law in the loop ADCBA.

The equation will be + − + + =i R E iR E2 2 1 1 0

V Example 23.18 Find currents in different branches of the electric circuit
shown in figure.

HOW TO PROCEED In this problem there are three wires EFAB, BE and BCDE.

Therefore, we have three unknown currents i i1 2, and i3 . So, we require three

equations. One equation will be obtained by applying Kirchhoff’s junction law (either

at B or at E) and the remaining two equations, we get from the second law (loop law).

We can make three loops ABEFA, ACDFA and BCDEB. But we have to choose any

two of them. Initially, we can choose any arbitrary directions of i i1 2, and i3 .

Solution Applying Kirchhoff’s first law (junction law) at junction B,

i i i1 2 3= + …(i)

Applying Kirchhoff’s second law in loop 1 ( ),ABEFA

– –4 4 2 2 01 1i i+ + = …(ii)
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Applying Kirchhoff’s second law in loop 2 ( )BCDEB ,

       – – – –2 6 4 4 03 3i i =      …(iii)

Solving Eqs. (i), (ii) and (iii), we get

i1 1= A

 i2
8

3
= A

    i3
5

3
= – A Ans.

Here, negative sign of i3  implies that current i3  is in opposite direction of what we have
assumed.

V Exam ple 23.19 In exam ple 23.18, find the poten tial differ ence between points
F and C.

HOW TO PROCEED To find the po ten tial dif fer ence be tween any two points of a cir cuit
you have to reach from one point to the other via any path of the cir cuit. It is
ad vis able to choose a path in which we come across the least num ber of re sis tors
pref er a bly a path which has no re sis tance.

Solu tion Let us reach from F to C via A and B,

V i i VF C+ =2 4 21 3– –                

∴                   V V i iF C– –= +4 2 21 3

Substituting, i1 1= A and i3
5

3
= – A, we get

V VF C– –= 4

3
volt Ans.

Here, negative sign implies that V VF C< .

Internal Resistance (r ) and Potential Difference (V ) across the Terminals of a Battery
The potential difference across a real source in a circuit is not equal to the emf of the cell. The reason
is that charge moving through the electrolyte of the cell encounters resistance. We call this the
internal resistance of the source, denoted by r. If this resistance behaves according to Ohm’s law  r is 
constant and independent of the current i. As the current moves through r, it experiences an associated 
drop in potential equal to ir. Thus, when a current is drawn through a source, the potential difference
between the terminals of the source is

V E ir= –

This can also be shown as below. 

V E ir VA B– + =  

or     V V E irA B– –=
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The following three special cases are possible :

  (i) If the current flows in opposite direction (as in case of charging of a battery), then V E ir= +
 (ii) V E= , if the current through the cell is zero.

(iii) V = 0, if the cell is short circuited.

This is because current in the circuit

i
E

r
=

or E ir=   

∴ E ir– = 0          

or V = 0   

Thus, we can summarise it as follows :

 V E ir= – or V E<

          V E ir= + or V E>

         V E= if i = 0

    V = 0 if short circuited
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� In figure (a) : There are eight wires and hence, will have eight currents or

eight unknowns. The eight wires are AB BC CE EA AD, , , , , BD CD,  and ED.

Number of independent loops are four. Therefore, from the second law we

can make only four equations. Total number of junctions are five (A, B, C, D

and E). But by using the first law, we can make only four equations (one

less). So, the total number of equations are eight.

In figure (b) : Number of wires are six (AB, BC, CDA, BE, AE and CE).

Number of independent loops are three so, three equations can be obtained 

from the second law. Number of junctions are four (A, B, C and E) so, we can 

make only three (one less) equations from the first law. But total number of

equations are again six.

� Short circuiting : Two points in an electric circuit directly connected by a

conducting wire are called short circuited. Under such condition both points 

are at same potential.

For example, resistance R1 in the adjoining circuit is short circuited, i.e.

potential difference across it is zero. Hence, no current will flow through R1

and the current through R2 is therefore, E R/ 2.

� Earthing : If some point of a circuit is earthed, then its potential is taken to

be zero.

For example, in the adjoining figure,

V VA B= = 0

V V V  F C D= = = – 3 V 

 VE = – 9 V   

∴ V VB E– = 9 V                  

or current through 2 Ω resistance is 
V VB E–

2
 or 

9

2
A (from B to E)

Similarly,     V VA F– = 3 V

and the current through 4 Ω resistance is  
V VA F–

4
 or 

3

4
A  (from A to F)

� For a current flow through a resistance there must be a potential difference
across it but between any two points of a circuit the potential difference may be
zero.

For example, in the circuit,

net emf = 3 V and  net resistance = Ω6                

∴     current in the circuit,  i = =3

6

1

2
A 

V VA B–  V VA B+ × =1 2
1

2
–  or V VA B– = 0     

or by symmetry, we can say that

      V V VA B C= =     

So, the potential difference across any two vertices of the triangle is zero, while the current in the circuit is

non-zero.
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� Distribution of current in parallel connections : When more than

one resistances are connected in parallel, the potential difference

across them is equal and the current is distributed among them in

inverse ratio of their resistance as

i
V

R
=               

or        i
R

∝ 1
 for same value of V 

e.g. in the figure, 

 i i i
R R R

1 2 3
1 1

2

1

3
6 3 2: : : : : := =            

∴  i i i1
6

6 3 2

6

11
=

+ +






 =

    i i i2
3

6 3 2

3

11
=

+ +






 =   

and  i i i3
2

6 3 2

2

11
=

+ +






 =

 Note In case of only two re sis tances,
i

i

R

R
1

2

2

1

=

� Distribution of potential in series connections : When more

than one resistances are connected in series, the current through

them is same and the potential is distributed in the direct ratio of

their resistance as

 V iR=  or V R∝  for same value of i.

For example in the figure,

V V V R R R1 2 3 2 3 1 2 3: : : : : := =           

∴ V V
V

1
1

1 2 3 6
=

+ +






 =  

                     V V
V

2
2

1 2 3 3
=

+ +






 =  

and                 V V
V

3
3

1 2 3 2
=

+ +






 =  

V Exam ple 23.20 In the circuit shown in figure,

E1 10= V ,  E2 4= V ,   r r1 2 1= = Ω and R = Ω2 .

Find the potential difference across battery 1 and battery 2.
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Solu tion Net emf of the circuit = =E E1 2 6– V

Total resistance of the circuit = + + = ΩR r r1 2 4

∴ Current in the circuit, i = =net emf

total resistance

6

4
 = 1.5 A  

Now, V E ir1 1 1 10 1= =– – ( ) ( )1.5  

           = 8.5 V                   Ans.

and             V E ir2 2 2 4 1= + = + ( ) ( )1.5                                        

   = 5.5 V               Ans.

1. Find the cur rent through 2 Ω and 4 Ω re sis tance.

2. In the cir cuit shown in fig ure, find the po ten tials of A B C, ,  and D and

the cur rent through 1Ω and 2 Ω re sis tance.

3. For what value of E the po ten tial of A is equal to
the po ten tial of B?

4. Ten cells each of emf 1 V and in ter nal re sis tance 1Ω are con nected in se ries. In this
arrangement, polarity of two cells is re versed and the sys tem is con nected to an ex ter nal
re sis tance of 2 Ω. Find the cur rent in the cir cuit.

5. In the cir cuit shown in fig ure, R R R1 2 3 10= = = Ω. Find the

cur rents through R1 and R2.
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23.10 Heating Effects of Current
An electric current through a resistor increases its thermal energy. Also, there are other situations in
which an electric current can produce or absorb thermal energy.

Power Supplied or Power Absorbed by a Battery
When charges are transported across a source of emf, their potential energy changes. If a net charge 
∆ q moves through a potential difference E in a time ∆ t, the change in electric potential energy of the
charge is E q∆ . Thus, the source of emf does work,

∆ ∆W E q=
Dividing both sides by ∆t, then taking the limit as ∆t → 0, we find

dW

dt
E

dq

dt
=

By definition, 
dq

dt
i= , the current through the battery and 

dW

dt
P= , the power output of (or input to) the 

battery. Hence,

P Ei=  

The quantity P represents the rate at which energy is transferred from a discharging battery or to a
charging battery.

In Fig. 23.43, energy is transferred from the source at a rate Ei

In Fig. 23.44, energy is transferred to the source at a rate Ei

Power dissipated across a resistance
Now, let’s consider the power dissipated in a conducting element. Suppose it has a resistance R and
the potential difference between its ends is V. In moving from higher to lower potential, a positive
charge ∆ q loses energy ∆ ∆U V q= . This electric energy is absorbed by the conductor through
collisions between its atomic lattice and the charge carriers, causing its temperature to rise. This
effect is commonly called Joule heating. Since, power is the rate at which energy is transferred, we
have,

     P
U

t
V

q

t
V i= = ⋅ =

∆
∆

∆
∆

∴ P V i=                      

which with the help of equation V iR=  can also be written in the forms,

P i R= 2   or  P
V

R
=

2
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Power is always dissipated in a resistance. With this rate, the heat
produced in the resistor in time t is

H Pt=  or  H Vit i Rt
V

R
t= = =2

2

Joule heating occurs whenever a current passes through an element that has resistance. To prevent the 
overheating of delicate electronic components, many electric devices like video cassette recorders,
televisions and computer monitors have fans in their chassis to allow some of the heat produced to
escape.

� We have seen above that power may be supplied or consumed by a battery. It depends on the direction of

current.

In the above direction of current power is supplied by the battery ( )= Ei

In the opposite direction of current shown in Fig. 23.47, power is consumed by the battery. This normally

happens during charging of a battery.

� A resistance always consumes power. It does not depend on the direction of current.

In both cases shown in figure, power is only consumed and this power consumed is given by the formula.

P i R
V

R
Vi= = =2

2

In the above equations V and i are the values across a resistance in which we wish to find the power

consumed.

� In any electrical circuit, law of conservation of energy is followed.

Net power supplied by all batteries of the circuit = net power consumed by all resistors in the circuit.

V Exam ple 23.21 In the circuit shown in figure, find 

(a) the power supplied by 10 V battery

(b) the power consumed by 4 V battery and

(c) the power dissipated in 3 Ω resistance.
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Solu tion Net emf of the circuit = ( – )10 4 V = 6 V

∴ Current in the circuit

 i = =net emf

total resistance

6

3
 = 2 A  

(a) Power supplied by 10 V battery = Ei = ( ) ( )10 2  = 20 W Ans.

(b) Power consumed by 4 V battery = Ei = ( ) ( )4 2   = 8 W Ans.

(c) Power consumed by 3 Ω resistance = i R2  = ( ) ( )2 32   = 12 W Ans.

 Note Here, we can see that total power supplied by 10 V battery (i.e. 20 W) = power consumed by 4 V battery
and 3 Ω resistance. Which proves that conservation of energy holds good in electric circuits also.

V Exam ple 23.22 In the circuit shown in figure, find the heat devel oped across
each resis tance in 2 s.

Solu tion The 6 Ω and 3 Ω resistances are in paral lel. So, their combined resis tance is

1 1

6

1

3

1

2R
= + =  

or R = Ω2              

The equivalent simple circuit can be drawn as shown.

Current in the circuit,  

i = =
+ +

net emf

total resistance

20

3 2 5
 = 2 A

V iR= = =( ) ( )2 2 4 V                        

i.e. Potential difference across 6 Ω and 3 Ω resistances are 4 V. Now,

H3 Ω  (which is connected in series)  = = =i Rt2 22 3 2 24( ) ( ) ( ) J 

H
V

R
t6

2 24

6
2

16

3
Ω = = =( )

( ) J         
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H3 Ω  (which is connected in parallel)   = = =V

R
t

2 24 2

3

32

3

( ) ( )
J

and   H i Rt5
2 22 5 2 40Ω = = =( ) ( ) ( ) J Ans.

1. In the cir cuit shown in fig ure, a 12 V battery with un known in ter nal re sis tance r is con nected to
another bat tery with un known emf E and in ter nal re sis tance 1Ω and to a re sis tance of 3 Ω
car ry ing a cur rent of 2 A. The cur rent through the re charge able bat tery is 1 A in the di rec tion
shown. Find the un known cur rent i, in ter nal re sis tance r and the emf E.

2. In the above ex am ple, find the power de liv ered by the 12 V  battery and the power dis si pated in
3 Ω re sis tor.

23.11 Grouping of Cells
Cells are usually grouped in the following three ways :

Series Grouping
Suppose n cells each of emf E and internal resistance r are connected in series as shown in figure.

Then,           Net emf = nE

        Total resistance = +nr R    

∴       Current in the circuit, i =
net emf

total resistance
 or   i

nE

nr R
=

+

 Note  If polarity of m cells is reversed, then equivalent emf = ( – )n m E2 , while total resistance is still nr R+

∴ i
n m E

nr R
=

+
( – )2
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Parallel Grouping
Here, three cases are possible.

Case 1 When E and r of each cell has same value and positive terminals of

all cells are connected at one junction while negative at the other.

In this situation, the net emf is E. The net internal resistance is 
r

n
 as n

resistances each of r are in parallel. Net external resistance is R. Therefore,

total resistance is 
r

n
R+





 and so the current in the circuit will be,

i =
Net emf

Total resistance
  or  i

E

R r n
=

+ /

 Note   A comparison of series and parallel grouping reveals that to get maximum current, cells must be
connected in series if effective internal resistance is lesser than external and in parallel if effective internal 

resistance is greater than external.

Case 2 If E and r of each cell are different but still the positive terminals of all cells are connected

at one junction while negative at the other.

Applying Kirchhoff’s second law in loop ABCDEFA,

     E iR i r1 1 1 0– – =  or i i
R

r

E

r1
1

1

1

= +– …(i)

Similarly, we can write

         i i
R

r

E

r2
2

2

2

= +– …(ii)

         … … … …
Adding all above equations, we have

( ) –i i i iR
r

E

rn1 2

1
+ +… + = 





+ 





Σ Σ

But i i i in1 2+ +… + =                              

∴                           i iR
r

E

r
= 





+ 





– Σ Σ
1
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∴       i
E r

R r

E r r

r R

E

R
=

+
=

+
=

Σ
Σ

Σ Σ
Σ

( / )

( / )

( / )/ ( / )

{ / ( / )}1 1

1

1 1

eq

eq

where, E
E r

req =
Σ
Σ

( / )

( / )1
   and R R

req = +
1

1Σ ( / )
   

From the above expression, we can see that i
E

R r n
=

+ /
 if n cells of same emf E and internal

resistance r are connected in parallel. This is because,

              Σ ( / ) /E r nE r=  and Σ ( / ) /1 r n r=

∴   i
nE r

nR r
=

+
/

/1

Multiplying the numerator and denominator by r n/ , we have

i
E

R r n
=

+ /

Exercise  In parallel grouping (Case 2) prove that,  E Eeq =  if  E E E1 2= = =K  and r r r1 2= = =K

Case 3 This is the most general case of parallel grouping in which E and r of different cells are

different and the positive terminals of few cells are connected to the negative terminals of the others

as shown figure.

Kirchhoff’s second law in different loops gives the following equations :

       E iR i r1 1 1 0– – =  or  i
E

r

iR

r1
1

1 1

= –          …(i)

– – –E iR i r2 2 2 0=  or i
E

r

iR

r2
2

2 2

= – –     …(ii)

Similarly, i
E

r

iR

r3
3

3 3

= –     …(iii)

Adding Eqs. (i), (ii) and (iii), we get

                        i i i E / r E / r E / r iR r r r1 2 3 1 1 2 2 3 3 1 2 31 1 1+ + = + + +( ) – ( ) ( ) – ( / / / )

or i R r r r E r E r E r[ ( / / / )] ( / ) – ( / ) ( / )1 1 1 11 2 3 1 1 2 2 3 3+ + + = +                        
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∴                     i
E r E r E r

R r r r
=

+
+ + +

( / ) – ( / ) ( / )

( / / / )
1 1 2 2 3 3

1 2 31 1 1 1
    

or                                i
E r E r E r r r r

R r
=

+ + +
+ +

( / – / / ) / ( / / / )

/ ( / /
1 1 2 2 3 3 1 2 3

1

1 1 1

1 1 1 r r2 31+ / )

Mixed Grouping
The situation is shown in figure.

There are n identical cells in a row and number of rows are m. Emf of each cell is E and internal
resistance is r. Treating each row as a single cell of emf nE and internal resistance nr, we have

                          Net emf = nE

Total internal resistance =
nr

m

Total external resistance = R  

∴ Current through the external resistance R is

          i
nE

R
nr

m

=
+

This expression after some rearrangements can also be written as

i
mnE

mR nr mnrR
=

+( – )2 2

If total number of cells are given then mn is fixed. E r,  and R are also given, we have liberty to arrange
the given number of cells in different rows. Then in the above expression the numerator nmE and in

the denominator 2 mnrR  all are fixed. Only the square term in the denominator is variable.

Therefore,

i is maximum when,

           mR nr=  or  R
nr

m
=     

or  total external resistance = total internal resistance

Thus, we can say that the current and hence power transferred to the load is maximum when load
resistance is equal to internal resistance. This is known as maximum power transfer theorem.
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� Regarding maximum current in the circuit or maximum power consumed by the external resistance R, there

are three special cases. One we have discussed above, where we have to arrange the cells in such a

manner that current and power in the circuit should be maximum. And this happens when we arrange the

cells in such a manner that total internal resistance comes out to be equal to total external resistance. Rest

two cases are discussed below.

In the figure shown,     i
E

R r
=

+

P i R
E

R r
RR = =

+






2

2

(i) Now if r is variable. E and R are fixed, then i and PR  both are maximum when r = 0.

(ii) If R is variable. E and r are fixed. Then, current in the circuit is maximum when R = 0. But PR  will be

maximum, when

R r=  or external resistance internal resistance=

V Exam ple 23.23 Find the emf and inter nal resis tance of a single battery which
is equiv a lent to a combi na tion of three batter ies as shown in figure.

Solu tion The given combi na tion consists of two batter ies in paral lel and resul tant of these two 
in series with the third one.
For parallel combination we can apply,

         E

E

r

E

r

r r

eq =
+

=
+

1

1

2

2

1 2

1 1

10

2

4

2
1

2

1

2

– –
 = 3 V

Further,
1 1 1 1

2

1

21 2r r req

= + = +  = 1

∴ req = Ω1           
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Now this is in series with the third one, i.e.

The equivalent emf of these two is ( – )6 3 V or 3 V and the internal resistance will be ( )1 1+  or 
2 Ω

V Exam ple 23.24 In the circuit shown in
figure E1 3= V, E2 2= V, E3 1=  V and 
R r r r= = = =1 2 3 1 Ω. (JEE 1981)

(a) Find the potential difference between the
points A and B and the currents through each
branch.

(b) If r2 is short-circuited and the point A is
connected to point B, find the currents
through E E E1 2 3, ,  and the resistor R.

Solu tion (a) Equiv a lent emf of three batter ies would be

E
E r

r
eq = Σ

Σ
( / )

( / )1
 = + +

+ +
=( / / / )

( / / / )

3 1 2 1 1 1

1 1 1 1 1 1
2 V

Further r r1 2,  and r3  each are of 1 Ω. Therefore, internal resistance of the equivalent battery 

will be 
1

3
Ω as all three are in parallel.

The equivalent circuit is therefore shown in the figure.

Since, no current is taken from the battery.

VAB = 2 V                                              (From V E i r= − )

Further, V V E i rA B− = −1 1 1                                              

∴ i
V V E

r
B A

1
1

1

2 3

1
1=

− +
= − + = A

Similarly, i
V V E

r
B A

2
2

2

2 2

1
0=

− +
= − + =    

and   i
V V E

r
B A

3
3

3

2 1

1
1=

− +
= − + = − A
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(b) r2  is short circuited means resistance of this
branch becomes zero. Making a closed circuit
with a battery and resistance R. Applying
Kirchhoff’s second law in three loops so
formed.

3 01 1 2 3− − + + =i i i i( )        …(i)

2 01 2 3− + + =( )i i i …(ii)

1 03 1 2 3− − + + =i i i i( )        …(iii)

From Eq. (ii)             i i i1 2 3 2+ + = A 

∴  Substituting in Eq. (i), we get                             i1 1= A 

Substituting in Eq. (iii), we get                              i3 1= − A

∴                              i2 2= A  

1. Find the emf (V) and in ter nal re sis tance (r) of a sin gle bat tery which is equiv a lent to a par al lel
com bi na tion of two bat ter ies of emfs V1 and V2 and in ter nal resistances r1 and r2re spec tively, with
po lar i ties as shown in fig ure

2. Find the net emf of the three bat ter ies shown in fig ure.

3. Find the equiv a lent emf and in ter nal re sis tance of the ar range ment shown in figure.
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23.12 Electrical Measuring Instruments
So far we have studied about current, resistance, potential difference and emf. Now, in this article we

will study how these are measured. The basic measuring instrument is galvanometer, whose pointer

shows a deflection when current passes through it. A galvanometer can easily be converted into an

ammeter for measuring current, into a voltmeter for measuring potential difference. For accurate

measurement of potential difference or emf, a potentiometer is more preferred. Resistances are

accurately measured by using post office box or meter bridge which are based on the principle of

“Wheatstone bridge”. All these are discussed here one by one in brief.

Galvanometer
Many common devices including car instrument panels, battery chargers measure potential

difference, current or resistance using d’Arsonval Galvanometer. It consists of a pivoted coil placed

in the magnetic field of a permanent magnet. Attached to the coil is a spring. In the equilibrium

position, with no current in the coil, the pointer is at zero and spring is relaxed. When there is a current

in the coil, the magnetic field exerts a torque on the coil that is proportional to current. As the coil

turns, the spring exerts a restoring torque that is proportional to the angular displacement. Thus, the

angular deflection of the coil and pointer is directly proportional to the coil current and the device can

be calibrated to measure current.

The maximum deflection, typically 90° to 120° is called full scale deflection. The essential electrical

characteristics of the galvanometer are the current ig required for full scale deflection (of the order of

10 Aµ to 10 mA) and the resistance G of the coil (of the order of 10 to 1000 Ω).

The galvanometer deflection is proportional to the current in the coil. If the coil obeys Ohm’s law, the

current is proportional to potential difference. The corresponding potential difference for full scale

deflection is

V i Gg=

Ammeter
A current measuring instrument is called an ammeter. A

galvanometer can be converted into an ammeter by connecting

a small resistance S (called shunt) in parallel with it.

Suppose we want to convert a galvanometer with full scale

current ig and coil resistance G into an ammeter with full scale

reading i. To determine the shunt resistance S needed, note

that, at full scale deflection the total current through the

parallel combination is i, the current through the galvanometer

is ig and the current through the shunt is i ig– . The potential

difference V V Vab a b( – )= is the same for both paths, so

i G i i Sg g= ( – )

∴ S
i

i i
G

g

g

=








–

Chapter 23 Current Electricity � 37

G

+ –
i

a
i i– g

S

ig

b

Fig. 23.68



Voltmeter
A voltage measuring device is called a voltmeter. It measures the potential difference between two

points.

A galvanometer can be converted into a voltmeter by connecting a high resistance (R) in series with it.

The whole assembly called the voltmeter is connected in parallel between the points where potential

difference has to be measured.

For a voltmeter with full scale reading V, we need a series resistor R such that

V i G Rg= +( )

or R
V

i
G

g

= –

� Conversion of galvanometer into an ammeter.

(i) A galvanometer is converted into an ammeter by connecting a

low resistance (called shunt) in parallel with galvanometer.

This assembly (called ammeter) is connected in series in the

wire in which current is to be found. Resistance of an ideal

ammeter should be zero.

In parallel, current distributes in the inverse ratio of resistance.

Therefore,

S

G

i

i i

g

g

=
−

∴ S = shunt =
−











i

i i
Gg

g

(ii) Resistance of an ammeter is given by

1 1 1

A G S
= + ⇒ A

GS

G S
=

+
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(iii) The reading of an ammeter is always lesser than actual current in the circuit.

For example, in Fig. (a), actual current through R is

i
E

R
= …(i)

while the current after connecting an ammeter of resistance A
GS

G S
=

+






 in series with R is

i
E

R A
′ =

+
…(ii)

From Eqs. (i) and (ii), we see that i i′ < and i i′ = when A = 0.

i.e. resistance of an ideal ammeter should be zero.

� Conversion of a galvanometer into a voltmeter

(i) A galvanometer is converted into a voltmeter by connecting

a high resistance in series with galvanometer. The whole

assembly called voltmeter is connected in parallel across

the two points between which potential difference is to be

found. Resistance of an ideal voltmeter should be infinite.

V I G Rg= +( )

∴ R = high resistance required in series

= −V

i
G

g

(ii) Resistance of a voltmeter is R R G
V

= +
(iii) The reading of a voltmeter is always lesser than the true value.

For example, if a current i is passing through a resistance r, the actual value is

V i r= …(i)

Now, if a voltmeter of resistance R G R
V

( )= + is connected across the resistance r, the new value will

be

V
i rR

r R
V

V

′ = ×
+
( )

or V
ir

r

R
V

′ =
+1

…(ii)

From Eqs. (i) and (ii), we can see that, V V′ < and V V′ = if R
V

= ∞
Thus, resistance of an ideal voltmeter should be infinite.
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V Example 23.25 What shunt resistance is required to make the 1.00 mA,20 Ω
galvanometer into an ammeter with a range of 0 to 50.0 mA?

Solution Here, ig = =1.00 mA A10 3– , G = Ω20 , i = ×50.0 A10 3–

Substituting in S
i

i i
G

g

g

=








 =

×–

( ) ( )

( ) – ( )

–

– –

10 20

10 10

3

3 350.0

= Ω0.408 Ans.

Note The resistance of ammeter is given by
1 1 1 1

20

1

A G S
= + = +

0.408

or A = Ω0.4

The shunt resistance is so small in comparison to the galvanometer resistance that the ammeter

resistance is very nearly equal to the shunt resistance. This shunt resistance gives us a low resistance

ammeter with the desired range of 0 to 50.0 mA. At full scale deflection i mA= 50.0 , the current through

the galvanometer is 1.0 mA while the current through the shunt is 49.0 mA. If the current i is less than

50.0 mA, the coil current and the deflection are proportionally less, but the ammeter resistance is still

0.4 Ω.

V Example 23.26 How can we make a galvanometer with G = Ω20 and

i mAg = 1.0 into a voltmeter with a maximum range of 10 V?

Solution Using R
V

i
G

g

= – ,

We have, R = 10

10
20

3–
–

= Ω9980 Ans.

Thus, a resistance of 9980 Ω is to be connected in series with the galvanometer to convert it into

the voltmeter of desired range.

Note At full scale deflection current through the galvanometer, the voltage drop across the galvanometer

V i G voltg g= = ×20 10
3– = 0.02 volt

and the voltage drop across the series resistance R is

V i R voltg= = ×9980 10
3– = 9.98 volt

or we can say that most of the voltage appears across the series resistor.

V Example 23.27 Resistance of a milliammeter is R1 of an ammeter is R2 of a
voltmeter is R3 and of a kilovoltmeter is R4 . Find the correct order of R R R1 2 3, ,
and R4 .

Solution To increase the range of an ammeter a low resistance has to be connected in parallel

with galvanometer. Therefore, net resistance decreases. To increase the range of voltmeter, a

high resistance has to be connected in series. So, net resistance further increases. Therefore, the

correct order is

R R R R
4 3 1 2

> > >
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V Example 23.28 A microammeter has a resistance of 100 Ω and full scale

range of 50 µA. It can be used as a voltmeter or as a higher range ammeter

provided a resistance is added to it. Pick the correct range and resistance
combination (s) (JEE 1991)

(a) 50 V range with 10 kΩ resistance in series

(b) 10 V range with 200 kΩ resistance in series

(c) 5 mA range with 1 Ω resistance in parallel

(d) 10 mA range with 1 Ω resistance in parallel

Solution To increase the range of ammeter a parallel resistance (called shunt) is required

which is given by

S
i

i i
G

g

g

=
−











For option (c), S = ×
× − ×







 ≈

−

− −

50 10

5 10 50 10
100 1

6

3 6
( ) Ω

To change it in voltmeter, a high resistance R is put in series, where R is given by R
V

i
G

g

= −

For option (b), R =
×

−
−

10

50 10
100

6
≈ 200 kΩ

Therefore, options (b) and (c) are correct.

V Example 23.29 A galvanometer gives full scale deflection with 0.006 A
current. By connecting it to a 4990 Ω resistance, it can be converted into a

voltmeter of range 0-30 V. If connected to a
2

249

n Ω resistance, it becomes an

ammeter of range 0-1.5 A. The value of n is (JEE 2014)

Solution

i G Vg ( )+ =4990

⇒ 6

1000
4990 30( )G + =

⇒ G + = =4990
30000

6
5000
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⇒ G = 10 Ω

V Vab cd=
⇒ i G i Sg g= −( )1.5

⇒ 6

1000
10

6

1000
× = −





1.5 S

⇒ S
n= =60

1494

2

249

⇒ n = ×249 30

1494

= =2490

498
5 Ans.

1. The full scale deflection current of a galvanometer of resistance 1 Ω is 5 mA. How will you

convert it into a voltmeter of range 5 V?

2. A micrometer has a resistance of 100 Ω and full scale deflection current of 50 µA. How can it be

made to work as an ammeter of range 5 mA?

3. A voltmeter has a resistance G and range V. Calculate the resistance to be used in series with it

to extend its range to nV.

Potentiometer
The potentiometer is an instrument that can be used to measure the emf or the internal resistance of an

unknown source. It also has a number of other useful applications.

Principle of Potentiometer

The principle of potentiometer is schematically shown in figure.

A resistance wire ab of total resistance Rab is permanently connected to the terminals of a source of

known emf E1.A sliding contact c is connected through the galvanometer G to a second source whose

emf E2 is to be measured. As contact c is moved along the potentiometer wire, the resistance Rcb

between points c and b varies. If the resistance wire is uniform Rcb is proportional to the length of the

wire between c and b. To determine the value of E2, contact c is moved until a position is found at
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i
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which the galvanometer shows no deflection. This corresponds to zero current passing through E2.

With i2 0= , Kirchhoff’s second law gives

E iRcb2 =

With i2 0= , the current i produced by the emf E1 has the same value no matter what the value of emf

E2. A potentiometer has the following applications.

To find emf of an unknown battery

We calibrate the device by replacing E2 by a source of known emf EK and then by unknown emf EU .

Let the null points are obtained at lengths l1 and l2. Then,

E i lK = ( )ρ 1 and E i lU = ( )ρ 2

Here, ρ = resistance of wire ab per unit length.

∴
E

E

l

l

K

U

= 1

2

or E
l

l
EU K=







2

1

So, by measuring the lengths l1 and l2, we can find the emf of an unknown battery.

To find the internal resistance of an unknown battery

To find the internal resistance of an unknown battery let us derive a formula.

In the circuit shown in figure,

i
E

R r
=

+
…(i)

and V = potential difference across the terminals of the battery

or V E ir iR= =– …(ii)

From Eqs. (i) and (ii), we can prove that

r R
E

V
= 





– 1
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Thus, if a battery of emf E and internal resistance r is connected across a resistance R and the potential

difference across its terminals comes out to be V then the internal resistance of the battery is given by

the above formula. Now, let us apply it in a potentiometer for finding the internal resistance of the

unknown battery. The circuit shown in Fig. 23.79 is similar to the previous one.

Hence, E i l= ρ 1 …(i)

Now, a known resistance R is connected across the terminals of the unknown battery as shown in

Fig. 23.80.

This time V Ecb ≠ , but V Vcb =
where, V = potential difference across the terminals of the unknown battery.

Hence, V i l= ρ 2 …(ii)

From Eqs. (i) and (ii), we get

E

V

l

l
= 1

2

Substituting in r R
E

V
= 





– ,1 we get

r R
l

l
=







1

2

1–

So, by putting R, l1 and l2 we can determine the internal resistance r of unknown battery.
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�

Under balanced condition (when I
G

= 0 ) loop-1 and loop-3 are independent with each other. All problems

in this condition can be solved by a single equation,

V V
AC DE

=
or i R E i r

AC1 2 2 2
= −

or i l E i r
1 2 2 2
λ = − …(i)

Here, λ is the resistance per unit length of potentiometer wire AB. Length l is called balance point length.

Currents i
1

and i
2

are independent with each other. Current i
2

0= , if switch is open.

� Under balanced condition, a part of potential difference of E
1

is balanced by the lower circuit. So, normally

E E
2 1

< for taking balance point length. Similarly, V V
AC DE

= ⇒ V V
A D

= and V V
C E

= . Therefore, positive

terminals of both batteries should be on same side and negative terminals on the other side.

� From Eq. (i), we can see that null point length is

l
E i r

i
= −

2 2 2

1
λ

Now, suppose E
1

is increased then i
1

will also increase and null point length l will decrease. Similarly, we

can make some other cases also.

� If we do not get any balanced condition( )I
G

≠ 0 , then the given circuit is simply a three loops problem, which

can be solved with the help of Kirchhoff's laws.

V Example 23.30 A potentiometer wire of length 100 cm has a resistance of
10 Ω. It is connected in series with a resistance R and a cell of emf 2 V and of
negligible internal resistance. A source of emf 10 mV is balanced against a length
of 40 cm of the potentiometer wire. What is the value of R?

Solution From the theory of potentiometer, V Ecb = , if no current is drawn from the battery

or
E

R R
R E

ab

cb

1

+






 =

Here, E
1

2= V, Rab = Ω10 , Rcb = 





× = Ω40

100
10 4
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and E = ×10 10 3– V

Substituting in above equation, we get

R = Ω790 Ans.

V Example 23.31 When the switch is open in lowermost loop of a potentiometer,
the balance point length is 60 cm. When the switch is closed with a known
resistance of R = 4 Ω, the balance point length decreases to 40 cm. Find the
internal resistance of the unknown battery.

Solution Using the result,

r R
l

l
= −







1

2

1

= −





4
60

40
1

= 2Ω Ans.

V Example 23.32

In the figure shown, wire AB has a length of 100 cm and resistance 8 Ω. Find the

balance point length l.
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Solution Using the equation, i l E i r
1 2 2 2
λ = −

We have,

20

2 8

8

100
8

8

2 6
2

+






 





= −
+







l ( )

Solving this equation, we get

l = 37.5 cm Ans.

1. In a potentiometer experiment it is found that no current passes through the galvanometer when

the terminals of the cell are connected across 0.52 m of the potentiometer wire. If the cell is

shunted by a resistance of 5 Ω a balance is obtained when the cell is connected across 0.4 m of

the wire. Find the internal resistance of the cell.

2. The potentiometer wire AB is 600 cm long.

(a) At what distance from A should the jockey J touch the wire to get zero deflection in the

galvanometer.

(b) If the jockey touches the wire at a distance 560 cm from A, what will be the current through

the galvanometer.

Principle of Wheatstone’s Bridge
The scientist Wheatstone designed a circuit to find unknown resistance.

Such a circuit is popularly known as Wheatstone’s bridge. This is an

arrangement of four resistances which can be used to measure one of them

in terms of the rest. The figure shows the circuit designed by him. The

bridge is said to be balanced when deflection in galvanometer is zero, i.e.

ig =0, and hence,

V VB D=

Under this condition, V V V VA B A D– –=
or i P i R1 2=

or
i

i

R

P

1

2

= …(i)

Similarly, V V V VB C D C– = −
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or i Q i S1 2= or
i

i

S

Q

1

2

= …(ii)

From Eqs. (i) and (ii),
R

P

S

Q
= or

P

Q

R

S
=

So, this is a condition for which a Wheatstone’s bridge is balanced.

To measure the resistance of an unknown resistor, it is connected as one of the four resistors in the

bridge. One of the other three should be a variable resistor. Let us suppose P is the unknown

resistance and Q is the variable resistance. The value of Q is so adjusted that deflection through the

galvanometer is zero. In this case, the bridge is balanced and

P
R

S
Q= 





⋅

Knowing R, S and Q, the value of P is calculated. Following two points are important regarding a

Wheatstone’s bridge.

(i) In Wheatstone’s bridge, cell and galvanometer arms are interchangeable.

In both the cases, condition of balanced bridge is

P

Q

R

S
=

(ii) If bridge is not balanced current will flow from D to B in Fig. 23.85 if,

PS RQ>

Exercise Try and prove the statements of both the points yourself.

Meter Bridge Experiment
Meter bridge works on Wheatstone's bridge principle and is used to find the unknown resistance (X)

and its specific resistance (or resistivity).

Theory

As the meter bridge wire AC has uniform material density and area of cross-section, its resistance is

proportional to its length. Hence, AB and BC are the ratio arms and their resistances correspond to P

and Q respectively.

Thus,
Resistance of

Resistance of

AB

BC

P

Q

l

l

l
= = =

λ
λ ( – )100 100 – l
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Here, λ is the resistance per unit length of the bridge wire.

Hence, according to Wheatstone’s bridge principle,

When current through galvanometer is zero or bridge is balanced, then

P

Q

R

X
= or X

Q

P
R=

∴ X
l

l
R= 





100 –
…(i)

So, by knowing R and l unknown resistance X can be determined.

Specific Resistance From resistance formula,

X
L

A
= ρ

or ρ =
XA

L

For a wire of radius r or diameter D r=2 ,

A r
D

= =π
π2

2

4

or ρ
π

=
X D

L

2

4
…(ii)

By knowing X , D and L we can find specific resistance of the given wire by Eq. (ii).

Precautions

1. The connections should be clean and tight.

2. Null point should be brought between 40 cm and 60 cm.

3. At one place, diameter of wire (D) should be measured in two mutually perpendicular directions.

4. The jockey should be moved gently over the bridge wire so that it does not rub the wire.
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End Corrections

In meter bridge, some extra length (under the metallic strips) comes at points A and C. Therefore,

some additional length ( )α βand should be included at the ends. Here, α and β are called the end

corrections. Hence, in place of l we use l + α and in place of 100 − l we use100 − +l β.

To find α and β, use known resistors R1 and R2 in place of R and X and suppose we get null point

length equal to l1. Then,

R

R

l

l

1

2

1

1100
=

+
− +

α
β

...(i)

Now, we interchange the positions of R1 and R2 and suppose the new null point length is l2. Then,

R

R

l

l

2

1

2

2100
=

+
− +

α
β

...(ii)

Solving Eqs. (i) and (ii), we get

α =
−
−

R l R l

R R

2 1 1 2

1 2

and β =
−
−

−
R l R l

R R

1 1 2 2

1 2

100

V Example 23.33 If resistance R1 in resistance box is 300 Ω, then the balanced
length is found to be 75.0 cm from end A. The diameter of unknown wire is
1 mm and length of the unknown wire is 31.4 cm. Find the specific resistance of
the unknown wire.

Solution
R

X

l

l
=

−100

⇒ X
l

l
R= −





100

= −





100 75

75
300( ) = 100 Ω

Now, X
l

A

l

d
= =ρ ρ

π( / )2 4

∴ ρ π= d X

l

2

4

=
−( / ) ( ) ( )

( )( )

22 7 10 100

4

3 2

0.314

= × −2.5 -m10 4 Ω Ans.

V Example 23.34 In a meter bridge, null point is 20 cm, when the known
resistance R is shunted by 10 Ω resistance, null point is found to be shifted by
10 cm. Find the unknown resistance X.
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Solution
R

X

l

l
=

−100

∴ X
l

l
R= −





100

or X R R= −





=100 20

20
4 ...(i)

When known resistance R is shunted, its net resistance will decrease. Therefore, resistance

parallel to this (i.e. P) should also decrease or its new null point length should also decrease.

∴ R

X

l

l

′ = ′
− ′100

= −
− −

=20 10

100 20 10

1

9( )

or X R= ′9 ...(ii)

From Eqs. (i) and (ii), we have

4 9 9
10

10
R R

R

R
= ′ =

+










Solving this equation, we get

R = 50

4
Ω

Now, from Eq. (i), the unknown resistance

X R= = 





4 4
50

4

or X = 50 Ω Ans.

Note R′ is resultant of R and 10 Ω in parallel.

∴ 1 1

10

1

R R′
= +

or R
R

R
′ =

+
10

10

V Example 23.35 If we use 100 Ω and 200 Ω in place of R and X we get null
point deflection, l = 33 cm. If we interchange the resistors, the null point length

is found to be 67 cm. Find end corrections α and β.

Solution α =
−
−

R l R l

R R

2 1 1 2

1 2

= −
−

( )( ) ( )( )200 33 100 67

100 200

= 1cm Ans.
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β =
−
−

−
R l R l

R R

1 1 2 2

1 2

100

= −
−

−( )( ) ( ) ( )100 33 200 67

100 200
100

= 1cm Ans.

1. A resistance of 2 Ω is connected across one gap of a meter bridge (the length of the wire is

100 cm) and an unknown resistance, greater than2 Ω, is connected across the other gap. When

these resistances are interchanged, the balance point shifts by 20 cm. Neglecting any

corrections, the unknown resistance is (JEE 2007)

(a) 3 Ω (b) 4 Ω
(c) 5 Ω (d) 6 Ω

2. A meter bridge is setup as shown in figure, to determine an unknown resistance X using a

standard 10 Ω resistor. The galvanometer shows null point when tapping key is at 52 cm mark.

The end corrections are 1 cm and 2 cm respectively for the ends AandB. The determined value

of X is

(JEE 2011)

(a) 10.2 Ω (b) 10.6 Ω
(c) 10.8 Ω (d) 11.1 Ω

3. R R R1 2 3, , are different values of R A B C. , and are the null points obtained corresponding to

R R1 2, andR3 respectively. For which resistor, the value of X will be the most accurate and why?

(JEE 2005)
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Post Office Box
Post office box also works on the principle of Wheatstone's bridge.

In a Wheatstone's bridge circuit, if
P

Q

R

X
= then the bridge is balanced. So, unknown resistance

X
Q

P
R= .

P and Q are set in arms AB and BC where we can have, 10 Ω,100 Ω or1000 Ω resistances to set any

ratio
Q

P
.

These arms are called ratio arm, initially we take Q =10 Ω and P =10 Ω to set
Q

P
=1. The unknown

resistance ( )X is connected between C and D and battery is connected across A and C,

Now, adjust resistance in part A to D such that the bridge gets balanced. For this, keep on increasing

the resistance with 1 Ω interval, check the deflection in galvanometer by first pressing key K1 then

galvanometer key K2.

Suppose at R = 4 Ω, we get deflection towards left and at R =5 Ω, we get deflection towards right.

Then, we can say that for balanced condition, R should lie between 4 Ω to 5 Ω.

Now, X
Q

P
R R R= = = =

10

10
4 Ω to 5 Ω

To get closer value of X , in the second observation, let us choose
Q

P
=

1

10
i.e.

P

Q

=
=









100

10

Suppose, now at R = 42 we get deflection towards left and at R = 43 deflection is towards right.

So R ∈ ( , )42 43 .

Now, X
Q

P
R R R= = =

10

100

1

10
, where R ∈ ( , )4.2 4.3 Ω . Now, to get further closer value take

Q

P
=

1

100

and so on.
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The observation table is shown below.

Table 23.2

S.No
Resistance in the ratio arm Resistance in

arm (AD (R)
(ohm)

Direction of
deflection

Unknown resistance

X
Q

P
R= × (ohm)

AB (P) (ohm) BC (Q) (ohm)

1 10 10 4 Left 4 to 5

5 Right

2 100 10 40 Left (large) ( )4.2 to 4.3

50 Right (large)

42 Left

43 Right

3 1000 10 420 Left 4.25

424 Left

425 No deflection

426 Right

So, the correct value of X is 4.25 Ω

V Example 23.36 To locate null point, deflection battery key ( )K1 is pressed
before the galvanometer key ( ).K 2 Explain why?

Solution If galvanometer key K
2

is pressed first then just after closing the battery key K
1

current suddenly increases.

So, due to self-induction, a large back emf is generated in the galvanometer, which may damage

the galvanometer.

V Example 23.37 What are the maximum and minimum values of unknown

resistance X, which can be determined using the post office box shown in the

Fig. 23.90?

Solution X
QR

P
=

∴ X
Q R

P
max

max max

min

=

= 1000

10
11110( )

= 1111kΩ Ans.

X
Q R

P
min

min min

max

=

= ( ) ( )10 1

1000

= 0.01Ω Ans.
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1. In post office box experiment,
Q

P
= 1

10
. In R if 142 Ω is used then we get deflection towards right

and if R = 143 Ω, then deflection is towards left. What is the range of unknown resistance?

2. What is the change in post office box experiment if battery is connected between B and C and

galvanometer is connected across A and C?

3. For the post office box arrangement to determine the value of unknown resistance, the unknown

resistance should be connected between (JEE 2004)

(a) B and C (b) C and D (c) A and D (d) B1 and C1

Extra Topics For Other Examinations

23.13 Colour Codes for Resistors
Resistors are of the following two major types :

(i)  wire bound resistors   and   (ii) carbon resistors

First type of resistors are made by winding the wires of an alloy like nichrome, manganin or

constantan etc. Materials are so chosen that their resistivities are relatively less sensitive to

temperature.

In carbon resistors, carbon with a suitable binding agent is molded into a cylinder. Wire leads are

attached to this cylinder and the entire resistor is encased in a ceramic or plastic jacket. The two leads

connect the resistor to a circuit. Carbon resistors are compact and inexpensive. Their values are given

using a colour code.

Table 23.3

Colour Number Multiplier Tolerance (%)

Black 0 1

Brown 1 101

Red 2 102

Orange 3 103

Yellow 4 104
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Colour Number Multiplier Tolerance (%)

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold 10 1− 5

Silver 10 2− 10

No colour 20

The resistors have a set of four (or three) co-axial coloured

rings, whose significance are listed in above table. The

colours are noted from left to right.

Colour 1 → First significant figure

Colour 2 → Second significant figure

Colour 3 → Decimal multiplier

Colour 4 (or no colour ) → Tolerance or possible variation in percentage.

� To remember the value of colour coding used for carbon resistor, the following sentences are found to be of

great help (where bold letters stand for colours)

B B ROY Great Britain Very Good Wife wearing Gold Silver necklace.

OR

Black Brown Rods Of Your Gate Become Very Good When Given Silver colour

V Example 23.38 The four colours on a resistor are : brown, yellow, green and
gold as read from left to right. What is resistance corresponding to these colours.

Solution From the table we can see that

Brown colour → 1

Yellow colour → 4

Green colour → 105 and

Gold colour → 5 %

∴ R = × ±( %)14 10 55 Ω Ans.

1. For the given carbon resistor, let the first strip be yellow, second strip be red, third strip be

orange and fourth be gold. What is its resistance?

2. The resistance of the given carbon resistor is ( )24 10 56
%× ± Ω. What is the sequence of

colours on the strips provided on resistor?
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Final Touch Points

1. Mobility The physical significance of mobility means how mobile the charge carriers are for the

current flow. If mobility of charge carriers is more than we can say that current flow will be more.

In metals, the mobile charge carriers are electrons. In an ionised gas they are electrons and positive

charged ions. In an electrolyte, these can be positive and negative ions. In semiconductors, charge

carriers are electrons and holes. Later, we will see that mobility of electrons (in semiconductor) is

more than the mobility of holes.

Mobility ( )µ is defined as the magnitude of drift velocity per unit electric field.

Thus, µ = v

E

d

But, v
eE

m
d = τ

∴ µ τ= e

m

The SI units of mobility are m / V - s

2

. Therefore, practical units of mobility is cm / V - s.

2

Mobility of any

charge carrier (whether it is electron, ion or hole) is always positive.

2. Deduction of Ohm’s law We know that

i neAvd=

where, v
e E

m
d = τ

∴ i
ne AE

m
=

2τ

IfV is the potential difference across the conductor and l is its length, then

E
V

l
=

∴ i
ne AV

ml
=

2τ
or V

m

ne

l

A
i= 



2τ

Here,

m

ne
2

1

τ σ
ρ= or

∴ V
l

A
i= 



 ⋅ρ

or V Ri= Hence proved.

where, R
l

A
= ρ is the resistance of the conductor.

3. Thermistor The temperature coefficient of resistivity is negative for

semiconductors. This means that the resistivity decreases as we raise the

temperature of such a material. The magnitude of the temperature coefficient of

resistivity is often quite large for a semiconducting material. This fact is used to

construct thermometers to detect small changes in temperatures. Such a device

is called a thermistor. The variation of resistivity of a semiconductor with

temperature is shown in figure. A typical thermistor can easily measure a change

in temperature of the order of10

3– °C
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4. Superconductors Superconductivity was first discovered in 1911 by the Dutch

physicist Heike Kamerlingh Onnes.

There are certain materials, including several metallic alloys and oxides for which as

the temperature decreases, the resistivity first decreases smoothly, like that of any

metal. But then at a certain critical temperatureTc a phase transition occurs, and the

resistivity suddenly drops to zero as shown in figure.

Once, a current has been established in a superconducting ring, it continues

indefinitely without the presence of any driving field. Possible applications of

superconductors are ultrafast computer switches and transmission of electric power through

superconducting power lines. However, the requirement of low temperature is posing difficulty. For

instance the critical temperature for mercury is 4.2 K. Scientists are putting great effort to construct

compounds and alloys which would be superconducting at room temperature (300 K).

Superconductivity at around 125 K has already been achieved.

5. The ρ-T equation derived in article 23.6 can be derived from the relation,

d

dT

ρ αρ= or

d
dT

ρ
ρ

α=

∴
ρ

ρ ρ
ρ

α
0 0

∫ ∫=d
dT

T

T

(ifα = constant) …(i)

∴ ln ( )

ρ
ρ

α
0

0







 = −T T

∴ ρ ρ α= −
0

0e
T T( )

If α is small, e
T Tα ( )−

0

can approximately be written as1
0

+ −α( ).T T Hence,

ρ ρ α= + −
0 0

1[ ( )]T T

Which is the same result as we have discussed earlier.

In the above discussion, we have assumedα to be constant. If it is function of temperature it will come

inside the integration in Eq. (i).

6. The principle of superposition Complex network problems can sometimes be solved easily by

using the principle of superposition. This principle essentially states that when a number of emf’s

act in a network, the solution is the same as the superposition of the solutions for one emf acting at

a time, the others being shorted.

7. Figure shows a network with two loops. The currents in various

branches can be calculated using Kirchhoff’s laws. We can get the

same solution by considering only one battery at a time and then

superposing the two solutions. If a battery has an internal resistance,

it must be left in place when the emf of the battery is removed. Figure

shows how the superposition principle can be applied to the present

problem.
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The current values in Fig. (a) and (b) are easily verified. For

example when the 10.8 V battery alone is acting, the total

resistance in the circuit is

4

12 8

12 8

2+ ×
+

+ = Ω10.8

This makes the total current

10.8 V

10.8

A

Ω
=1 . This current splits

between 8 Ω and 12 Ω in the ratio 3 2: . Similarly, the total

resistance when only the14.4 V battery is acting is

8

12 6

12 6

12+ ×
+

= Ω

Therefore, the total current is

14.4 V

1.2 A

12 Ω
= .

The superposition principle shows that there is no current in the 12 Ω resistance. Only a current of

1.8 A flows through the outer loop. All these conclusions can be verified by analyzing the circuit using

Kirchhoff’s laws.

8. The equivalent emf of a cell can also be found by the following method.

Suppose we wish to find the equivalent emf of the above circuit. We apply the fact that

E V=
When no current is drawn from the cell. But current in the internal circuit may be non-zero. This

current is,

i = +
+

=10 4

2 1

14

3

A

Now, V VA B+ × =4 1

14

3

–

∴ V VA B– –= =14

3

4

2

3

V

∴ E V V VA B= = =–

2

3

V

∴ E = 2

3

V

Further,V VA B– is positive, i.e.V VA B> or A is connected to the positive terminal of the battery andB to

the negative.

Internal resistance of the equivalent battery is found by the normal procedure. For example,

here 2 Ω and1 Ω resistances are in parallel. Hence, their combined resistance is

1 1

1

1

2

3

2r
= + = or r = Ω2

3
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TYPED PROBLEMS

Type 1. Based on potential difference across the terminals of a battery

Concept

Potential difference V across the terminals of a battery is given by

V E= if i = 0

V = 0 if battery is short-circuited

V E ir= − if normal current ( ) flows through the battery and

V E ir= + if current flows in the opposite direction (            )

V Example 1 Find the potential difference across each of the four batteries

B B B1 2 3, , and B4 as shown in the figure.

Solution Across B1 This battery does not make any closed circuit.

∴ i = 0 or V E= =4 volt Ans.

Across B2 This battery is short-circuited. Therefore,

V = 0 Ans.

Across B3 and B4 A current in anti-clockwise direction flows in the closed loop abcda. This

current is

i = net emf

net resistance
= −

+ +
10 5

1 2 2

= 1 A

Now, current flows through B3 in normal direction. Hence,

V E ir= − = − × =10 1 1 9 volt Ans.

From B4, current flows in opposite direction. Hence,

V E ir= + = + × =5 1 2 7 volt Ans.

Solved Examples

i

ii

2 Ω

c

a

b

B2B3 B16 V,2 Ω

4V, 1Ω
10V, 1Ω

B4

i

d

5V, 2 Ω



V Example 2 Draw (a) current versus load and (b) current versus potential

difference (across its two terminals) graph for a cell.

Solution (a) i
E

R r
=

+

i versus R graph is shown in Fig. (a).

(b) V E ir= −
V versus i graph is shown in Fig. (b).

Type 2. To find values of V, i and R across all resistors of a complex circuit if values across one
resistance are known

Concept

(i) In series, current remains same. But the potential difference distributes in the direct
ratio of resistance.

(ii) In parallel, potential difference is same. But the current distributes in the inverse ratio
of resistance.

V Example 3 In the circuit shown in figure potential difference across 6 Ω
resistance is 4 volt. Find V and i values across each resistance. Also find emf E of

the applied battery.

Solution

8 2Ω Ω, (Resultant of 6 3Ω Ωand ) and 3 Ω (resultant of 12 Ω and 4 Ω ) are in series. Therefore,

potential drop across them should be in direct ratio of resistance. So, using this concept we can

find the potential difference across other resistors. For example, potential across 2 Ω was 4 V.

So, potential difference across 8 Ω (which is four times of 2 Ω ) should be 16 V. Similarly,

potential difference across 3 Ω (which is 1.5 times of 2 Ω ) should be 1.5 times or 6 V.
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i

E

V
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E
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8 Ω

E

4 Ω3 Ω

12 Ω6 Ω

8 Ω

E

4 V 6 V

4 V 6 V
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Once V and R are known, we can find i across that resistance. For example,

i12

6

12

1

2
Ω = = A i

V

R
=





i8

16

8
2Ω = = A etc

Type 3. To find equivalent value of temperature coefficient α if two or more than two resistors are
connected in series or parallel

l This can be explained by the following example :

V Example 4 Two resistors with temperature coefficients of resistance α1 and α2

have resistances R01 and R02 at 0°C. Find the temperature coefficient of the

compound resistor consisting of the two resistors connected

(a) in series and

(b) in parallel.

Solution (a) In Series

At 0°C R01 R02 R R R0 01 02= +

At t°C R t01 11( )+ α R t02 21( )+ α R t0 1( )+ α

R t R t R t01 1 02 2 01 1 1( ) ( ) ( )+ + + = +α α α

or R t R t R R t01 1 02 2 01 021 1 1( ) ( ) ( ) ( )+ + + = + +α α α

∴ R R t R R t R R R R t01 01 1 02 02 2 01 02 01 02+ + + = + + +α α α( )

or α α α= +
+

R R

R R

01 1 02 2

01 02

Ans.

(b) In Parallel

At t°C,
1

1

1

1

1

10 01 1 02 2R t R t R t( ) ( ) ( )+
=

+
+

+α α α

or
R R

R R t R t R t

01 02

01 02 01 1 02 21

1

1

1

1

+
+

=
+

+
+( ) ( ) ( )α α α

Using the Binomial expansion, we have

1
1

1
1

1
1

1
1

02 01 01
1

02
2

R
t

R
t

R
t

R
t( – ) ( – ) ( – ) ( – )α α α α+ = +

i.e. α α α
t

R R R
t

R
t

1 1

01 02

1

01

2

02

+






 = +

or α α α= +
+

1 02 2 01

01 02

R R

R R
Ans.
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Type 4. Based on the verification of Ohm’s law

Concept

For verification of Ohm’s law
V

i
R= =





constant , we need an ohmic resistance, which

follows this law. A voltmeter which will measure potential difference across this
resistance, an ammeter which will measure current through this resistance and a variable
battery which can provide a variable current in the circuit. Now, for different values of i, we
have to measure different values of V and then prove that,

V i∝ or
V

i
= constant

and this constant is called resistance of that.

V Example 5 Draw the circuit for experimental verification of Ohm’s law using a

source of variable DC voltage, a main resistance of 100 Ω, two galvanometers and

two resistances of values 106 Ω and 10 3− Ω respectively. Clearly show the

positions of the voltmeter and the ammeter. (JEE 2004)

Solution

Type 5. Theory of bulbs or heater etc.

Concept

(i) From the rated (written) values of power ( )P and potential difference ( )V we can
determine resistance of filament of bulb.

P
V

R
=

2

⇒ R
V

P
=

2

…(i)

For example, if rated values on a bulb are 220 V and 60 W, it means this bulb will

consume 60 W of power (or 60 J in 1 s) if a potential difference of 220 V is applied across

it. Resistance of this bulb will be

R = =( )220

60

2

806.67 Ω
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(ii) Normally, rated value of V remains same in different bulbs. In India, it is 220 volt.
Therefore, from Eq. (i)

R
P

∝ 1
or R R60 100watt watt>

(iii) Actual value of potential difference may be different from the rated value. Therefore,
actual power consumption may also be different.

(iv) After finding resistance of the bulb using Eq. (i), we can apply normal Kirchhoff's laws
for finding current passing through the bulb or actual power consumed by the bulb.

V Example 6 Prove that 60 W bulb glows more brightly than 100 W bulb if by

mistake they are connected in series.

Solution In series, we can use the formula

P i R= 2 for the power consumption

⇒ P R∝ (as i is same in series)

we have seen above that,

R R60 W 100 W>
∴ P P60 W 100 W> Hence Proved.

Note In parallel 100 W bulb glows more brightly than 60 W bulb. Think why?

V Example 7 The rated values of two bulbs are ( , )P V1 and ( , )P V2 . Find actual

power consumed by both of them if they are connected in

(a) series

(b) parallel

and V potential difference is applied across both of them.

Solution (a) Q R
V

P
1

2

1

= and R
V

P
2

2

2

=

In series, P
V

R

V

R R

V

V

P

V

P

P P

P P
= =

+
=

+
=

+

2 2

1 2

2

2

1

2

2

1 2

1 2net

or
1 1 1

1 2P P P
= + Ans.

(b) In parallel,

P
V

R
V

R
V

R R
= =







 = +









2
2 2

1 2

1 1 1

net net

or P V
P

V

P

V
= +





2 1
2

2
2

or P P P= +1 2 Ans.

V Example 8 Heater-1, takes 3 minutes to boil a given amount of water. Heater-2

takes 6-minutes. Find the time taken if,

(a) they are connected in series

(b) they are connected in parallel.

Potential difference V in all cases is same.
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Solution Here, the heat required (say H) to boil water is same. Let P1 and P2 are the powers of

the heaters. Then,

H P t P t= =1 1 2 2

∴ P
H

t

H
1

1 3
= =

P
H

t

H
2

2 6
= =

(a) In series, P
P P

P P

H H

H H
=

+
=

+
1 2

1 2

3 6

3 6

( / )( / )

( / ) ( / )
(Refer Example 7)

= H

9

Now, t
H

P

H

H
= = =

( / )9
9 min Ans.

(b) In parallel, P P P= +1 2

= +H H

3 6
= H

2

∴ t
H

P

H

H
= = =

/2
2 min Ans.

V Example 9 A 100 W bulb B1, and two 60 W bulbs B2 and B3 , are connected to a

250 V source as shown in the figure. Now W W1 2, and W3 are the output powers

of the bulbs B B1 2, and B3 respectively. Then, (JEE 2002)

(a) W W W1 2 3> = (b) W W W1 2 3> > (c) W W W1 2 3< = (d) W W W1 2 3< <

Solution P
V

R
=

2

so, R
V

P
=

2

∴ R
V

1

2

100
= and R R

V
2 3

2

60
= =

Now, W
R R

R1

2

1 2
2 1

250=
+

⋅( )

( )

W
R R

R2

2

1 2
2 2

250=
+

⋅( )

( )
and W

R
3

2

3

250= ( )

W W W1 2 3 15 25 64: : : := or W W W1 2 3< <
∴ The correct option is (d).

Note We have used W i R= 2 for W1 and W2 and W
V

R
=

2

for W3.
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V Example 10 An electric bulb rated for 500 W at 100 V is used in a circuit

having a 200 V supply. The resistance R that must be put in series with the bulb,

so that the bulb delivers 500 W is ……Ω. (JEE 1987)

Solution Resistance of the given bulb

R
V

P
b = = =

2 2100

500
20

( ) Ω

To get 100 V out of 200 V across the bulb,

R Rb= =20 Ω Ans.

V Example 11 A heater is designed to operate with a power of 1000 W in a 100 V

line. It is connected in combination with a resistance of 10 Ω and a resistance R, to

a 100 V mains as shown in the figure. What will be the value of R so that the heater

operates with a power of 62.5 W? (JEE 1978)

Solution From P
V

R
=

2

,

Resistance of heater, R
V

P
= = =

2 2100

1000
10

( ) Ω

From P i R= 2

Current required across heater for power of 62.5 W,

i
P

R
= = =62.5

2.5 A
10

Main current in the circuit, I
R

R

=
+

+

100

10
10

10

= +
+

= +
+

100 10

100 20

10 10

10 2

( ) ( )R

R

R

R

This current will distribute in inverse ratio of resistance between heater and R.

∴ i
R

R
I=

+








10

or 2.5 =
+









+
+











R

R

R

R10

10 10

10 2

( ) =
+

10

10 2

R

R

Solving this equation, we get

R = 5 Ω Ans.
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Type 6. To find current through a single external resistance in a complex circuit of batteries using
the concepts of equivalent value of emf of battery

Concept

In the above circuit, if we have to find only i then two parallel batteries may be converted
into a single battery. Then, this battery is in series with the third battery of emf 10 volt.
Now, we can find current i from the equation,

i = Net emf

Total resistance

V Example 12 Find the value of i in the circuit shown above.

Solution Equivalent emf of the parallel combination is

E
E r E r

r r
= +

+
1 1 2 2

1 21 1

/ /

/ /

= +
+

=6 2 2 2

1 2 1 2
4

/ /

/ /
volt

Equivalent internal resistance of the parallel combination is

r
r r

r r
=

+
=

+
=1 2

1 2

2 2

2 2
1

( ) ( ) Ω

Now, the equivalent simple circuit is as shown below

i = Net emf

Total resistance

= +
+ +

10 4

2 1 5

= 1.75 A Ans.

Note By this concept, we can find only i. To find other currents (across 6V battery or 2V battery) we will have to

apply Kirchhoff's laws.
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V Example 13 Two sources of current of equal emf are connected in series and

have different internal resistances r1 and r2 ( )r r2 1> . Find the external resistance R

at which the potential difference across the terminals of one of the sources

becomes equal to zero.

Solution V E ir= –

E and i for both the sources are equal. Therefore, potential difference (V) will be zero for a

source having greater internal resistance, i.e. r2.

∴ 0 2= E ir–

or E ir
E

R r r
r= =

+ +






 ⋅2

1 2
2

2

∴ 2 2 1 2r R r r= + +
or R r r= 2 1– Ans.

V Example 14

Figure shows the part of a circuit. Calculate the power dissipated in 3 Ω resistance.

What is the potential difference V VC B– ?

Solution Applying Kirchhoff’s junction law at E current in wire DE is 8 A from D to E. Now

further applying junction law at D, the current in 3 Ω resistance will be 3 A towards D.

Power dissipated in 3 Ω resistance = =i R2 23 3( ) ( ) = 27 W Ans.

V VC B– V VC B– – – –5 1 12 8 2 3 4 2× + × × =

∴ V VC B– –= + + +5 12 16 3 8

or V VC B– = 20 V Ans.

C

D E

B1 Ω

2 Ω

4 Ω

6 Ω3 Ω

5A

12 V

3V 2A

6A

C B1Ω

2 Ω

4 Ω

6 Ω3 Ω

5 A

12V 3 V

2 A

6 A

8 A E

3 A

D
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V Example 15 The emf of a storage battery is 90 V before charging and 100 V

after charging. When charging began the current was 10 A. What is the current at

the end of charging if the internal resistance of the storage battery during the

whole process of charging may be taken as constant and equal to 2 Ω?

Solution The voltage supplied by the charging plant is here constant which is equal to,

V E i ri i= + ⋅ = +( ) ( ) ( )90 10 2

= 110 V

Let if be the current at the end of charging.

Then, V E i rf f= +

or i
V E

r
f

f=
–

= 110 100

2

–

= 5 A Ans.

V Example 16 A battery has an open circuit potential difference of 6 V between its

terminals. When a load resistance of 60 Ω is connected across the battery, the

total power supplied by the battery is 0.4 W. What should be the load resistance

R, so that maximum power will be dissipated in R. Calculate this power. What is

the total power supplied by the battery when such a load is connected?

Solution When the circuit is open, V E=

∴ E = 6 V

Let r be the internal resistance of the battery.

Power supplied by the battery in this case is

P
E

R r
=

+

2

Substituting the values, we have 0.4 =
+

( )6

60

2

r

Solving this, we get r = Ω30

Maximum power is dissipated in the circuit when net external resistance is equal to net

internal resistance or

R r=
∴ R = Ω30 Ans.

Further, total power supplied by the battery under this condition is

P
E

R r
Total =

+
=

+

2 26

30 30

( )

= 0.6 W Ans.

Of this 0.6 W half of the power is dissipated in R and half in r. Therefore, maximum power

dissipated in R would be

0.6
0.3 W

2
= Ans.
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V Example 17 In which branch of the circuit shown in figure a 11 V battery be

inserted so that it dissipates minimum power. What will be the current through

the 2 Ω resistance for this position of the battery?

Solution Suppose, we insert the battery with 2 Ω resistance. Then, we can take 2 Ω as the

internal resistance (r) of the battery and combined resistance of the other two as the external

resistance (R). The circuit in that case is shown in figure,

Now power, P
E

R r
=

+

2

This power will be minimum where R r+ is maximum and we can see that ( )R r+ will be

maximum when the battery is inserted with 6 Ω resistance as shown in figure.

Net resistance in this case is

6
2 4

2 4

22

3
+ ×

+
= Ω

∴ i
/

= =11

22 3
1.5 A

This current will be distributed in 2 Ω and 4 Ω in the inverse ratio of their resistances.

∴ i

i

1

2

4

2
2= =

∴ i1
2

2 1
=

+






 =( )1.5 1.0 A Ans.
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V Example 18 An ammeter and a voltmeter are connected in series to a battery of

emf E = 6.0 V . When a certain resistance is connected in parallel with the

voltmeter, the reading of the voltmeter decreases two times, whereas the reading

of the ammeter increases the same number of times. Find the voltmeter reading

after the connection of the resistance.

Solution Let R = resistance of ammeter

Potential difference across voltmeter = −6 potential difference across ammeter

In first case, V iR= −6 K(i)

In second case,
V

i R
2

6 2= − ( ) K(ii)

Solving these two equations, we get

V = 4 volt

∴ V /2 2= volt Ans.

V Example 19 A voltmeter of resistance R1 and an ammeter of resistance R2 are

connected in series across a battery of negligible internal resistance. When a

resistance R is connected in parallel to voltmeter, reading of ammeter increases

three times while that of voltmeter reduces to one third. Find R1 and R2 in terms

of R.

Solution Let E be the emf of the battery.

In the second case main current increases three times while

current through voltmeter will reduce to i /3. Hence, the

remaining 3 3 8 3i i / i /– = passes through R as shown in figure.

V V
i

R
i

RC D– = 





= 



3

8

3
1

or R R1 8= Ans.
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In the second case, main current becomes three times. Therefore, total resistance becomes
1

3

times or

R
RR

R R
R R2

1

1
1 2

1

3
+

+
= +( )

Substituting R R1 8= , we get

R
R

2

8

3
= Ans.

V Example 20 Find the current in each branches of the circuit.

Solution It is possible to use Kirchhoff’s laws in a slightly different form, which may simplify

the solution of certain problems. This method of applying Kirchhoff’s laws is called the loop

current method.

In this method, we assign a current to every closed loop in a network.

Suppose currents i i1 2, and i3 are flowing in the three loops. The clockwise or anti-clockwise

sense given to these currents is arbitrary. Applying Kirchhoff’s second law to the three loops,

we get

21 5 6 01 1 2 1– – ( ) –i i i i+ = …(i)

5 4 6 8 02 1 2 2 3– – ( ) – ( )i i i i i+ + = …(ii)

and 2 8 16 02 3 3– ( ) –i i i+ = …(iii)

Solving these three equations, we get

i1 = 2 A, i2

1

2
= – A and i3

1

4
= A
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Therefore, current in different branches are as shown in figure given below.

Note In wire AC, current is i i1 2+ and in CB it is i i2 3+ .

V Example 21 What amount of heat will be generated in a coil of resistance R due

to a charge q passing through it if the current in the coil

(a) decreases down to zero uniformly during a time interval t0?

(b) decreases down to zero halving its value every t0 seconds?

HOW TO PROCEED Heat generated in a resistance is given by

H i Rt= 2

We can directly use this formula provided i is constant. Here, i is varying. So, first

we will calculate i at any time t, then find a small heat dH in a short interval of

time dt. Then by integrating it with proper limits we can obtain the total heat

produced.

Solution (a) The corresponding i-t graph will be a straight line with i decreasing from a peak

value (say i0) to zero in time t0.

i-t equation will be as

i i
i

t
t=







0

0

0

– (y mx c= +– ) …(i)

Here, i0 is unknown, which can be obtained by using the fact that area under i-t graph gives

the flow of charge. Hence,

q t i= 1

2
0 0( ) ( )

∴ i
q

t
0

0

2=

Substituting in Eq. (i), we get i
q

t

t

t
=









2
1

0 0

–
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or i
q

t

qt

t
=









2 2

0 0
2

–

Now, at time t, heat produced in a short interval dt is

dH i R dt= 2

=








2 2

0 0
2

2
q

t

qt

t
Rdt–

∴ Total heat produced = ∫ dH
t

0

0

or H
q

t

qt

t
R dt

t
=







∫

2 2

0 0
2

2

0

0
–

= 4

3

2

0

q R

t
Ans.

(b) Here, current decreases from some peak value (say i0) to zero exponentially with half

life t0.

i-t equation in this case will be

i i e t= 0
– λ

Here, λ = ln ( )2

0t

Now, q i dt i e dtt= =
∞ ∞

∫ ∫0
0

0

– λ = 





i0

λ

∴ i q0 = λ
∴ i q e t= ( ) –λ λ

∴ dH i R dt= 2 = λ λ2 2 2q e R dtt–

or H dH q R e dtt= =
∞ ∞

∫ ∫0

2 2 2

0
λ λ– = q R2

2

λ

Substituting λ = ln ( )
,

2

0t
we have H

q R

t
= ⋅

2

0

2

2

ln ( )
Ans.

Note In radioactivity, half-life is given by

t1 2

2
/

ln=
λ

∴ λ = ln 2

1

2

t
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LEVEL 1

Assertion and Reason

Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : If potential difference across two points is zero, current between these two points
should be zero.

Reason : Current passing from a resistor

I
V

R
=

2. Assertion : In the part of the circuit shown in figure, maximum

power is produced across R.

Reason : Power P
V

R
=

2

3. Assertion : Current I is flowing through a cylindrical wire of non-uniform cross-section as
shown. Section of wire near A will be more heated compared to the section near B.

Reason : Current density near A is more.

4. Assertion : In the circuit shown in figure after closing the switch S reading of ammeter will
increase while that of voltmeter will decrease.

Reason : Net resistance decreases as parallel combination of resistors is increase`d.

Exercises

R

2R

3R

I

V
S

A

B

A

I



5. Assertion : In the circuit shown in figure ammeter and voltmeter are non-ideal. When

positions of ammeter and voltmeter are changed, reading of ammeter will increase while that

of voltmeter will decrease.

Reason : Resistance of an ideal ammeter is zero while that of an ideal voltmeter is infinite.

6. Assertion : In the part of a circuit shown in figure, given that V Vb a> . The current should
flow from b to a.

Reason : Direction of current inside a battery is always from negative terminal to positive
terminal.

7. Assertion : In the circuit shown in figure R is variable. Value of current I is maximum when
R r= .

Reason : At R r= , maximum power is produced across R.

8. Assertion : If variation in resistance due to temperature is taken into consideration, then
current in the circuit I and power produced across the resistance P both will decrease with
time.

Reason : V IR= is Ohm’s law.

9. Assertion : When a potential difference is applied across a conductor, free electrons start
travelling with a constant speed called drift speed.

Reason : Due to potential difference an electric field is produced inside the conductor, in
which electrons experience a force.

10. Assertion : When temperature of a conductor is increased, its resistance increases.

Reason : Free electrons collide more frequently.

11. Assertion : Two non-ideal batteries are connected in parallel with same polarities on same
side. The equivalent emf is smaller than either of the two emfs.

Reason : Two non-ideal batteries are connected in parallel, the equivalent internal
resistance is smaller than either of the two internal resistances.
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Objective Questions

1. An ammeter should have very low resistance

(a) to show large deflection

(b) to generate less heat

(c) to prevent the galvanometer

(d) so that it may not change the value of the actual current in the circuit

2. A steady current flows in a metallic conductor of non-uniform cross-section. The quantity/
quantities which remain constant along the length of the conductor is/are

(a) current, electric field and drift speed (b) drift speed only

(c) current and drift speed (d) current only

3. If M = mass, L = length, T = time and I = electric current, then the dimensional formula of
resistance R will be given by

(a) [ ] [ ]R = − −ML T I2 3 2 (b) [ ] [ ]R = −ML T I2 3 2

(c) [ ] [ ]R = −ML T I2 3 2 (d) [ ] [ ]R = ML T I2 3 2

4. The unit of electrical conductivity is

(a) ohm-m−2 (b) ohm × m

(c) ohm -m− −1 1 (d) None of these

5. Through an electrolyte an electrical current is due to drift of

(a) free electrons (b) positive and negative ions

(c) free electrons and holes (d) protons

6. The current in a circuit with an external resistance of 3.75 Ω is 0.5 A. When a resistance of 1 Ω
is introduced into the circuit, the current becomes 0.4 A. The emf of the power source is

(a) 1 V (b) 2 V

(c) 3 V (d) 4 V

7. The deflection in a galvanometer falls from 50 divisions to 20 divisions, when a 12 Ω shunt is
applied. The galvanometer resistance is

(a) 18 Ω (b) 24 Ω
(c) 30 Ω (d) 36 Ω

8. If 2% of the main current is to be passed through the galvanometer of resistance G, the
resistance of shunt required is

(a)
G

49
(b)

G

50

(c) 49 G (d) 50 G

9. If the length of the filament of a heater is reduced by 10%, the power of the heater will

(a) increase by about 9%

(b) increase by about 11%

(c) increase by about 19%

(d) decrease by about 10%

10. N identical current sources each of emf E and internal resistancer are connected
to form a closed loop as shown in figure. The potential difference between points
A Band which divides the circuit into n and ( )N n− units is

(a) NE (b) ( )N n E−
(c) nE (d) zero
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11. A 2.0 V potentiometer is used to determine the internal resistance of a 1.5 V cell. The balance
point of the cell in the open circuit is 75 cm. When a resistor of 10 Ω is connected across the cell,
the balance point shifts to 60 cm. The internal resistance of the cell is

(a) 1.5 Ω (b) 2.5 Ω
(c) 3.5 Ω (d) 4.5 Ω

12. Three resistances are joined together to form a letter Y , as shown in figure. If the potentials of
the terminals A B C, and are 6 V, 3 V and 2 V respectively, then the potential of the point O
will be

(a) 4 V (b) 3 V

(c) 2.5 V (d) 0 V

13. The drift velocity of free electrons in a conductor is v, when a current i is flowing in it. If both
the radius and current are doubled, then the drift velocity will be

(a) v (b) v /2

(c) v /4 (d) v /8

14. A galvanometer is to be converted into an ammeter or voltmeter. In which of the following cases
the resistance of the device is largest?

(a) an ammeter of range 10 A

(b) a voltmeter of range 5 V

(c) an ammeter of range 5 A

(d) a voltmeter of range 10 V

15. In the given circuit the current flowing through the resistance 20 Ω is 0.3 A, while the ammeter
reads 0.8 A. What is the value of R1?

(a) 30 Ω (b) 40 Ω
(c) 50 Ω (d) 60 Ω

16. An ammeter and a voltmeter are joined in series to a cell. Their readings are A Vand
respectively. If a resistance is now joined in parallel with the voltmeter, then

(a) both A Vand will increase

(b) both A Vand will decrease

(c) A will decrease, V will increase

(d) A will increase, V will decrease
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17. A resistor R has power of dissipation P with cell voltage E. The resistor is cut in n equal parts
and all parts are connected in parallel with same cell. The new power dissipation is

(a) nP (b) nP2

(c) n P2 (d) n P/

18. In the circuit diagram shown in figure, a fuse bulb can cause all other bulbs to go out. Identify
the bulb

(a) B (b) C

(c) A (d) D or E

19. Two batteries one of the emf 3 V, internal resistance 1 Ω and the other of emf 15V, internal
resistance 2 Ω are connected in series with a resistance R as shown. If the potential difference
between points a band is zero, the resistance R in Ω is

(a) 5 (b) 7

(c) 3 (d) 1

20. A part of a circuit is shown in figure. Here reading of ammeter is 5 A and voltmeter is 100 V. If
voltmeter resistance is 2500 ohm, then the resistance R is approximately

(a) 20 Ω (b) 10 Ω
(c) 100 Ω (d) 200 Ω

21. A copper wire of resistance R is cut into ten parts of equal length. Two pieces each are joined in
series and then five such combinations are joined in parallel. The new combination will have a
resistance

(a) R (b)
R

4
(c)

R

5
(d)

R

25

22. Two resistances are connected in two gaps of a meter bridge. The balance point is 20 cm from
the zero end. A resistance of 15 Ω is connected in series with the smaller of the two. The null
point shifts to 40 cm. The value of the smaller resistance in Ω is

(a) 3 (b) 6

(c) 9 (d) 12
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23. In the given circuit, the voltmeter records 5 volt. The resistance of the voltmeter in Ω is

(a) 200 (b) 100

(c) 10 (d) 50

24. The wire of potentiometer has resistance 4 Ω and length 1 m. It is connected to a cell of emf
2 volt and internal resistance 1 Ω. If a cell of emf 1.2 volt is balanced by it, the balancing length
will be

(a) 90 cm (b) 60 cm

(c) 50 cm (d) 75 cm

25. The potential difference between points A Band , in a section of a circuit shown, is

(a) 5 volt (b) 1 volt

(c) 10 volt (d) 17 volt

26. Two identical batteries, each of emf 2 V and internal resistance r = 1 Ω
are connected as shown. The maximum power that can be developed
across R using these batteries is

(a) 3.2 W

(b) 8.2 W

(c) 2 W

(d) 4 W

27. For a cell, the terminal potential difference is 2.2 V, when circuit is open and reduces to 1.8 V.

When cell is connected to a resistance R = 5 Ω, the internal resistance of cell ( )r is

(a)
10

9
Ω (b)

9

10
Ω

(c)
11

9
Ω (d)

5

9
Ω

28. The potential difference between points A and B in the circuit shown

in figure, will be

(a) 1 V

(b) 2 V

(c) – 3 V

(d) None of the above
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29. Potentiometer wire of length 1 m is connected in series with 490 Ω resistance and 2 Vbattery. If

0.2 mV/ cm is the potential gradient, then resistance of the potentiometer wire is

approximately

(a) 4.9 Ω (b) 7.9 Ω (c) 5.9 Ω (d) 6.9 Ω

30. Find the ratio of currents as measured by ammeter in two cases when the key is open and when
the key is closed

(a) 9/8 (b) 10/11 (c) 8/9 (d) None of these

31. A galvanometer has a resistance of 3663 Ω. A shunt S is connected across it such that ( / )1 34 of

the total current passes through the galvanometer. Then, the value of the shunt is

(a) 222 Ω (b) 111 Ω (c) 11 Ω (d) 22 Ω

Note Attempt the following questions after reading the chapter of capacitors.

32. The network shown in figure is an arrangement of nine identical resistors.
The resistance of the network between points A Band is 1.5 Ω. The
resistance r is

(a) 1.1 Ω
(b) 3.3 Ω
(c) 1.8 Ω
(d) 1.6 Ω

33. The equivalent resistance of the hexagonal network as shown in figure between points A Band
is

(a) r (b) 0.5 r (c) 2 r (d) 3 r

34. A uniform wire of resistance 18 Ω is bent in the form of a circle. The
effective resistance across the points a band is

(a) 3 Ω
(b) 2 Ω
(c) 2.5 Ω
(d) 6 Ω
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35. Each resistor shown in figure is an infinite network of resistance 1 Ω. The effective resistance
between points A Band is

(a) less than 1 Ω (b) 1 Ω
(c) more than 1 Ω but less than 3 Ω (d) 3 Ω

36. In the circuit shown in figure, the total resistance between points A and B is R0. The value of
resistance R is

(a) R0 (b) 3 0R (c)
R0

2
(d)

R0

3

37. In the circuit shown in the figure, R = 55 Ω, the equivalent resistance between the points
P Qand is

(a) 30 Ω (b) 35 Ω
(c) 55 Ω (d) 25 Ω

38. The resistance of all the wires between any two adjacent dots is R. Then,
equivalent resistance between A Band as shown in the figure is

(a) ( / )7 3 R

(b) ( / )7 6 R

(c) ( / )14 8 R

(d) None of the above

39. A uniform wire of resistance 4 Ω is bent into a circle of radius r. A specimen of the same wire is
connected along the diameter of the circle. What is the equivalent resistance across the ends of
this wire?

(a)
4

4( )+ π
Ω (b)

3

3( )+ π
Ω

(c)
2

2( )+ π
Ω (d)

1

1( )+ π
Ω
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40. In the network shown in figure, each resistance is R. The equivalent
resistance between points A Band is

(a)
20

11
R

(b)
19

20
R

(c)
8

15
R

(d)
R

2

41. The equivalent resistance between the points A Band is (R is the
resistance of each side of smaller square)

(a) R (b)
3

2

R

(c) 2R (d)
R

2

Subjective Questions
1. When a steady current passes through a cylindrical conductor, is there an electric field inside

the conductor?

2. Electrons in a conductor have no motion in the absence of a potential difference across it. Is this
statement true or false?

3. In the Bohr model of hydrogen atom, the electron is pictured to rotate in a circular orbit of radius

5 10 11× − m, at a speed 2.2 m/ s× 106 . What is the current associated with electron motion?

4. A 120 V house circuit has the following light bulbs switched on : 40 W, 60 W and 75 W. Find the
equivalent resistance of these bulbs.

5. Assume that the batteries in figure have negligible internal resistance. Find

(a) the current in the circuit,

(b) the power dissipated in each resistor and

(c) the power of each battery, stating whether energy is supplied by or absorbed by it.

6. The potentiometer wire AB shown in figure is 40 cm long. Where the free end of the
galvanometer should be connected on AB so that the galvanometer may show zero deflection?
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7. An ideal voltmeter V is connected to a 2.0 Ω resistor and a battery
with emf 5.0 V and internal resistance 0 5. Ω as shown in figure :

(a) What is the current in the 2.0 Ω resistor?

(b) What is the terminal voltage of the battery?

(c) What is the reading of the voltmeter?

8. In figure, E1 12= Vand E2 8= V.

(a) What is the direction of the current in the resistor?

(b) Which battery is doing positive work?

(c) Which point, A or B, is at the higher potential?

9. In figure, if the potential at point P is 100 V, what is the potential at point Q?

10. Copper has one conduction electron per atom. Its density is 8.89 g/ cm3 and its atomic mass is
63.54 g/ mol. If a copper wire of diameter 1.0 mm carries a current of 2.0 A, what is the drift
speed of the electrons in the wire?

11. An aluminium wire carrying a current has diameter 0.84 mm. The electric field in the wire is
0.49 V/m. What is

(a) the current carried by the wire?

(b) the potential difference between two points in the wire 12.0 m apart?

(c) the resistance of a 12.0 m length of this wire?

Specific resistance of aluminium is 2.75 m× −10 8 Ω - .

12. A conductor of length l has a non-uniform cross-section. The radius of cross-section varies
linearly from a to b. The resistivity of the material is ρ. Find the resistance of the conductor
across its ends.

13. If a battery of emf E and internal resistance r is connected across a load of resistance R. Show
that the rate at which energy is dissipated in R is maximum when R r= and this maximum

power is P E / r= 2 4 .

14. Two identical batteries each of emf E = 2 volt and internal resistance r = 1 ohm are available to
produce heat in an external resistance by passing a current through it. What is the maximum
power that can be developed across an external resistance R using these batteries?
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15. Two coils connected in series have resistance of 600 Ω and 300 Ω at 20 ° C and temperature

coefficient of 0.001 and 0.004 C( ) 1° − respectively. Find resistance of the combination at a

temperature of 50° C. What is the effective temperature coefficient of combination?

16. An aluminium wire 7.5 m long is connected in parallel with a copper wire 6 m long. When a
current of 5 A is passed through the combination, it is found that the current in the aluminium
wire is 3 A. The diameter of the aluminium wire is 1 mm. Determine the diameter of the copper
wire. Resistivity of copper is 0.017 µΩ -m and that of the aluminium is 0.028 µ Ω -m.

17. The potential difference between two points in a wire 75.0 cm apart is 0.938 V, when the

current density is 4.40 A/ m× 107 2. What is

(a) the magnitude of E in the wire?

(b) the resistivity of the material of which the wire is made?

18. A rectangular block of metal of resistivity ρ has dimensions d d d× ×2 3 .A potential difference

V is applied between two opposite faces of the block.

(a) To which two faces of the block should the potential difference V be applied to give the maximum

current density? What is the maximum current density?

(b) To which two faces of the block should the potential difference V be applied to give the maximum

current? What is this maximum current?

19. An electrical conductor designed to carry large currents has a circular cross-section 2.50 mm in
diameter and is 14.0 m long. The resistance between its ends is 0.104 Ω.

(a) What is the resistivity of the material?

(b) If the electric field magnitude in the conductor is 1.28 V/m, what is the total current?

(c) If the material has 8.5 × 1028 free electrons per cubic metre, find the average drift speed under

the conditions of part (b).

20. It is desired to make a 20.0 Ω coil of wire which has a zero thermal coefficient of resistance. To
do this, a carbon resistor of resistance R1 is placed in series with an iron resistor of resistance
R2. The proportions of iron and carbon are so chosen that R R1 2+ = Ω20.00 for all

temperatures near 20° C. How large are R1 and R2? Given, αC K= − × − −0.5 10 3 1 and

α Fe K= × − −5 0 10 3 1. .

21. Find the current supplied by the battery in the circuit shown in figure.

22. Calculate battery current and equivalent resistance of the network shown in figure.
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23. Compute total circuit resistance and battery current as shown in figure.

24. Compute the value of battery current i shown in figure. All resistances are in ohm.

25. Calculate the potentials of points A, B, C and D as shown in Fig. (a). What would be the new
potential values if connections of 6 V battery are reversed as shown in Fig. (b)? All resistances are
in ohm.

26. Give the magnitude and polarity of the following voltages in the circuit of figure :

(i) V1 (ii) V2 (iii) V3 (iv) V3 2−
(v) V1 2− (vi) V1 3−
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27. The emf E and the internal resistance r of the battery shown in figure are 4.3 V and 1.0 Ω
respectively. The external resistance R is 50 Ω. The resistances of the ammeter and voltmeter
are 2.0 Ω and 200 Ω, respectively.

(a) Find the readings of the two meters.

(b) The switch is thrown to the other side. What will be the readings of the two meters now?

28. Find the current in each branch of the circuit shown in figure.

29. An electrical circuit is shown in figure. Calculate the potential difference across the resistor of
400 Ω as will be measured by the voltmeter V of resistance 400 Ω either by applying Kirchhoff’s
rules or otherwise. (JEE 1996)

30. In the circuit shown in figure V1 and V2 are two voltmeters of resistances
3000 Ω and 2000 Ω, respectively. In addition R1 2000= Ω, R2 3000= Ω
and E = 200 V, then

(a) Find the reading of voltmeters V1 and V2 when

(i) switch S is open

(ii) switch S is closed

(b) Current through S, when it is closed

(Disregard the resistance of battery)
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31. In figure, circuit section AB absorbs energy at the rate of 5.0 W when a current i = 1.0 A passes
through it in the indicated direction.

(a) What is the potential difference between points A and B?

(b) Emf device X does not have internal resistance. What is its emf?

(c) What is its polarity (the orientation of its positive and negative terminals)?

32. The potential difference across the terminals of a battery is 8.4 V when there is a current of
1.50 A in the battery from the negative to the positive terminal. When the current is 3.50 A in
the reverse direction, the potential difference becomes 9.4 V.

(a) What is the internal resistance of the battery?

(b) What is the emf of the battery?

33. A battery of emf 2.0 V and internal resistance 0.10 Ω is being charged with a current of 5.0 A.
Find the potential difference between the terminals of the battery?

34. Find the currents in different resistors shown in figure.

35. A resistance box, a battery and a galvanometer of resistance G ohm are connected in series. If
the galvanometer is shunted by resistance of S ohm, find the change in resistance in the box
required to maintain the current from the battery unchanged.

36. Determine the resistance r if an ammeter shows a current of I = 5 A and a voltmeter 100 V. The
internal resistance of the voltmeter is R = Ω2 500, .

37. In the circuit, a voltmeter reads 30 V when it is connected across 400 Ω resistance. Calculate
what the same voltmeter will read when it is connected across the 300 Ω resistance?
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38. Resistances R1 and R2 , each 60 Ω , are connected in series. The potential difference between
points A and B is 120 V. Find the reading of voltmeter connected between points C and D if its
resistance r = Ω120 .

39. A moving coil galvanometer of resistance 20 Ω gives a full scale deflection when a current of
1 mA is passed through it. It is to be converted into an ammeter reading 20 A on full scale. But
the shunt of 0.005 Ω only is available. What resistance should be connected in series with the
galvanometer coil?

40. A cell of emf 3.4 V and internal resistance 3 Ω is connected to an ammeter having resistance
2 Ω and to an external resistance of 100 Ω. When a voltmeter is connected across the 100 Ω
resistance, the ammeter reading is 0.04 A. Find the voltage reading by the voltmeter and its
resistance. Had the voltmeter been an ideal one what would have been its reading?

41. (a) A voltmeter with resistance RV is connected across the terminals of a battery of emf E and
internal resistance r. Find the potential difference measured by the voltmeter.

(b) If E = 7.50 V and r = Ω0.45 , find the minimum value of the voltmeter resistance RV so that the

voltmeter reading is within 1.0% of the emf of the battery.

(c) Explain why your answer in part (b) represents a minimum value.

42. (a) An ammeter with resistance RA is connected in series with a resistor R, a battery of emf ε and
internal resistance r. The current measured by the ammeter is IA. Find the current through the
circuit if the ammeter is removed so that the battery and the resistor form a complete circuit.
Express your answer in terms of I r RA A, , and R. Show that more “ideal” the ammeter, the

smaller the difference between this current and the current IA.

(b) If R = Ω3.80 ,ε = 7.50 V and r = Ω0.45 ,find the maximum value of the ammeter resistance RA so

that IA is within 99% of the current in the circuit when the ammeter is absent.

(c) Explain why your answer in part (b) represents a maximum value.

43. Each of three resistors in figure has a resistance of 2.4 Ω and can dissipate a maximum of 36 W
without becoming excessively heated. What is the maximum power the circuit can dissipate?

44. A storage battery with emf 2.6 V loaded with external resistance produces a current 1 A. In this
case, the potential difference between the terminals of the storage battery equals 2 V. Find the
thermal power generated in the battery and the net power supplied by the battery for external
circuit.

Chapter 23 Current Electricity � 89

V

A B

C
D

R1 R2



45. In the circuit shown in figure E E1 2= =7 V 1 V, , R R1 22 2= Ω, = Ω and R3 3= Ω respectively.
Find the power supplied by the two batteries.

46. In the circuit shown in figure, find

(a) the rate of conversion of internal (chemical) energy to electrical energy within the battery

(b) the rate of dissipation of electrical energy in the battery

(c) the rate of dissipation of electrical energy in the external resistor.

47. Three resistors having resistances of 1.60 2.40Ω, Ω and 4.80 Ω are connected in parallel to a
28.0 V battery that has negligible internal resistance. Find

(a) the equivalent resistance of the combination.

(b) the current in each resistor.

(c) the total current through the battery.

(d) the voltage across each resistor.

(e) the power dissipated in each resistor.

(f) which resistor dissipates the maximum power the one with the greatest resistance or the least

resistance? Explain why this should be.

48. (a) The power of resistor is the maximum power the resistor can safely dissipate without too rise in

temperature. The power rating of a 15 kΩ resistor is 5.0 W. What is the maximum allowable

potential difference across the terminals of the resistor?

(b) A 9.0 kΩ resistor is to be connected across a 120 V potential difference. What power rating is

required?

Note Attempt the following questions after reading the chapter of capacitors.

49. Find the equivalent resistance between points A and B in the following circuits :
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50. What will be the change in the resistance of a circuit between A and F consisting of five
identical conductors, if two similar conductors are added as shown by the dashed line in figure?

51. Find RAB in the circuit, shown in figure.
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52. Find the equivalent resistance of the networks shown in figure between the points a and b.

53. Find the equivalent resistance of the circuits shown in figure between the points a and b. Each

resistor has a resistance r.

LEVEL 2

Single Correct Option

1. Two cells A Band of emf 1.3 V and 1.5 V respectively are arranged as shown in figure. The

voltmeter reads 1.45 V. The voltmeter is assumed to be ideal. Then

(a) r r1 22= (b) r r1 23= (c) r r2 12= (d) r r2 13=
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2. A voltmeter connected in series with a resistance R1 to a circuit indicates a voltage V1 198= V.
When a series resistor R R2 12= is used, the voltmeter indicates a voltage V2 180= V. If the
resistance of the voltmeter is RV = 900 Ω , then the applied voltage across A Band is

(a) 210 V (b) 200 V

(c) 220 V (d) 240 V

3. All bulbs in the circuit shown in figure are identical. Which bulb glows most brightly?

(a) B (b) A

(c) D (d) C

4. A student connects an ammeter A and a voltmeter V to measure a resistance R as shown in
figure. If the voltmeter reads 20 V and the ammeter reads 4 A, then R is

(a) equal to 5 Ω
(b) greater than 5 Ω
(c) less than 5 Ω
(d) greater or less than 5 Ω depending upon the direction of current

5. The given figure represents an arrangement of potentiometer for the calculation of internal
resistance ( )r of the unknown battery ( )E . The balance length is 70.0 cm with the key opened
and 60.0 cm with the key closed. R is 132.40 Ω. The internal resistance ( )r of the unknown cell
will be

(a) 22.1 Ω (b) 113.5 Ω
(c) 154.5 Ω (d) 10 Ω
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6. Switch S is closed at time t = 0. Which one of the following statements is correct?

(a) Current in the resistance R increases if E r E R r1 2 2 1< +( )

(b) Current in the resistance R increases if E r E R r1 2 2 1> +( )

(c) Current in the resistance R decreases if E r E R r1 2 2 1> +( )

(d) Current in the resistance R decreases if E r E R r1 2 2 1= +( )

7. A B C, and are voltmeters of resistances R R,1.5 and 3R respectively. When some potential
difference is applied between x yand , the voltmeter readings are V VA B, and VC , then

(a) V V VA B C= = (b) V V VA B C≠ = (c) V V VA B C= ≠ (d) V V VA B C+ =

8. In the circuit shown, the voltage drop across the 15 Ω resistor is 30 V having the polarity as
indicated. The ratio of potential difference  across 5 Ω resistor and resistance R is

(a) 2/7 (b) 0.4 (c) 5/7 (d) 1

9. In an experiment on the measurement of internal resistance of a cell by using a potentiometer,
when the key K is kept open then balancing length is obtained at y metre. When the key K is
closed and some resistance R is inserted in the resistance box, then the balancing length is
found to be x metre. Then, the internal resistance is

(a)
( )x y

y
R

−
(b)

( )y x

x
R

−
(c)

( )y x

y
R

−
(d)

( )x y

x
R

−
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10. A source of emf E = 10 V and having negligible internal resistance is connected to a variable
resistance. The resistance varies as shown in figure. The total charge that has passed through
the resistor R during the time interval from t1 to t2 is

(a) 40 4loge (b) 30 3loge

(c) 20 2loge (d) 10 2loge

11. In order to increase the resistance of a given wire of uniform cross-section to four times its

value, a fraction of its length is stretched uniformly till the full length of the wire becomes
3

2
times the original length. What is the value of this fraction?

(a)
1

4
(b)

1

8

(c)
1

16
(d)

1

6

12. The figure shows a meter bridge circuit with AB = 100 cm, X = 12 Ω and R = 18 Ω and the jockey

J in the position of balance. If R is now made 8 Ω, through what distance will J have to be

moved to obtain balance?

(a) 10 cm (b) 20 cm

(c) 30 cm (d) 40 cm

13. A milliammeter of range 10 mA and resistance 9 Ω is joined in a circuit as shown. The meter
gives full scale deflection for current I when A Band are used as its terminals, i.e. current
enters at A and leaves at B C( is left isolated). The value of I is

(a) 100 mA (b) 900 mA

(c) 1 A (d) 1.1 A
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14. A battery of emf E0 12= V is connected across a 4 m long uniform
wire having resistance 4 Ω/m. The cell of small emfs ε =1 2 Vand
ε =2 4 V having internal resistance 2 Ω and 6 Ω respectively are
connected as shown in the figure. If galvanometer shows no
deflection at the point N , the distance of point N from the point A
is equal to

(a)
5

3
m (b)

4

3
m

(c)
3

2
m (d) None of these

15. In the circuit shown, when keys K1 and K 2 both are closed, the ammeter reads I0. But when K1

is open and K 2 is closed, the ammeter reads I0 2. Assuming that ammeter resistance is much
less than R2, the values of r Rand 1 in Ω are

(a) 25, 50 (b) 25, 100

(c) 0, 100 (d) 0, 50

16. In the circuit shown in figure, V must be

(a) 50 V (b) 80 V

(c) 100 V (d) 1290 V

17. In the circuit shown in figure ammeter and voltmeter are ideal. If E = 4 V, R = 9 Ω and r = 1 Ω,
then readings of ammeter and voltmeter are

(a) 1 A, 3 V (b) 2 A, 3 V

(c) 3 A, 4 V (d) 4 A, 4 V
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18. A moving coil galvanometer is converted into an ammeter reading up to 0.03 A by connecting a

shunt of resistance
r

4
. What is the maximum current which can be sent through this

galvanometer, if no shunt is used. (Here, r = resistance of galvanometer)

(a) 0.004 A (b) 0.005 A

(c) 0.006 A (d) 0.008 A

19. The potential difference between points A Band is

(a)
20

7
V (b)

40

7
V

(c)
10

7
V (d) zero

20. Two wires A Band made of same material and having their lengths in the ratio 6 1: are

connected in series. The potential difference across the wires are 3 V and 2 V respectively. If rA

and rB are the radii of A Band respectively, then
r

r

B

A

is

(a)
1

4
(b)

1

2

(c) 1 (d) 2

21. A galvanometer of resistance 50 Ω is connected to a battery of 3 V along with resistance of

2950 Ω in series. A full scale deflection of 30 divisions is obtained in the galvanometer. In order

to reduce this deflection to 20 divisions, the above series resistance should be

(a) 4450 Ω (b) 5050 Ω
(c) 5550 Ω (d) 6050 Ω

22. Figure shows a potentiometer arrangement with RAB = 10 Ω and rheostat of variable

resistance x. For x = 0 null deflection point is found at 20 cm from A. For unknown value of x

null deflection point was at 30 cm from A, then the value of x is

(a) 10 Ω (b) 5 Ω
(c) 2 Ω (d) 1 Ω
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23. In the given potentiometer arrangement, the null point

(a) can be obtained for any value of V

(b) can be obtained only if V V< 0

(c) can be obtained only if V V> 0

(d) can never be obtained

24. In the given figure the current through 4 Ω resistor is

(a) 1.4 A (b) 0.4 A

(c) 1.0 A (d) 0.7 A

25. All resistances shown in circuit are 2 Ω each. The current in the resistance between D Eand is

(a) 5 A (b) 2.5 A

(c) 1 A (d) 7.5 A

26. In the circuit shown in figure, the resistance of voltmeter is 6 kΩ. The voltmeter reading will be

(a) 6 V (b) 5 V

(c) 4 V (d) 3 V

27. For what ratio of R R R1 2 3, and power developed across each resistor is equal?

(a) 1 : 1 : 1 (b) 4 : 4 : 1

(c) 4 : 1 : 1 (d) 1 : 4 : 4
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More than One Correct Options

1. Two heaters designed for the same voltage V have different power ratings. When connected
individually across a source of voltage V , they produce H amount of heat each in time t t1 2and
respectively. When used together across the same source, they produce H amount of heat in
time t

(a) If they are in series, t t t= +1 2 (b) If they are in series, t t t= +2 1 2( )

(c) If they are in parallel, t
t t

t t
=

+
1 2

1 2( )
(d) If they are in parallel, t

t t

t t
=

+
1 2

1 22( )

2. Two cells of emf E1 6= V and E2 5= V are joined in parallel with same polarity on same side,
without any external load. If their internal resistances are r1 2= Ω and r2 3= Ω respectively,
then

(a) terminal potential difference across any cell is less than 5 V

(b) terminal potential difference across any cell is 5.6 V

(c) current through the cells is 0.2 A

(d) current through the cells is zero if E E1 2=

3. Three ammeters A B C, and of resistances R RA B, and RC respectively are joined as shown.

When some potential difference is applied across the terminals T T1 2and , their readings are

I I IA B C, and respectively. Then,

(a) I IA B= (b) I R I R I RA A B B C C+ =

(c)
I

I

R

R

A

C

C

A

= (d)
I

I

R

R R

B

C

C

A B

=
+

4. Three voltmeters all having different resistances, are joined as shown. When some potential
difference is applied across A Band , their readings are V V V1 2 3, and . Then,

(a) V V1 2= (b) V V1 2≠
(c) V V V1 2 3+ = (d) V V V1 2 3+ >

5. Two conductors made of the same material have lengths L and 2L but have equal resistances.
The two are connected in series in a circuit in which current is flowing. Which of the following
is/are correct?

(a) The potential difference across the two conductors is the same

(b) The drift speed is larger in the conductor of length L

(c) The electric field in the first conductor is twice that in the second

(d) The electric field in the second conductor is twice that in the first

Chapter 23 Current Electricity � 99

C

T2T1

A B

A B

V1 V2

V3



6. In the figure shown,

(a) current will flow from A to B

(b) current may flow A to B

(c) current may flow from B to A

(d) the direction of current will depend on E

7. In the potentiometer experiment shown in figure, the null point length is l.Choose the correct
options given below.

(a) If jockey J is shifted towards right, l will increase

(b) If value of E1 is increased, l is decreased

(c) If value of E2 is increased, l is increased

(d) If switch S is closed, l will decrease

8. In the circuit shown in figure, reading of ammeter will

z

(a) increase if S1 is closed (b) decrease if S1 is closed

(c) increase if S2 is closed (d) decrease if S2 is closed\

9. In the circuit shown in figure it is given that V Vb a− = 2 volt. Choose
the correct options.

(a) Current in the wire is 6 A

(b) Direction of current is from a to b

(c) V Va c− =12 volt

(d) V Vc a− =12 volt

10. Each resistance of the network shown in figure is r. Net resistance

between

(a) a band is
7

3
r

(b) a cand is r

(c) b dand is r

(d) b dand is
r

2
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Comprehension Based Questions

Passage (Q. No. 1 and 2)

The length of a potentiometer wire is 600 cm and it carries a current of 40 mA. For a cell of emf
2V and internal resistance 10 Ω, the null point is found to be at 500 cm. On connecting a
voltmeter across the cell, the balancing length is decreased by 10 cm.

1. The voltmeter reading will be

(a) 1.96 V (b) 1.8 V (c) 1.64 V (d) 0.96 V

2. The resistance of the voltmeter is

(a) 500 Ω (b) 290 Ω (c) 490 Ω (d) 20 Ω

Match the Columns

1. For the circuit shown in figure, match the two columns.

Column I Column II

(a) current in wire ae (p) 1 A

(b) current is wire be (q) 2 A

(c) current in wire ce (r) 0.5 A

(d) current in wire de (s) None of these

2. Current i is flowing through a wire of non-uniform cross-section as shown. Match the following
two columns.

Column I Column II

(a) Current density (p) is more at 1

(b) Electric field (q) is more at 2

(c) Resistance per unit length (r) is same at both sections 1 and 2

(d) Potential difference per unit length (s) data is insufficient
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3. In the circuit shown in figure, after closing the switch S, match the following two columns.

Column I Column II

(a) current through R1 (p) will increase

(b) current through R2 (q) will decrease

(c) potential difference across R1 (r) will remain same

(d) potential difference across R2 (s) data insufficient

4. Match the following two columns.

Column I Column II

(a) Electrical resistance (p) [ ]MLT A−2 2

(b) Electric potential (q) [ ]ML T A2 3 2− −

(c) Specific resistance (r) [ ]ML T A2 3 1− −

(d) Specific conductance (s) None of these

5. In the circuit shown in figure, match the following two columns :

Column I
Column II

(In SI units)

(a) potential difference across battery A (p) zero

(b) potential difference across battery B (q) 1

(c) net power supplied/ consumed by A (r) 2

(d) net power supplied/ consumed by B (s) 3
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Subjective Questions

1. Find the equivalent resistance of the triangular bipyramid between the points.

(a) A and C (b) D and E

Assume the resistance of each branch to be R.

2. Nine wires each of resistance r are connected to make a prism as shown in figure. Find the
equivalent resistance of the arrangement across

(a) AD (b) AB

3. The figure shows part of certain circuit, find :

(a) Power dissipated in 5 Ω resistance.

(b) Potential difference V VC B− .

(c) Which battery is being charged?

4. A 6 V battery of negligible internal resistance is connected across a
uniform wire AB of length 100 cm. The positive terminal of another
battery of emf 4 V and internal resistance 1 Ω is joined to the point A
as shown in figure. Take the potential at B to be zero.

(a) What are the potentials at the points A and C?

(b) At which point D of the wire AB, the potential is equal to the potential

at C?

(c) If the points C and D are connected by a wire, what will be the current

through it?

(d) If the 4V battery is replaced by 7.5 V battery, what would be the answers of parts (a) and (b)?
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5. A thin uniform wire AB of length 1 m, an unknown resistance X and
a resistance of 12 Ω are connected by thick conducting strips, as
shown in the figure. A battery and a galvanometer (with a sliding
jockey connected to it) are also available. Connections are to be
made to measure the unknown resistance X. Using the principle of
Wheatstone bridge answer the following questions :

(a) Are there positive and negative terminals on the galvanometer?

(b) Copy the figure in your answer book and show the battery and the galvanometer (with jockey)

connected at appropriate points.

(c) After appropriate connections are made, it is found that no deflection takes place in the

galvanometer when the sliding jockey touches the wire at a distance of 60 cm from A. Obtain the

value of the resistance X.

6. A galvanometer (coil resistance 99 Ω) is converted into an ammeter using a shunt of 1 Ω and
connected as shown in figure (a). The ammeter reads 3 A. The same galvanometer is converted
into a voltmeter by connecting a resistance of 101 Ω in series. This voltmeter is connected as
shown in figure (b). Its reading is found to be 4/5 of the full scale reading. Find :

(a) internal resistance r of the cell

(b) range of the ammeter and voltmeter

(c) full scale deflection current of the galvanometer.

7. In a circuit shown in figure if the internal resistances of the sources are negligible then at what
value of resistance R will the thermal power generated in it will be the maximum. What is the
value of maximum power?

8. In the circuit shown in figure, find :

(a) the current in the 3.00 Ω resistor, (b) the unknown emfs E1 and E2 and (c) the resistance R.
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9. In the circuit shown, all the ammeters are ideal.

(a) If the switch S is open, find the reading of all ammeters and the potential difference across the

switch.

(b) If the switch S is closed, find the current through all ammeters and the switch also.

10. An accumulator of emf 2 V and negligible internal resistance is connected across a uniform

wire of length 10 m and resistance 30 Ω. The appropriate terminals of a cell of emf 1.5 V and

internal resistance 1 Ω is connected to one end of the wire and the other terminal of the cell is

connected through a sensitive galvanometer to a slider on the wire. What is the length of the

wire that will be required to produce zero deflection of the galvanometer? How will the

balancing length change?

(a) When a coil of resistance 5 Ω is placed in series with the accumulator.

(b) The cell of 1.5 V is shunted with 5 Ω resistor?

11. A circuit shown in the figure has resistances 20 Ω and 30 Ω. At what value of resistance Rx will

the thermal power generated in it be practically independent of small variations of that

resistance? The voltage between points A and B is supposed to be constant in this case.

12. In the circuit shown in figure, the emfs of batteries are E1 and E2 which have internal
resistances R1 and R2. At what value of the resistance R will the thermal power generated in
it be the highest? What it is?

13. A conductor has a temperature independent resistance R and a total heat capacity C. At the

moment t = 0 it is connected to a DC voltage V. Find the time dependence of the conductor's

temperature T assuming the thermal power dissipated into surrounding space to vary as

q k T T= ( – )0 , where k is a constant, T0 is the surrounding temperature (equal to conductor’s

temperature at the initial moment).
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Answers

Introductory Exercise 23.1
1. 4.375 10

18× 2. 38880 C 3. (a) 337.5 C (b) 2.1 10
21× 4. 6.6 10 rps, 1.06 mA

15×

5. 300 C 6. Yes, from left to right

Introductory Exercise 23.2
1. False

Introductory Exercise 23.3
1. 6.0 m/s× −

10
4 2. 0.735 m/sµ , 431.4 yr.

Introductory Exercise 23.4
1. 0.18 Ω 2. True 3. 15 g 4. (c)

Introductory Exercise 23.5
1. (d) 2. 85° C

Introductory Exercise 23.6
1. 5 A, 2.5 A 2. 0, 2 V, 5 V, 15 V, 3 A from C to B, 7.5 A from D to A.

3. 5 V 4.
1

2
A 5. Zero, 1 A

Introductory Exercise 23.7
1. 3 A, 2 Ω, – 5 V 2. 36 W, 12 W

Introductory Exercise 23.8

1. V
V r V r

r r
r

r r

r r
=

−
+

=
+

1 2 2 1

1 2

1 2

1 2

, 2. 2 V 3. 7.5 V, 0.5 Ω

Introductory Exercise 23.9
1. By connecting a resistance of 999 Ω in series with galvanometer

2. By connecting 1 Ω resistance in parallel with it 3. ( – )n G1

Introductory Exercise 23.10

1. 1.5 Ω 2. (a) 320 cm (b)
3

22

E

r

Introductory Exercise 23.11
1. (a) 2. (b) 3. B is most accurate

Introductory Exercise 23.12
1. 14.2 Ω to 14.3 Ω 2. See the hints 3. (c)

Introductory Exercise 23.13
1. ( %)42 10 5

3× ± Ω 2. Red, Yellow, Blue, Gold



Exercises

LEVEL 1

Assertion and Reason

1. (d) 2. (a,b) 3. (b) 4. (d) 5. (b) 6. (c) 7. (d) 8. (c) 9. (d) 10. (a)

11. (d)

Objective Questions

1.(d) 2.(d) 3.(a) 4.(c) 5.(b) 6.(b) 7.(a) 8.(a) 9.(b) 10.(d)

11.(b) 12.(b) 13.(b) 14.(d) 15.(d) 16.(d) 17.(c) 18.(c) 19.(c) 20.(a)

21.(d) 22.(c) 23.(b) 24.(d) 25.(d) 26.(c) 27.(a) 28.(d) 29.(a) 30.(c)

31.(b) 32.(b) 33.(b) 34.(c) 35.(c) 36.(d) 37.(d) 38.(b) 39.(a) 40.(d)

41.(b)

Subjective Questions
1. Yes 2. False 3. 1.12 mA 4. 82 Ω

5. (a)
1

2
A (b) 1 W, 2 W (c) 6 W (supplied), 3 W (absorbed) 6. 16 cm from A

7. (a) zero (b) 5.0 V (c) 5.0 V 8. (a) Anti-clockwise (b) E1 (c) Point B

9. −10 V 10. 1.9 10 m s
–4× / 11. (a) 9.9 A (b) 5.88 V (c) 0.60 Ω

12.
ρ
π

l

ab
14. 2 W 15. 954 , 0.002 / CΩ ° 16. 0.569 mm

17. (a) 1.25 V/m (b) 2.84 10 -m
–8× Ω 18. (a) 2 3d d

V

d
× ,

ρ
(b) 2 3

6
d d

vd× ,
ρ

19. (a) 3.65 10 -m
–8× Ω (b) 172.3 A    (c) 2.58 10 m s

–3× /

20. R R1 2= =18.18 1.82Ω Ω, 21. 5 A 22. 15 A,
8

5
Ω 23.

8

3
Ω , 9 A 24.

13

3
A

25. V V V VA B C D= = = = −12 9 3 6V V V V, , , ,V V V VA B C D′ = ′ = ′ = ′ =12 11 9 6V V V V, , ,

26. − − − −75V, 50V, 125V,175V, 25V, 200V 27. (a) 0.1 A, 4.0 V (b) 0.08 A, 4.2 V

28. Resistance 5 Ω 8 Ω 6 Ω 16 Ω 4 Ω 1 Ω

Current 4 A 0.5 A 3.0 A 0.5 A 1.0 A 4 A

Towards A C C C B E

29.
20

3
V 30. (a) (i) 120 V, 80 V (ii) 100 V, 100 V (b)

1

60
A

31. (a) 5 V (b) 3 V  (c) positive terminal on left side 32. (a) 0.20 Ω (b) 8.7 V

33. 2.5 V 34. current in all resistors is zero 35.
G

G S

2

+
36. 20.16 Ω 37. 22.5 V

38. 48 V 39. 80 Ω 40. 400 Ω , 3.2 V, 3.238 V 41. (a)
ER

R r

v

v +
(b) 4.5 10

–3× Ω

42. (a) I
R

R r
A

A1 +
+









 (b) 0.0045 Ω 43. 54 W 44. 0.6 W, 2 W



45. + −14 W, 1 W 46. (a) 24 W (b) 4 W (c) 20 W

47. (a) 0.80 Ω (b) 1.60 Ω resistor 17.5 A, 2.40 Ω resistor 11.7 A, 4.80 Ω resistor 5.8 A

(c) 35.0 A (d) 28.0 V for each

(e) 1.60 Ω resistor 490 W, 2.40 Ω resistor 327 W, 4.80 Ω resistor 163 W (f) least resistance

48. (a) 273.8 V (b) 1.6 W

49. (a)
42

31
Ω (b)

R

2
(c)

32

21
Ω (d)

25

6
Ω (e) 6.194 Ω (f)

5

4

R
(g)

5

7
Ω

50. The new equivalent resistance will become 0.6 times 51. 23.32 Ω

52. (a)
5

8
r (b)

4

3
r (c) r (d)

r

4
(e) r 53. (a) r /2 (b) 4 5r /

LEVEL 2

Single Correct Option

1.(b) 2.(c) 3.(b) 4.(c) 5.(a) 6.(b) 7.(a) 8.(d) 9.(b) 10.(d)

11.(b) 12.(b) 13.(c) 14.(d) 15.(d) 16.(b) 17.(a) 18.(c) 19.(d) 20.(b)

21.(a) 22.(b) 23.(d) 24.(c) 25.(b) 26.(b) 27.(d)

More than One Correct Options

1. (a,c) 2. (b,c,d) 3. (a,b,d) 4. (b,c) 5. (a,b,c) 6. (b,c,d) 7. (a,b,c,d) 8. (a,c) 9. (a,d) 10. (b,d)

Comprehension Based Questions

1. (a) 2. (c)

Match the Columns
1. (a) → q (b) → s (c) → q (d) → s

2. (a) → p (b) → p (c) → p (d) → p

3. (a) → q (b) → p (c) → q (d) → p

4. (a) → q (b) → r (c) → s (d) → s

5. (a) → s (b) → r (c) → s (d) → r

Subjective Questions

1. (a)
2

5
R (b)

2

3
R 2. (a)

8

15
r (b)

3

5
r 3. (a) 605 W (b) 6 V (c) both

4. (a) 6 V, 2V (b) AD = 66.7 cm (c) zero (d) 6 V, –1.5 V, no such point D exists.

5. (a) No (c) 8 Ω 6. (a) 1.01 Ω (b) 5 A, 9.95 V (c) 0.05 A

7. 2 Ω , 4.5 W 8. (a) 8 A (b) 36 V, 54 V (c) 9 Ω

9. (a) 9.5 A, 9.5 A, 2 A, 5 A, 5 A, 2 A, 12 V (b) 12.5 A, 2.5 A, 10 A, 7 A, 8 A, 5 A, 15 A

10. 7.5 m (a) 8.75 m (b) 6.25 m 11. 12 Ω 12. R
R R

R R
=

+
1 2

1 2

, P
E R E R

R R R R
max

( )

( )
=

+
+

1 2 2 1

2

1 2 1 24

13. T T e
V

kR

kt C= +0

2

1( – )
– /
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24.1 Introduction
When we comb our hair on a dry day and bring the comb close to tiny pieces of paper, we note that

they are swiftly attracted by the comb. Similar phenomena occur if we rub a glass rod or an amber rod

with a cloth or with a piece of fur. Why does this happens? What really happens in an electric circuit?

How do electric motors and generators work?

The answers to all these questions come from a branch of physics known as electromagnetism, the

study of electric and magnetic interactions. These interactions involve particles that have a property

called electric charge, an inherent property of matter that is as fundamental as mass.

We begin our study of electromagnetism in this chapter by the electric charge. We will see that it is

quantized and obeys a conservation principle. Then we will study the interactions of electric charges

that are at rest, called electrostatic interactions. These interactions are governed by a simple

relationship known as Coulomb’s law. This law is more conveniently described by using the concept

of electric field.

24.2 Electric Charge
The electrical nature of matter is inherent in atomic structure. An atom consists of a small, relatively

massive nucleus that contains particles called protons and neutrons. A proton has a mass

1.673 kg× −10 27 , while a neutron has a slightly greater mass1.675 10 kg.–27× Surrounding the nucleus

is a diffuse cloud of orbiting particles called electrons. An electron has a mass of 9.11 kg× −10 31 .

Like mass, electric charge is an intrinsic property of protons and electrons, and only two types of

charge have been discovered positive and negative. A proton has a positive charge, and an electron

has a negative charge. A neutron has no net electric charge.

The magnitude of the charge on the proton exactly equals the magnitude of the charge on the electron.

The proton carries a charge +e and the electron carries a charge −e. The SI unit of charge is coulomb

( )C and e has the value

e = × −1.6 10 C19

Regarding charge the following points are worth noting:

1. Like charges repel each other and unlike charges attract each other.

2. Charge is a scalar and can be of two types positive or negative.

3. Charge is quantized. The quantum of charge is e. The charge on any body will be some integral
multiple of e, i.e.

q ne= ± where, n = …1 2 3, ,

Charge on any body can never be
1

3
e







,1.5e, etc.

Note (i) Apart from charge, energy, angular momentum and mass are also quantized. The quantum of energy is

hν and that of angular momentum is
h

2π
. Quantum of mass is not known till date.

(ii) The protons and neutrons are combination of other entities called quarks, which have charges ± 1

3
eand

± 2

3
e. However, isolated quarks have not been observed. So, quantum of charge is still e.
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4. During any process, the net electric charge of an isolated system remains constant or we can say

that charge is conserved. Pair production and pair annihilation are two examples of conservation

of charge.

5. A charged particle at rest produces electric field. A charged particle in an unaccelerated motion

produces both electric and magnetic fields but does not radiate energy. But an accelerated charged

particle not only produces an electric and magnetic fields but also radiates energy in the form of

electromagnetic waves.

V Example 24.1 How many electrons are there in one coulomb of negative
charge?

Solution The negative charge is due to the presence of excess electrons, since they carry

negative charge. Because an electron has a charge whose magnitude is e = × −1.6 10 C19 , the

number of electrons is equal to the charge q divided by the charge e on each electron. Therefore,

the number n of electrons is

n
q

e
= =

× −
1.0

1.6 1910
= ×6.25 1018 Ans.

24.3 Conductors and Insulators
For the purpose of electrostatic theory, all substances can be divided into two main groups,

conductors and insulators. In conductors, electric charges are free to move from one place to another,

whereas in insulators they are tightly bound to their respective atoms. In an uncharged body, there are

equal number of positive and negative charges.

The examples of conductors of electricity are the metals, human body and the earth and that of

insulators are glass, hard rubber and plastics. In metals, the free charges are free electrons known as

conduction electrons.

Semiconductors are a third class of materials and their electrical properties are somewhere between

those of insulators and conductors. Silicon and germanium are well known examples of

semiconductors.

24.4 Charging of a Body
Mainly there are the following three methods of charging a body :

Charging by Rubbing
The simplest way to experience electric charges is to rub certain bodies against each other. When a

glass rod is rubbed with a silk cloth, the glass rod acquires some positive charge and the silk cloth

acquires negative charge by the same amount. The explanation of appearance of electric charge on

rubbing is simple. All material bodies contain large number of electrons and equal number of protons

in their normal state. When rubbed against each other, some electrons from one body pass onto the

other body. The body that donates the electrons becomes positively charged while that which

receives the electrons becomes negatively charged. For example, when glass rod is rubbed with silk

cloth, glass rod becomes positively charged because it donates the electrons while the silk cloth
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becomes negatively charged because it receives electrons. Electricity so obtained by rubbing two

objects is also known as frictional electricity. The other places where the frictional electricity can be

observed are when amber is rubbed with wool or a comb is passed through a dry hair. Clouds also

become charged by friction.

Charging by Contact
When a negatively charged ebonite rod is rubbed on a metal object, such as a sphere, some of the

excess electrons from the rod are transferred to the sphere. Once the electrons are on the metal sphere,

where they can move readily, they repel one another and spread out over the sphere’s surface. The

insulated stand prevents them from flowing to the earth. When the rod is removed, the sphere is left

with a negative charge distributed over its surface. In a similar manner, the sphere will be left with a

positive charge after being rubbed with a positively charged rod. In this case, electrons from the

sphere would be transferred to the rod. The process of giving one object a net electric charge by

placing it in contact with another object that is already charged is known as charging by contact.

Charging by Induction
It is also possible to charge a conductor in a way that does not involve contact.

In Fig. (a), a negatively charged rod brought close to (but does not touch) a metal sphere. In the

sphere, the free electrons close to the rod move to the other side (by repulsion). As a result, the part of

the sphere nearer to the rod becomes positively charged and the part farthest from the rod negatively

charged. This phenomenon is called induction. Now, if the rod is removed, the free electrons return to

their original places and the charged regions disappear. Under most conditions the earth is a good

electric conductor. So, when a metal wire is attached between the sphere and the ground as in figure

(b) some of the free electrons leave the sphere and distribute themselves on the much larger earth. If
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the grounding wire is then removed, followed by the ebonite rod, the sphere is left with a net positive

charge.

The process of giving one object a net electric charge without touching the object to a second charged

object is called charging by induction. The process could also be used to give the sphere a net

negative charge, if a positively charged rod were used. Then, electrons would be drawn up from the

ground through the grounding wire and onto the sphere.

If the sphere were made from an insulating material like plastic, instead of metal, the method of

producing a net charge by induction would not work, because very little charge would flow through

the insulating material and down the grounding wire. However, the electric force of the charged rod

would have some effect as shown in figure. The electric force would cause the positive and negative

charges in the molecules of the insulating material to separate slightly, with the negative charges

being pushed away from the negative rod. The surface of the plastic sphere does acquire a slight

induced positive charge, although no net charge is created.

V Example 24.2 If we comb our hair on a dry day and bring the comb near
small pieces of paper, the comb attracts the pieces, why?

Solution This is an example of frictional electricity and induction. When we comb our hair, it

gets positively charged by rubbing. When the comb is brought near the pieces of paper some of

the electrons accumulate at the edge of the paper piece which is closer to the comb. At the farther

end of the piece there is deficiency of electrons and hence, positive charge appears there. Such a

redistribution of charge in a material, due to presence of a nearby charged body is called

inducion. The comb exerts larger attraction on the negative charges of the paper piece as

compared to the repulsion on the positive charge. This is because the negative charges are closer

to the comb. Hence, there is a net attraction between the comb and the paper piece.

V Example 24.3 Does the attraction between the comb and the piece of papers
last for longer period of time?

Solution No, because the comb loses its net charge after some time. The excess charge of the

comb transfers to earth through our body after some time.

V Example 24.4 Can two similarly charged bodies attract each other?

Solution Yes, when the charge on one body ( )q1 is much greater than that on the other ( )q2

and they are close enough to each other so that force of attraction between q1 and induced charge

on the other exceeds the force of repulsion between q1 and q2 . However, two similar point

charges can never attract each other because no induction will take place here.

V Example 24.5 Does in charging the mass of a body change?

Solution Yes, as charging a body means addition or removal of electrons and electron has

a mass.
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V Example 24.6 Why a third hole in a socket provided for grounding?

Solution All electric appliances may end with some charge due to faulty connections. In such

a situation charge will be accumulated on the appliance. When the user touches the appliance, he

may get a shock. By providing the third hole for grounding all accumulated charge is discharged

to the ground and the appliance is safe.

1. Is attraction a true test of electrification?

2. Is repulsion a true test of electrification?

3. Why does a phonograph record attract dust particles just after it is cleaned?

4. What is the total charge, in coulombs, of all the electrons in three gram mole of hydrogen atom?

24.5 Coulomb’s Law
The law that describes how charges interact with one another was discovered by Charles Augustin de

Coulomb in 1785. With a sensitive torsion balance, Coulomb measured the electric force between

charged spheres. In Coulomb’s experiment, the charged spheres were much smaller than the distance

between them so that the charges could be treated as point charges. The results of the experiments of

Coulomb and others are summarized in Coulomb’s law.

The electric force Fe exerted by one point charge on another acts along the line between the charges.

It varies inversely as the square of the distance separating the charges and is proportional to the

product of charges. The force is repulsive if the charges have the same sign and attractive if the

charges have opposite signs.

The magnitude of the electric force exerted by a charge q1 on another charge q2 a distance r away is

thus, given by

F
k q q

r
e =

| |1 2

2
…(i)

The value of the proportionality constant k in Coulomb’s law depends on the system of units used. In
SI units the constant k is

k = ×8.987551787
N-m

C

2

2
109

≈ ×8.988
N-m

C

2

2
109

The value of k is known to such a large number of significant digits because this value is closely

related to the speed of light in vacuum. This speed is defined to be exactly c = ×2.99792458 m/s108 .

The numerical value of k is defined in terms of c to be precisely.

k c=








−10 7 2N- s

C

2

2
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This constant k is often written as
1

4 0πε
, where ε 0 (“epsilon-nought”) is another constant. This

appears to complicate matters, but it actually simplifies many formulae that we will encounter in later

chapters. Thus, Eq. (i) can be written as

F
q q

r
e =

1

4 0

1 2

2πε
| |

…(ii)

Here,
1

4
10

0

7 2

πε
=









− N-s

C

2

2
c

Substituting value of c = ×2.99792458 m/s108 , we get

1

4
10

0

9 2

π ε
= ×8.99 N-m/C

In examples and problems, we will often use the approximate value
1

4
10

0

9 2 2

πε
= ×9.0 N-m /C

Here, the quantity ε 0 is called the permittivity of free space. It has the value,

ε 0
1210= ×8.854 C N-m2 2– /

Regarding Coulomb’s law, the  following points are worth noting:

1. Coulomb’s law stated above describes the interaction of two point charges. When two charges

exert forces simultaneously on a third charge, the total force acting on that charge is the vector

sum of the forces that the two charges would exert individually. This important property, called

the principle of superposition of forces, holds for any number of charges. Thus,

F F F Fnet = + +… +1 2 n

2. The electric force is an action reaction pair, i.e. the two charges exert equal and opposite forces on

each other.

3. The electric force is conservative in nature.

4. Coulomb’s law as we have stated above can be used for point

charges in vacuum. If some dielectric is present in the space

between the charges, the net force acting on each charge is

altered because charges are induced in the molecules of the

intervening medium. We will describe this effect later. Here at

this moment it is enough to say that the force decreases K times if the medium extends till infinity.

Here, K is a dimensionless constant which depends on the medium and called dielectric constant

of the medium. Thus,

F
q q

r
e = ⋅

1

4 0

1 2

2πε
(in vacuum)

F
F

K K

q q

r

q q

r
e

e′ = = ⋅ = ⋅
1

4

1

40

1 2

2

1 2

2πε πε
(in medium)

Here, ε ε= 0K is called permittivity of the medium.
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� In few problems of electrostatics Lami’s theorem is very useful.

According to this theorem, “if three concurrent forces F F1 2, and F3 as shown in

Fig. 24.5 are in equilibrium or if F F F1 2 3 0+ + = , then

F F F1 2 3

sin sin sinα β γ
= =

� Suppose the position vectors of two chargesq1 andq2 arer1 andr2, then electric force

on charge q1 due to charge q2 is,

F
r r

r r1

0

1 2

1 2
3 1 2

1

4
= ⋅

πε
q q

| – |
( – )

Similarly, electric force on q2 due to charge q1 is

F
r r

r r2

0

1 2

2 1
3 2 1

1

4
= ⋅

πε
q q

| – |
( – )

Here, q1 and q2 are to be substituted with sign. r i j k1 1 1 1= + +x y z$ $ $ and r i j k2 2 2 2= + +x y z$ $ $ where

( , , )x y z1 1 1 and ( , , )x y z2 2 2 are the coordinates of charges q1 and q2.

V Example 24.7 What is the smallest electric force between two charges placed
at a distance of 1.0 m?

Solution F
q q

r
e = ⋅1

4 0

1 2

2πε
…(i)

For F
e

to be minimum q q1 2 should be minimum. We know that

( ) ( )min minq q1 2= = = × −e 1.6 C10 19

Substituting in Eq. (i), we have

( )
( ) ( ) ( )

)
minFe = × × ×− −9.0 1.6 1.6

(1.0

10 10 109 19 19

2

= × −2.304 N10 28
Ans.

V Example 24.8 Three charges q C1 1= µ , q C2 2= – µ and q C3 3= µ are placed

on the vertices of an equilateral triangle of side 1.0 m. Find the net electric force
acting on charge q1.

HOW TO PROCEED Charge q2 will attract charge q1 (along the line joining them)

and charge q3 will repel charge q1. Therefore, two forces will act on q1, one due

to q2 and another due to q3 . Since, the force is a vector quantity both of these

forces (say F1 and F2 ) will be added by vector method. The following are two

methods of their addition.
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Solution Method 1. In the figure,

| |F1 1

0

1 2

2

1

4
= = ⋅F

q q

rπε

= magnitude of force between andq q1 2

= × × ×− −(9.0 1.0 2.0

1.0

10 10 109 6 6

2

) ( ) ( )

( )

= × −1.8 N10 2

Similarly, | |F2 2

0

1 3

2

1

4
= = ⋅F

q q

rπε

= magnitude of force between andq q1 3

= × × ×− −(9.0 1.0 .0

1.0

10 10 3 109 6 6

2

) ( ) ( )

( )

= × −2.7 N10 2

Now, | | cosFnet = + + °F F F F1
2

2
2

1 22 120

= + + 













(1.8) (2.7) 2 (1.8) (2.7)

1

2

2 2 – 10 N2× −

= × −2.38 N10 2

and tan
sin

cos
α =

°
+ °
F

F F

2

1 2

120

120

= ×

× + × −





−

− −

( ) ( )

( ) ( )

2.7 0.87

1.8 2.7

10

10 10
1

2

2

2 2

or α = °79.2

Thus, the net force on charge q1 is 2.38 N× −10 2 at an angle α = °79.2 with a line joining q1 and

q2 as shown in the figure. Ans.

Method 2. In this method let us assume a coordinate axes with q1 at origin as shown in figure.

The coordinates of q q1 2, and q3 in this coordinate system are (0, 0, 0), ( 1 m, 0, 0) and (0.5 m,

0.87 m, 0) respectively. Now,
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F1 1 2= force on due to chargeq q

= ⋅1

4 0

1 2

1 2
3 1 2πε

q q

| – |
( – )

r r
r r

= × × × +( ) ( ) (– )

( )
[( – ) $ ( –

– –9 10 10 10
0 1 0 0

9 6 6

3

.0 1.0 2.0

1.0
i ) $ ( – ) $ ]j k+ 0 0

= × −( $ )1.8 N10 2
i

and F2 1 3= force on due to chargeq q

= ⋅1

4 0

1 3

1 3
3 1 3πε

q q

| – |
( – )

r r
r r

= × × × +(9.0 10 ) (1.0 10 ) (3.0 10 )

1.0
0.5

9 –6 –6

( )
[( – ) $ ( –

3
0 0i 0.87) $ ( – ) $ ]j k+ 0 0

= × −( – $ – $ )1.35 2.349 Ni j 10 2

Therefore, net force on q1 is F F F= +1 2

= ×( $ – $ ) –0.45 2.349 Ni j 10 2 Ans.

Note Once you write a vector in terms of $ , $i j and $k, there is no need of writing the magnitude and  direction

of vector separately.

V Example 24.9 Two identical balls each having a density ρ are suspended from
a common point by two insulating strings of equal length. Both the balls have
equal mass and charge. In equilibrium each string makes an angle θ with
vertical. Now, both the balls are immersed in a liquid. As a result the angle θ
does not change. The density of the liquid is σ. Find the dielectric constant of
the liquid.

Solution Each ball is in equilibrium under the following three forces :

(i) tension, (ii) electric force and (iii) weight

So, Lami’s theorem can be applied.

In the liquid, F
F

K
e

e′ =

where, K = dielectric constant of liquid and W W′ = − upthrust
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Applying Lami’s theorem in vacuum

W Fe

sin ( ) sin ( )90 180° +
=

° −θ θ

or
W Fe

cos sinθ θ
= …(i)

Similarly in liquid,
W Fe′ =

′
cos sinθ θ

…(ii)

Dividing Eq. (i) by Eq. (ii), we get

W

W

F

F

e

e
′

=
′

or K
W

W
=

– upthrust
as

F

F

Ke

e
′

=












= V g

V g V g

ρ
ρ σ–

(V = volume of ball)

or K =
−
ρ

ρ σ
Ans.

Note In the liquid Fe and W have changed. Therefore, T will also change.

1. The mass of an electron is9.11 kg× −10 31 , that of a proton is1.67 kg× −10 27 . Find the ratioF Fe g/

of the electric force and the gravitational force exerted by the proton on the electron.

2. Find the dimensions and units of ε0.

3. Three point charges q are placed at three vertices of an equilateral triangle of side a. Find

magnitude of electric force on any charge due to the other two.

4. Three point charges each of value + q are placed on three vertices of a square of side a metre.

What is the magnitude of the force on a point charge of value −q coulomb placed at the centre of

the square?

5. Coulomb’s law states that the electric force becomes weaker with increasing distance. Suppose

that instead, the electric force between two charged particles were independent of distance. In

this case, would a neutral insulator still be attracted towards the comb.

6. A metal sphere is suspended from a nylon thread. Initially, the metal sphere is uncharged.

When a positively charged glass rod is brought close to the metal sphere, the sphere is drawn

towards the rod. But if the sphere touches the rod, it suddenly flies away from the rod. Explain,

why the sphere is first attracted then repelled?

7. Is there any lower limit to the electric force between two particles placed at a certain distance?

8. Does the force on a charge due to another charge depend on the charges present nearby?

9. The electric force on a charge q1 due to q 2 is ( $ $)4 3i j− N. What is the force on q 2 due to q1?

Chapter 24 Electrostatics � 119

INTRODUCTORY EXERCISE 24.2



24.6 Electric Field
A charged particle cannot directly interact with another particle kept at a distance. A charge produces

something called an electric field in the space around it and this electric field exerts a force on any

other charge (except the source charge itself) placed in it.

Thus, the region surrounding a charge or distribution of charge in which its electrical effects can be

observed is called the electric field of the charge or distribution of charge. Electric field at a point can

be defined in terms of either a vector function Ecalled ‘electric field strength’ or a scalar function V

called ‘electric potential’. The electric field can also be visualised graphically in terms of ‘lines of

force’. Note that all these are functions of position r ( , , )x y z . The field propagates through space

with the speed of light, c. Thus, if a charge is suddenly moved, the force it exerts on another charge a

distance r away does not change until a time r /c later. In our forgoing discussion, we will see that

electric field strength E and electric potential V are interrelated. It is similar to a case where the

acceleration, velocity and displacement of a particle are related to each other.

Electric Field Strength ( )E

Like its gravitational counterpart, the electric field strength (often called electric field) at a point in an

electric field is defined as the electrostatic force Fe per unit positive charge. Thus, if the electrostatic

force experienced by a small test charge q0 is Fe , then field strength at that point is defined as

E
F

=
→

lim
q

e

q0 0 0

The electric field is a vector quantity and its direction is the same as the direction of the force Fe on a

positive test charge. The SI unit of electric field is N/C. Here, it should be noted that the test charge q0

should be infinitesimally small so that it does not disturb other charges which produces E. With the

concept of electric field, our description of electric interactions has two parts. First, a given charge

distribution acts as a source of electric field. Second, the electric field exerts a force on any charge

that is present in this field.

An Electric Field Leads to a Force

Suppose there is an electric field strength E at some point in an electric field, then the electrostatic

force acting on a charge +q is qE in the direction of E, while on the charge – q it is qE in the opposite

direction of E.

V Example 24.10 An electric field of 105 N/C points due west at a certain spot.

What are the magnitude and direction of the force that acts on a charge of

+ 2 µC and − 5 µC at this spot?

Solution Force on + =2µC qE = ×( ) ( )–2 10 106 5

= 0.2 N (due west) Ans.

Force on – 5 C (5 10 ) (10 )–6 5µ = ×

= 0.5 N (due east) Ans.

120 � Electricity and Magnetism



Electric Field Due to a Point Charge
The electric field produced by a point charge q can be obtained in general terms from Coulomb’s law.

First note that the magnitude of the force exerted by the charge q on a test charge q0 is

F
qq

r
e = ⋅

1

4 0

0

2π ε

then divide this value by q0 to obtain the magnitude of the field.

E
q

r
= ⋅

1

4 0
2πε

If q is positive, E is directed away from q. On the other hand, if q is negative, then E is directed

towards q.

The electric field at a point is a vector quantity. Suppose E1 is the field at a point due to a charge q1

and E2 in the field at the same point due to a charge q2 . The resultant field when both the charges are

present is

E E E= +1 2

If the given charge distribution is continuous, we can use the technique of integration to find the

resultant electric field at a point.

V Example 24.11 Two positive point charges q C1 16= µ and q C2 4= µ , are

separated in vacuum by a distance of 3.0 m. Find the point on the line between

the charges where the net electric field is zero.

Solution Between the charges the two field contributions have opposite directions, and the net

electric field is zero at a point (say P) where the magnitudes of E1 and E2 are equal. However,

since q q2 1< , point P must be closer to q2 , in order that the field of the smaller charge can

balance the field of the larger charge.

At P, E E1 2=

or
1

4

1

40

1

1
2

0

2

2
2πε πε

q

r

q

r
= ⋅
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∴
r

r

q

q

1

2

1

2

16

4
2= = = …(i)

Also, r r1 2+ = 3.0 m …(ii)

Solving these equations, we get

r1 2= m and r2 1= m

Thus, the point P is at a distance of 2 m from q1 and 1 m from q2 . Ans.

Electric Field of a Ring of Charge
A conducting ring of radius R has a total charge q uniformly distributed over its circumference. We

are interested in finding the electric field at point P that lies on the axis of the ring at a distance x from

its centre.

We divide the ring into infinitesimal segments of length dl. Each segment has a charge dq and acts as

a point charge source of electric field.

Let dE be the electric field from one such segment; the net electric field at P is then the sum of all

contributions dE from all the segments that make up the ring. If we consider two ring segments at

the top and bottom of the ring, we see that the contributions dE to the field at P from these segments

have the same x-component but opposite y-components. Hence, the total y-component of field due

to this pair of segments is zero. When we add up the contributions from all such pairs of segments,

the total field E will have only a component along the ring’s symmetry axis (the x-axis) with no

component perpendicular to that axis (i.e. no y or z-component). So, the field at P is described

completely by its x-component Ex .

Calculation of E
x

dq
q

R
dl= 





⋅
2π

dE
dq

r
= ⋅

1

4 0
2πε

∴ dE dEx = cos θ =








+











+













1

4 0
2 2 2 2π ε

dq

x R

x

x R

= ⋅
+

1

4 0
2 2 3 2π ε
( )

( ) /

dq x

x R
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∴ E dEx x= ∫ =
+ ∫

x

x R
dq

4 0
2 2 3 2πε ( ) /

or E
qx

x R
x =









+
1

4 0
2 2 3 2πε ( ) /

From the above expression, we can see that

(i) Ex =0 at x =0, i.e. field is zero at the centre of the ring. We should expect this, charges on

opposite sides of the ring would push in opposite directions on a test charge at the centre, and the

forces would add to zero.

(ii) E
q

x
x = ⋅

1

4 0
2πε

for x R>> , i.e. when the point P is much farther from the ring, its field is the

same as that of a point charge. To an observer far from the ring, the ring would appear like a

point, and the electric field reflects this.

(iii) Ex will be maximum where
dE

dx

x =0. Differentiating E xx w.r. t. and putting it equal to zero we

get x
R

=
2

and E max comes out to be,
2

3

1

43
0

2πε
⋅









q

R
.

Electric Field of a Line Charge
Positive charge q is distributed uniformly along a line with length 2a, lying along the y-axis between

y a= – and y a= + . We are here interested in finding the electric field at point P on the x-axis.
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λ = =charge per unit length
q

a2

dq dy
q

a
dy= =λ

2

dE
dq

r
= ⋅

1

4 0
2πε

=
+

q dy

a x y4 20
2 2πε ( )

dE dE
q x dy

a x y
x = = ⋅

+
cos

( ) /
θ

πε4 20
2 2 3 2

dE dE
q y dy

a x y
y = = ⋅

+
– sin –

( ) /
θ

πε4 20
2 2 3 2

∴ E
qx

a

dy

x y

q

x x a
x a

a
= ⋅

+
= ⋅

+
∫

1

4 2 4

1

0
2 2 3 2

0
2 2π ε πε( ) /–

and E
q

a

y dy

x y
y a

a
= ⋅

+
=∫–

( ) /–

1

4 2
0

0
2 2 3 2πε

Thus, electric field is along x-axis only and which has a magnitude,

E
q

x x a
x =

+4 0
2 2πε

…(i)

From the above expression, we can see that

(i) if x a>> , E
q

x
x = ⋅

1

4 0
2πε

, i.e. if point P is very far from the line charge, the field at P is the same

as that of a point charge.

(ii) if we make the line of charge longer and longer, adding charge in proportion to the total length so

that λ, the charge per unit length remains constant. In this case, Eq. (i) can be written as

E
q

a x x a
x = ⋅ 





⋅
+

1

2 2

1

10
2 2πε /

=
+

λ

πε2 10
2 2x x a/

Now, x a2 2 0/ → as a x>> , E
x

x =
λ

πε2 0

Thus, the magnitude of electric field depends only on the distance of point P from the line of

charge, so we can say that at any point P at a perpendicular distance r from the line in any

direction, the field has magnitude

E
r

=
λ

πε2 0

(due to infinite line of charge)
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or E
r

∝
1

Thus, E-r graph is as shown in Fig. 24.15.

The direction of E is radially outward from the line.

Note Suppose a charge q is placed at a point whose position vector is rq and we want to find the electric field

at a point P whose position vector is rP. Then, in vector form the electric field is given by

E
r r

r r= ⋅1

4 0
3πε

q

P q
P q

| – |
( – )

Here, r i j kP P P Px y z= + +$ $ $

and r i j kq q q qx y z= + +$ $ $

In this equation, q is to be substituted with sign.

V Example 24.12 A charge q C= 1 µ is placed at point (1 m, 2 m, 4 m). Find the

electric field at point P (0, – 4 m, 3 m).

Solution Here, r i j kq = + +$ $ $2 4

and r j kP = +– $ $4 3

∴ r r i j kP q− = – $ – $ – $6

or | – | (– ) (– ) (– )r rP q = + +1 6 12 2 2 = 38 m

Now, = ⋅1

4 0
3πε

q

P q

P q
| – |

( – )
r r

r r

Substituting the values, we have

E i j k= × ×( ) ( )

( )
(– $ – $ – $ )

–

/

9.0 1.010 10

38
6

9 6

3 2

= (– $ – $ – $ )38.42 230.52 38.42 N/Ci j k Ans.

Electric Field Lines
As we have seen, electric charges create an electric field in the space surrounding them. It is useful to

have a kind of “map” that gives the direction and indicates the strength of the field at various places.

Field lines, a concept introduced by Michael Faraday, provide us with an easy way to visualize the

electric field.

Chapter 24 Electrostatics � 125

E ∝ 1
r

E

r

Fig. 24.15



“An electric field line is an imaginary line or curve drawn through a region of space so that its tangent

at any point is in the direction of the electric field vector at that point. The relative closeness of the

lines at some place give an idea about the intensity of electric field at that point.”

The electric field lines have the following properties :

1. The tangent to a line at any point gives the direction of E at that point. This is also the path on

which a positive test charge will tend to move if free to do so.

2. Electric field lines always begin on a positive charge and end on a negative charge and do not start

or stop in mid-space.

3. The number of lines leaving a positive charge or entering a negative charge is proportional to the

magnitude of the charge. This means, for example that if 100 lines are drawn leaving a +4 µC

charge then 75 lines would have to end on a –3 µC charge.

4. Two lines can never intersect. If it happens then two tangents can be drawn at their point of

intersection, i.e. intensity at that point will have two directions which is absurd.

5. In a uniform field, the field lines are straight parallel and uniformly spaced.

6. The electric field lines can never form closed loops as a line can never start and end on the

same charge.
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7. Electric field lines also give us an indication of the equipotential surface (surface which has the

same potential)

8. Electric field lines always flow from higher potential to lower potential.

9. In a region where there is no electric field, lines are absent. This is why inside a conductor (where

electric field is zero) there, cannot be any electric field line.

10. Electric lines of force ends or starts normally from the surface of a conductor.

1. The electric field of a point charge is uniform. Is it true or false?

2. Electric field lines are shown in Fig. 24.18. State whether the electric potential is greater at A or B.

3. A charged particle always move in the direction of electric field. Is this statement true or false?

4. The trajectory of a charged particle is the same as a field line. Is this statement true or false?

5. Figure shows some of the electric field lines due to three point charges q q1 2, and q 3 of equal

magnitude. What are the signs of each of the three charges?

6. Four particles each having a charge q, are placed on the four vertices of a regular pentagon.

The distance of each corner from the centre is a. Find the electric field at the centre of the

pentagon.

7. A charge q = −2.0 Cµ is placed at origin. Find the electric field at (3 m, 4 m, 0).

24.7 Electric Potential Energy
The electric force between two charges is directed along the line of the charges and depends on the

inverse square of their separation, the same as the gravitational force between two masses. Like the

gravitational force, the electric force is conservative, so there is a potential energy function U

associated with it.

When a charged particle moves in an electric field, the field exerts a force that can do work on the

particle. This work can always be expressed in terms of electric potential energy. Just as gravitational

potential energy depends on the height of a mass above the earth’s surface, electric potential energy

depends on the position of the charged particle in the electric field, when a force F acts on a particle

that moves from point a to point b, the work Wa b→ done by the force is given by
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W d F dsa b a

b

a

b

→ = ⋅ =∫ ∫F s cos θ

where, ds is an infinitesimal displacement along the particle’s path andθ is the angle between F and ds

at each point along the path.

Second, if the force F is conservative, the work done by F can always be expressed in terms of a

potential energy U. When the particle moves from a point where the potential energy isUa to a point

where it isUb , the change in potential energy is, ∆U U Ub a= – . This is related by the workWa b→ as

W U U U U Ua b a b b a→ = = =– – ( – ) – ∆ …(i)

Here, Wa b→ is the work done in displacing the particle from a to b by the conservative force (here

electrostatic) not by us. Moreover we can see from Eq. (i) that if Wa b→ is positive, ∆U is negative

and the potential energy decreases. So, whenever the work done by a conservative force is

positive, the potential energy of the system decreases and vice-versa. That’s what happens when a

particle is thrown upwards, the work done by gravity is negative, and the potential energy increases.

V Example 24.13 A uniform electric field E0 is directed along positive
y-direction. Find the change in electric potential energy of a positive test charge
q0 when it is displaced in this field from y ai = to y af = 2 along the y-axis.

Solution Electrostatic force on the test charge,

F q Ee = 0 0 (along positive y-direction)

∴ W Ui f− = – ∆
or ∆U Wi f= −– = – [ ( – )]q E a a0 0 2

= – q E a0 0 Ans.

Note Here, work done by electrostatic force is positive. Hence, the potential energy is

decreasing.

Electric Potential Energy of Two Charges
The idea of electric potential energy is not restricted to the special case of a uniform electric field as in

example 24.13. Let us now calculate the work done on a test charge q0 moving in a non-uniform

electric field caused by a single, stationary point charge q.

The Coulomb’s force on q0 at a distance r from a fixed charge q is

F
qq

r
= ⋅

1

4 0

0

2πε

If the two charges have same signs, the force is repulsive and if the two charges have opposite signs,

the force is attractive. The force is not constant during the displacement, so we have to integrate to

calculate the work Wa b→ done on q0 by this force as q0 moves from a to b.

128 � Electricity and Magnetism

E0

q E0 0

+ q0

Fig. 24.20

q

a

q0

b

r

ra

rb

Fig. 24.21



∴ W F dra b r

r

a

b

→ = ∫ = ⋅∫
1

4 0

0

2πεr

r

a

b qq

r
dr =









qq

r ra b

0

04

1 1

πε
–

Being a conservative force this work is path independent. From the definition of potential energy,

U U W
qq

r r
b a a b

b a

– ––= − =






0

04

1 1

πε

We choose the potential energy of the two charge system to be zero when they have infinite

separation. This means U ∞ =0. The potential energy when the separation is r isU r

∴ U U
qq

r
r – –∞ =

∞






0

04

1 1

πε

or U
qq

r
r = 0

04

1

πε

This is the expression for electric potential energy of two point charges kept at a separation r. In this

expression both the charges q and q0 are to be substituted with sign. The potential energy is positive if

the charges q and q0 have the same sign and negative if they have opposite signs. Note that the above

equation is derived by assuming that one of the charges is fixed and the other is displaced. However,

the potential energy depends essentially on the separation between the charges and is independent of

the spatial location of the charged particles. We emphasize that the potential energy U given by the

above equation is a shared property of two charges q and q0 , it is a consequence of the interaction

between these two charges. If the distance between the two charges is changed from ra to rb , the

change in the potential energy is the same whether q is held fixed and q0 is moved or q0 is held fixed

and q is moved. For this reason we will never use the phrase ‘the electric potential energy of a point

charge’.

Electric Potential Energy of a System of Charges
The electric potential energy of a system of charges is given by

U
q q

r

i j

iji j

=
<
∑1

4 0πε

This sum extends over all pairs of charges. We don’t let i j= , because that would be an interaction of a

charge with itself, and we include only terms with i j< to make sure that we count each pair

only once.

Thus, to account for the interaction between q5 and q4 , we include a term with i = 4

and j =5 but not a term with i =5 and j = 4.

For example, electric potential energy of four point charges q q q1 2 3, , and q4 would

be given by

U
q q

r

q q

r

q q

r

q q

r

q q

r

q q
= + + + + +

1

4 0

4 3

43

4 2

42

4 1

41

3 2

32

3 1

31

2

πε
1

21r









 …(ii)

Here, all the charges are to be substituted with sign.

Note Total number of pairs formed by n point charges are
n n( – )1

2
.
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V Example 24.14 Four charges q C1 1= µ , q C2 2= µ , q C3 3= – µ and q C4 4= µ
are kept on the vertices of a square of side 1m. Find the electric potential energy
of this system of charges.

Solution In this problem,

r r r r41 43 32 21 1= = = = m

and r r42 31
2 21 1 2= = + =( ) ( ) m

Substituting the proper values with sign in Eq. (ii), we get

U = × + + +( )( )( )
( )(– ) ( )( ) ( )( ) (–– –9.0 10 10 10
4 3

1

4 2

2

4 1

1

9 6 6 3 2

1

3 1

2

2 1

1

)( ) (– )( ) ( )( )
+ +









= × +





( ) ––9.0 10 12
5

2

3

= ×– –7.62 J10 2 Ans.

Note Here, negative sign of U implies that positive work has been done by electrostatic forces in assembling

these charges at respective distances from infinity.

V Example 24.15 Two point charges are located on the x-axis, q C1 1= – µ at
x = 0 and q C2 1= + µ at x m= 1 .

(a) Find the work that must be done by an external force to bring a third point

charge q C3 1= + µ from infinity to x m= 2 .

(b) Find the total potential energy of the system of three charges.

Solution (a) The work that must be done on q3 by an external force is equal to the difference

of potential energy U when the charge is at x = 2m and the potential energy when it is at infinity.

∴ W U Uf i= –

= + +












1

4

1

40

3 2

32

3 1

31

2 1

21πε π
q q

r

q q

r

q q

rf f f( ) ( ) ( )
–

ε0

3 2

32

3 1

31

2 1

21

q q

r

q q

r

q q

ri i i( ) ( ) ( )
+ +









Here, ( ) ( )r ri f21 21=
and ( ) ( )r ri i32 31= = ∞

∴ W
q q

r

q q

rf f

= +












1

4 0

3 2

32

3 1

31πε ( ) ( )
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Substituting the values, we have

W = × +







( ) ( )

( ) ( )

( )

( ) (– )

( )

–9.0
1.0 2.0

10 10
1 1 1 19 12

= ×4.5 J10 3– Ans.

(b) The total potential energy of the three charges is given by,

U
q q

r

q q

r

q q

r
= + +









1

4 0

3 2

32

3 1

31

2 1

21πε

= × + +


( )
( ) ( )

( )

( ) (– ) ( ) (– )
9.0

1.0 (2.0) (1.0)
10

1 1 1 1 1 19 


 ( )–10 12

= ×– –4.5 J10 3 Ans.

V Example 24.16 Two point charges q q C1 2 2= = µ are fixed at x m1 3= + and

x m2 3= – as shown in figure. A third particle of mass 1 g and charge

q C3 4= – µ are released from rest at y m= 4.0 . Find the speed of the particle as

it reaches the origin.

HOW TO PROCEED Here, the charge q3 is attracted towards q1 and q2 both. So, the

net force on q3 is towards origin.

By this force, charge is accelerated towards origin, but this acceleration is not

constant. So, to obtain the speed of particle at origin by kinematics we will have to

first find the acceleration at some intermediate position and then will have to

integrate it with proper limits. On the other hand, it is easy to use energy

conservation principle, as the only forces are conservative.
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Solution Let v be the speed of particle at origin. From conservation of mechanical energy,

U K U Ki i f f+ = +

or
1

4
0

1

40

3 2

32

3 1

31

2 1

21πε πε
q q

r

q q

r

q q

ri i i( ) ( ) ( )
+ +







 + =

0

3 2

32

3 1

31

2 1

21

21

2

q q

r

q q

r

q q

r
mv

f f f( ) ( ) ( )
+ +













+

Here, ( ) ( )r ri f21 21=

Substituting the proper values, we have

( )
(– ) ( )

( )

(– ) ( )

( )
(–9.0

5.0 5.0
9.× +







 × =10

4 2 4 2
109 12 0

3.0 3.0
× +







 ×10

4 2 4 2
109 12)

(– ) ( )

( )

(– ) ( )

( )

–

+ × ×1

2
10 3 2– v

∴ ( ) – ( ) –– – –9 10
16

5
9 10

16

3

1

2
103 3 3 2× 





= × 





+ × × v

( ) ( )– –9 10 16
2

15

1

2
103 3 2× 





= × × v

∴ v = 6.2 m/s Ans.

1. A point charge q1 = 1.0 Cµ is held fixed at origin. A second point charge q 2 = −2.0 Cµ and a

mass10 4− kg is placed on the x-axis, 1.0 m from the origin. The second point charge is released

from rest. What is its speed when it is 0.5 m from the origin?

2. A point chargeq1 = −1.0 Cµ is held stationary at the origin. A second point chargeq 2 = +2.0 Cµ
moves from the point ( , )1.0m,0 0 to ( , ).2.0m,0 0 How much work is done by the electric force

on q 2?

3. A point charge q1 is held stationary at the origin. A second charge q 2 is placed at a point a, and

the electric potential energy of the pair of charges is –6.4 J× −10 8 . When the second charge is

moved to point b, the electric force on the charge does 4.2 J× −10 8 of work. What is the electric

potential energy of the pair of charges when the second charge is at point b?

4. Is it possible to have an arrangement of two point charges separated by finite distances such

that the electric potential energy of the arrangement is the same as if the two charges were

infinitely far apart? What if there are three charges?

24.8 Electric Potential
As we have discussed in Article 24.6 that an electric field at any point can be defined in two different

ways:

(i) by the field strength E, and

(ii) by the electric potential V at the point under consideration.

Both E and V are functions of position and there is a fixed relationship between these two. Of these,

the field strength E is a vector quantity while the electric potential V is a scalar quantity. In this article,
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we will discuss about the electric potential and in the next, the relationship between E and V.

“Potential is the potential energy per unit charge.” Electric potential at any point in an electric field is

defined as the potential energy per unit charge, same as the field strength is defined as the force per

unit charge. Thus,

V
U

q
=

0

or U q V= 0

The SI unit of potential is volt (V) which is equal to joule per coulomb. So,

1 1V J/C=
The work done by the electrostatic force in displacing a test charge q0 from a to b in an electric field is

defined as the negative of change in potential energy between them, or

∆U Wa b= – –

∴ U U Wb a a b– – –=

We divide this equation by q0

U

q

U

q

W

q

b a a b

0 0 0

− = –
–

or V V
W

q
a b

a b
–

–=
0

as V
U

q
=

0

Thus, the work done per unit charge by the electric force when a charged body moves from a to b is

equal to the potential at a minus the potential at b. We sometimes abbreviate this difference as

V V Vab a b= – .

Another way to interpret the potential difference Vab is that the potential at a minus potential at b,

equals the work that must be done to move a unit positive charge slowly from b to a against the

electric force.

V V
W

q
a b

b a
–

( )–= external force

0

Absolute Potential at Some Point
Suppose we take the point b at infinity and as a reference point assign the value Vb =0, the above

equations can be written as

V V
W

q

W

q
a b

a b b a
–

( ) ( )– –= =electric force external force

0 0

or V
W

q

W

q
a

a a= =∞ ∞( ) ( )– –electric force external force

0 0

Thus, the absolute electric potential at point a in an electric field can be defined as the work done in

displacing a unit positive test charge from infinity to a by the external force or the work done per unit

positive charge in displacing it from a to infinity.
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Note The following three formulae are very useful in the problems related to work done in electric field.

( ) ( – )–W q V Va b electric force a b= 0

( ) ( – ) – ( )– –W q V V Wa b external force b a a b electric force= =0

( )–W q Va external force a∞ = 0

Here, q Va0 , and Vb are to be substituted with sign.

V Example 24.17 The electric potential at point A is 20 V and at B is – 40 V.
Find the work done by an external force and electrostatic force in moving an
electron slowly from B to A.

Solution Here, the test charge is an electron, i.e.

q0
1910= ×– –1.6 C

VA = 20 V

and VB = – 40 V

Work done by external force

( ) ( – )–W q V VB A A Bexternal force = 0

= ×(– ) [( ) – (– )]–1.6 10 20 4019

= ×– –9.6 J10 18 Ans.

Work done by electric force

( ) – ( )– –W WB A B Aelectric force external force=
= ×– (– )–9.6 J10 18

= ×9.6 J10 18– Ans.

Note Here, we can see that the electron (a negative charge) moves from B (lower potential) to A (higher

potential) and the work done by electric force is positive. Therefore, we may conclude that whenever a

negative charge moves from a lower potential to higher potential work done by the electric force is

positive or when a positive charge moves from lower potential to higher potential the work done by the

electric force is negative.

V Example 24.18 Find the work done by some external force in moving a charge

q C= 2 µ from infinity to a point where electric potential is 104 V .

Solution Using the relation,

( )–W qVa a∞ =external force

We have, ( ) ( ) ( )–
–W a∞ = ×external force 2 10 106 4

= ×2 10 2– J Ans.

Electric Potential Due to a Point Charge q

From the definition of potential, V
U

q
=

0

=
⋅

1

4 0

0

0

πε
q q

r

q
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or V
q

r
= ⋅

1

4 0πε

Here, r is the distance from the point charge q to the point at which the potential is evaluated.

If q is positive, the potential that it produces is positive at all points; if q is negative, it produces a

potential that is negative everywhere. In either case, V is equal to zero at r = ∞.

Electric Potential Due to a System of Charges
Just as the electric field due to a collection of point charges is the vector sum of the fields produced by

each charge, the electric potential due to a collection of point charges is the scalar sum of the

potentials due to each charge.

V
q

r

i

ii

= ∑1

4 0πε

In this expression, ri is the distance from the i th charge, q i , to the point at which V is evaluated. For a

continuous distribution of charge along a line, over a surface or through a volume, we divide the

charge into elements dq and the sum in the above equation becomes an integral,

V
dq

r
= ∫

1

4 0πε

Note In the equation V
q

ri

i

i

= 1

4 0πε Σ or V
dq

r
= ∫

1

4 0πε
, if the whole charge is at equal distance r0 from the

point where V is to be evaluated, then we can write,

V
q

r
net= ⋅1

4 0 0πε

where, qnet is the algebraic sum of all the charges of which the system is made.

Here there are few examples :

Example (i) Four charges are placed on the vertices of a square as shown

in figure. The electric potential at centre of the square is zero as all the charges

are at same distance from the centre and

q C C C Cnet = + =4 2 2 4 0µ µ µ µ– –

Example (ii) A charge q is uniformly distributed over the circumference of a ring in Fig. (a) and

is non-uniformly distributed in Fig. (b).
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The electric potential at the centre of the ring in both the cases is

V
q

R
= ⋅1

4 0πε
(where, R = radius of ring)

and at a distance r from the centre of ring on its axis would be

V
q

R r
= ⋅

+

1

4 0
2 2πε

V Example 24.19 Three point charges q C q C1 21 2= =µ µ, – and q C3 3= µ are
placed at (1 m, 0, 0), (0, 2 m, 0) and (0, 0, 3 m) respectively. Find the electric
potential at origin.

Solution The net electric potential at origin is

V
q

r

q

r

q

r
= + +









1

4 0

1

1

2

2

3

3πε

Substituting the values, we have

V = × +





×( ) – –9.0
1.0 2.0 3.0

10
1 2 3

109 6

= ×9.0 V103 Ans.

V Example 24.20 A charge q C= 10 µ is distributed uniformly over the
circumference of a ring of radius 3 m placed on x-y plane with its centre at
origin. Find the electric potential at a point P (0, 0, 4 m).

Solution The electric potential at point P would be

v

V
q

r
= ⋅1

4 0 0πε

Here, r P0 = distance of point fromthe circumference of ring

= +( ) ( )3 42 2 = 5 m

and q = 10 µC= 10 5– C

Substituting the values, we have

V = ×( ) ( )

(

–9.0

5.0)

10 109 5

= ×1.8 V104
Ans.
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Variation of Electric Potential on the Axis of a Charged Ring
We have discussed earlier that the electric potential at the centre of a charged ring (whether charged

uniformly or non-uniformly) is
1

4 0πε
⋅

q

R
and at a distance r from the centre on the axis of the ring is

1

4 0
2 2πε

⋅
+

q

R r
.From these expressions, we can see that electric potential is maximum at the centre

and decreases as we move away from the centre on the axis. Thus, potential varies with distance r as

shown in figure.

In the figure, V
q

R
0

0

1

4
= ⋅

πε

Electric Potential on the Axis of a Uniformly Charged Disc

Let us find the electric potential at any point P, a distance x on the axis of a uniformly charged circular

disc, having surface charge density σ. Let us divide the disc into a large number of thin circular strips

and consider a strip of radius r and width dr. Each point of this strip can be assumed to be at equal

distance r x2 2+ from point P. Potential at P due to this circular strip is

dV
dq

r x
= ⋅

+

1

4 0
2 2πε

Here, dq = σ ( )area of strip or dq rdr= σ π( )2

∴ dV
rdr

r x
= ⋅

+

1

4

2

0
2 2πε

σ π( )

Thus, the potential due to the whole disc is

V dV
R

= ∫0
=

+
∫

σ
ε2 0

2 20

rdr

r x

R
or V R x x= +

σ
ε2 0

2 2[ – ]
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(i) At the centre of the disc, x =0

∴ V
R

( )centre =
σ
ε2 0

…(i)

(ii) For x R>> , using the Binomial expansion for

R x x
R

x
x

R

x

2 2
2

2

1 2
2

1
2

+ = +








 ≈ +

/

∴ V x
R

x
x

R

x

R

x
= +









 = =

σ
ε

σ
ε

π σ
π ε2 2 4 40

2 2

0

2

0

–

or V
q

x
=

4 0πε

as π σR q2 = , the total charge on the disc.

This is the relation as obtained due to a point charge. Thus, at far away points, the distribution of

charge becomes insignificant. It is difficult to calculate the potential at the points other than on

the axis. However, potential on the edge of the disc can be calculated as under.

Potential on the Edge of the Disc
To calculate the potential at point P, let us divide the disc in large number of rings

with P as centre. The potential due to one segment between r and r dr+ is given as

dV
dq

r
= ⋅

1

4 0πε
Here, dq = σ (Area of ring)

= σ θ( )2r dr

∴ dV
r dr

r
= ⋅

1

4

2

0πε
σ θ( )

= ⋅
σ
πε

θ
2 0

dr

Further, r R=2 cos θ
∴ dr R d= – sin2 θ θ

Hence, dV R d= – sin
σ
πε

θ θ θ
2

2
0

∴ V dV= ∫π/2

0
= ∫

σ
πε

θ θ θ
0

π/2R
d

0

sin

Solving, we get V
R

=
σ
πε0

…(ii)

Comparing Eqs. (i) and (ii), we see that potential at the centre of the disc is greater than the potential at

the edge.
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V Example 24.21 Find out the points on the line joining two charges + q and

– 3q (kept at a distance of 1.0 m) where electric potential is zero.

Solution Let P be the point on the axis either to the left or to the right of charge + q at a

distance r where potential is zero. Hence,

V
q

r

q

r
P =

+
=

4

3

4 1
0

0 0πε πε
–

( )

Solving this, we get r = 0.5 m

Further, V
q

r

q

r
P = =

4

3

4 1
0

0 0πε πε
–

( – )

which gives r = 0.25 m

Thus, the potential will be zero at point P on the axis which is either 0.5 m to the left or 0.25 m to

the right of charge + q. Ans.

1. FindVba if 12 J of work has to be done against an electric field to take a charge of 10 2– C from a

to b.

2. A rod of length L lies along the x-axis with its left end at the origin. It has a non-uniform charge

density λ α= x, where α is a positive constant.

(a) What are the units of α?

(b) Calculate the electric potential at point A where x d= – .

3. A charge q is uniformly distributed along an insulating straight wire of length 2 l as shown in

Fig. 24.34. Find an expression for the electric potential at a point located a distance d from the

distribution along its perpendicular bisector.

4. A cone made of insulating material has a total charge Q spread uniformly over its sloping

surface. Calculate the work done in bringing a small test charge q from infinity to the apex of the

cone. The cone has a slope length L.
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24.9 Relation Between Electric Field and Potential
As we have discussed above, an invisible space is produced across a charge or system of charges in

which any other test charge experiences an electrical force. The vector quantity related to this force is

known as electric field. Further, a work is done by this electrostatic force when this test charge is

moved from one point to another point. The scalar quantity related to this work done is called

potential. Electric field ( )E and potential ( )V are different at different positions. So, they are functions

of position.

In a cartesian coordinate system, position of a particle can be represented by three variable

coordinates x y, and z. Therefore, E andV are functions of three variables x y z, and . In physics, we

normally keep least number of variables. So, sometimes E andV are the functions of a single variable

x or r. Here, x is the x-coordinate along x-axis and r normally a distance from a point charge or from

the centre of a charged sphere or charged spherical shell. From the x-coordinate, we can cover only

x -axis. But, from the variable r, we can cover the whole space.

Now, E and V functions are related to each other either by differentiation or integration. As far as

differentiation is concerned, if there are more than one variables then partial differentiation is done

and in case of single variable direct differentiation is required. In case of integration, some limit is

required. Limit means value of the function which we get after integration should be known to us at

some position. For example, after integrating E, we get V . So, value ofV should be known at some

given position. Without knowing some limit, an unknown in the form of constant of integration

remains in the equation. One known limit of V is : potential is zero at infinity.

Conversion of V function into E function
This requires differentiation.

Case 1 When variables are more than one

In this case,

E i j k= + +E E Ex y z
$ $ $

Here, E
V

x
V xx =

∂
∂

=– – (partial derivative of w.r. t. )

E
V

y
V yy =

∂
∂

=– – (partial derivative of w.r. t. )

E
V

z
V zz =

∂
∂

=– – (partial derivative of w.r. t. )

∴ E i j k= −
∂
∂

+
∂
∂

+
∂
∂









V

x

V

y

V

z
$ $ $

This is also sometimes written as

E = = = ∇– – –gradient gradV V V

V Example 24.22 The electric potential in a region is represented as

V x y z= +2 3 –

obtain expression for electric field strength.
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Solution E i j k= ∂
∂

+ ∂
∂

+ ∂
∂









– $ $ $

V

x

V

y

V

z

Here,
∂
∂

= ∂
∂

+ =V

x x
x y z( – )2 3 2

∂
∂

= ∂
∂

+ =V

y y
x y z( – )2 3 3

∂
∂

= ∂
∂

+ =V

z z
x y z( – ) –2 3 1

∴ E i j + k= − −2 3$ $ $ Ans.

Case 2 When variable is only one In this case, electric potential is function of only one variable

( )say r and we can write the expression like :

E
dV

dr
= −

or E = − slope of V r- graph

Example Electric potential due to a point charge q at distance r is given as

V
q

r
= ⋅

1

4 0πε
⇒

dV

dr

q

r
= −

ε
⋅

1

4 0
2π

∴ E
dV

dr

q

r
= − =

ε
⋅1

4 0
2π

and we know that this is the expression of electric field due to a point charge.

Note E is a vector quantity. In the above method, if single variable is x and E comes out to be positive, then

direction of E is towards  positive x-axis. Negative value of E means direction is towards negative x axis- .

If variable is r, then positive value of E means away from the point charge or away from the centre of

charged spherical body and negative value of E means towards the charge or towards the centre of

charged spherical body.

Let us take an another example : We wish to find E r- graph

corresponding to V r- graph shown in Fig. 24.35.

Electric field E = – 5 V/m for 0 2≤ ≤r m as slope of V-r graph is

5 V/m. E =0 for 2 4m m≤ ≤r as slope of V-r graph in this region

is zero. Similarly, E =5 V/m for 4 6m m≤ ≤r as slope in this

region is – 5 V/m.

So, the corresponding E r- graph is as shown in Fig. 24.36.
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V Example 24.23 The electric potential V at any point x, y, z (all in metre) in

space is given by V x= 4 2 volt. The electric field at the point (1m, 0, 2 m) is

………V/m. (JEE 1992)

Solution E i j k= − + +









∂
∂

∂
∂

∂
∂

V

x

V

y

V

z
$ $ $ ⇒ V x= 4 2

Therefore,
∂
∂
V

x
x= 8 and

∂
∂

∂
∂

V

y

V

z
= =0

E i= −8x$

or E at (1 m, 0, 2 m) is −8 $i V/m.

Conversion of E into V

We have learnt, how to find electric field E from the electrostatic potential V. Let us now discuss how

to calculate potential difference or absolute potential if electric field E is known. For this, use the

relation

dV d= ⋅– E r

or dV d
A

B

A

B

∫ ∫= ⋅– E r

or V V dB A A

B
– –= ⋅∫ E r

Here, d dx dy dzr i j k= + +$ $ $

When E is Uniform
Let us take this case with the help of an example.

V Example 24.24 Find Vab in an electric field E i j k= + +( $ $ $ ) ,2 3 4
N

C

where ra m= +( $ – $ $ )i j k2 and rb m= +( $ $ – $ )2 2i j k

Solution Here, the given field is uniform (constant). So using,

dV d= ⋅– E r

or V V V dab a b
b

a
= = ⋅∫– – E r

= − + + ⋅ + +∫ ( $ $ $ ) ( $ $ $ )
( , ,– )

( ,– , )
2 3 4

2 1 2

1 2 1
i j k i j kdx dy dz

= + +∫– ( )
( , ,– )

( ,– , )
2 3 4

2 1 2

1 2 1
dx dy dz

= − + +[ ]
( , , – )

( , – , )

2 3 4
2 1 2

1 2 1

x y z

= – 1V Ans.

Note In uniform electric field, we can also apply V Ed=
Here, V is the potential difference between any two points, E is the magnitude of uniform electric field and d is
the projection of the distance between two points along the electric field.
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For example, in the figure for finding the potential difference between points A and B we will have to

keep two points in mind,

(i) V VA B> as electric lines always flow from higher potential to lower potential.

(ii) d AB≠ but d AC=
Hence, in the above figure, V V EdA B– =

V Example 24.25 In uniform electric field E = 10 N C/ , find

(a) V VA B– (b) V VB C–

Solution (a) V V V VB A A B> , –So, will be negative.

Further d AB = ° =2 60 1cos m

∴ V V EdA B AB– –= = (– ) ( )10 1 = – 10 volt Ans.

(b) V V V VB C B C> , –so will be positive.

Further, dBC = 2.0 m

∴ V VB C– ( ) ( )= 10 2 = 20 volt Ans.

V Example 24.26 A uniform electric field of 100 V/m is directed at 30° with the
positive x-axis as shown in figure. Find the potential difference VBA if OA m= 2
and OB m= 4 .
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Solution This problem can be solved by both the methods discussed above.

Method 1. Electric field in vector form can be written as

E i j= ° + °( cos $ sin $ )100 30 100 30 V/m

= +( $ $ )50 3 50i j V/m

A m≡ (– , , )2 0 0

and B m≡ ( , , )0 4 0

∴ V V V dBA B A
A

B
= = ⋅∫– – E r

= + ⋅ + +
−∫– ( $ $ ) ( $ $ $ )

( , , )

( , , )
50 3 50

2 0 0

0 4 0
i j i j k

m

m
dx dy dz

= +– [ ]
(– , , )

( , , )
50 3 50

2 0 0

0 4 0
x y

m

m

= +– ( )100 2 3 V Ans.

Method 2. We can also use, V Ed=

With the view that V V V VA B B A> or – will be negative.

Here, d OA OBAB = ° + °cos sin30 30

= × + ×2
3

2
4

1

2
= +( )3 2

∴ V V EdB A AB– –= = +– ( )100 2 3 Ans.

V Example 24.27 A uniform electric field pointing in positive x-direction exists
in a region. Let A be the origin, B be the point on the x-axis at x = +1 cm and C
be the point on the y-axis at y = + 1 cm. Then, the potentials at the points A, B
and C satisfy (JEE 2001)

(a) V VA B< (b) V VA B>
(c) V VA C< (d) V VA C>
Solution Potential decreases in the direction of electric field. Dotted lines are

equipotential lines.

∴ V VA C= and V VA B>
Hence, the correct option is (b).
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V Example 24.28 A non-conducting ring of radius 0.5 m carries a total charge

of 1.11 × −10 10C distributed non-uniformly on its circumference producing an

electric field E everywhere in space. The value of the integral − ⋅
= ∞

=
∫ E ld

l

l 0

(l = 0 being centre of the ring) in volt is (JEE 1997)

(a) + 2 (b) − 1 (c) − 2 (d) zero

Solution − ⋅ = = −
= ∞

=

= ∞

=
∫ ∫E ld dV V

l

l

l

l0 0
(centre) (infinity)V

but V (infinity) = 0

∴ − ⋅
= ∞

=
∫ l

l
l

0
E d corresponds to potential at centre of ring.

and V
q

R
(centre) =

ε
⋅1

4 0π
= × × ≈

−( ) ( )9 10 10
2

9 101.11

0.5
V

Therefore, the correct answer is (a).

1. Determine the electric field strength vector if the potential of this field depends on x, y

coordinates as

(a) V a x y= ( – )2 2 (b) V axy=

where, a is a constant.

2. The electrical potential function for an electrical field directed parallel to the x-axis is shown in

the given graph.

Draw the graph of electric field strength.

3. The electric potential decreases uniformly from 100 V to 50 V as one moves along the x-axis

from x = 0 to x = 5 m. The electric field at x = 2 m must be equal to10 V/m.Is this statement true

or false.

4. In the uniform electric field shown in figure, find :

(a) V –VA D

(b) V –VA C

(c) V – VB D

(d) V VC D−
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24.10 Equipotential Surfaces
The equipotential surfaces in an electric field have the same basic idea as topographic maps used by

civil engineers or mountain climbers. On a topographic map, contour lines are drawn passing through

the points having the same elevation. The potential energy of a mass m does not change along a

contour line as the elevation is same everywhere.

By analogy to contour lines on a topographic map, an equipotential surface is a three-dimensional

surface on which the electric potential V is the same at every point on it. An equipotential surface has

the following characteristics.

1. Potential difference between any two points in an equipotential surface is zero.

2. If a test charge q0 is moved from one point to the other on such a surface, the electric potential

energy q V0 remains constant.

3. No work is done by the electric force when the test charge is moved along this surface.

4. Two equipotential surfaces can never intersect each other because otherwise the point of

intersection will have two potentials which is of course not possible.

5. As the work done by electric force is zero when a test charge is moved along the equipotential

surface, it follows that E must be perpendicular to the surface at every point so that the electric

force q0 E will always be perpendicular to the displacement of a charge moving on the surface.

Thus, field lines and equipotential surfaces are always mutually perpendicular. Some

equipotential surfaces are shown in Fig. 24.43.

The equipotential surfaces are a family of concentric spheres for a point charge or a sphere of charge

and are a family of concentric cylinders for a line of charge or cylinder of charge. For a special case of

a uniform field, where the field lines are straight, parallel and equally spaced the equipotential

surfaces are parallel planes perpendicular to the field lines.

Note While drawing the equipotential surfaces we should keep in mind the two main points.

(i) These are perpendicular to field lines at all places.

(ii) Field lines always flow from higher potential to lower potential.

V Example 24.29 Equipotential spheres are drawn round a point charge. As we
move away from the charge, will the spacing between two spheres having a
constant potential difference decrease, increase or remain constant.
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Solution V V1 2>

V
q

r
1

0 1

1

4
= ⋅

πε
and V

q

r
2

0 2

1

4
= ⋅

πε

Now, V V
q

r r

q r r

r r
1 2

0 1 2 0

2 1

1 24

1 1

4
– –

–
= 






 = 








πε πε

∴ ( – )
( ) ( – )

( )r r
V V

q
r r2 1

0 1 2
1 2

4
=

πε

For a constant potential difference ( – )V V1 2 ,

r r r r2 1 1 2– ∝
i.e. the spacing between two spheres ( – )r r2 1 increases as we move away from the charge,

because the product r r1 2 will increase.

24.11 Electric Dipole
A pair of equal and opposite point charges ±q, that are separated by a fixed distance is known as

electric dipole. Electric dipole occurs in nature in a variety of situations. The hydrogen fluoride

molecule (HF) is typical. When a hydrogen atom combines with a fluorine atom, the single electron

of the former is strongly attracted to the later and spends most of its time near the fluorine atom. As a

result, the molecule consists of a strongly negative fluorine ion some (small) distance away from a

strongly positive ion, though the molecule is electrically neutral overall.

Every electric dipole is characterized by its electric dipole moment which is

a vector pdirected from the negative to the positive charge.

The magnitude of dipole moment is

p a q= ( )2

Here, 2a is the distance between the two charges.

Electric Potential and Field Due to an Electric Dipole
Consider an electric dipole lying along positive y-direction with its centre at origin.

p j=2aq $

The electric potential due to this dipole at point A x y z( , , ) as shown is simply the sum of the

potentials due to the two charges. Thus,
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V
q

x y a z

q

x y a z
=

+ + + + +













1

4 0
2 2 2 2 2 2πε ( – )

–
( )

By differentiating this function, we obtain the electric field of the dipole.

E
V

x

q x

x y a z

x

x y a z
x =

∂
∂

=
+ + + + +

–
[ ( – ) ]

–
[ ( ) ]/ /4 0

2 2 2 3 2 2 2 2 3πε 2









E
V

y

q y a

x y a z

y a

x y a z
y =

∂
∂

=
+ +

+
+ + +

–
–

[ ( – ) ]
–

[ ( )/4 0
2 2 2 3 2 2 2πε 2 3 2] /









E
V

z

q z

x y a z

z

x y a z
z =

∂
∂

=
+ + + + +

–
[ ( – ) ]

–
[ ( ) ]/ /4 0

2 2 2 3 2 2 2 2 3πε 2









Special Cases

1. On the axis of the dipole (say, along y-axis)

x z= =0 0,

∴ V
q

y a y a

aq

y a
=

+








 =

4

1 1 2

40 0
2 2πε πε–

–
( – )

or V
p

y a
=

4 0
2 2πε ( – )

(as 2aq p= )

i.e. at a distance r from the centre of the dipole ( )y r=

V
p

r a
=

4 0
2 2πε ( – )

or V
p

r
axis ≈

4 0
2πε

(for r a>> )

V is positive when the point under consideration is towards positive charge and negative if it is

towards negative charge.

Moreover the components of electric field are as under

E Ex z= =0 0, ( , )as x z= =0 0

and E
q

y a y a
y =

+











4

1 1

0
2 2πε ( – )

–
( )

=
4

4 0
2 2 2

ayq

y aπε ( – )
or E

py

y a
y =

1

4

2

0
2 2 2πε ( – )

Note that E y is along positive y-direction or parallel to p.

Further, at a distance r from the centre of the dipole ( )y r= .

E
pr

r a
y =

1

4

2

0
2 2 2πε ( – )

or E
p

r
axis ≈ ⋅

1

4

2

0
3πε

(for r a>> )
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2. On the perpendicular bisector of dipole

Say along x-axis (it may be along z-axis also).

y z= =0 0,

∴ V
q

x a

q

x a
=

+ +













=
1

4
0

0
2 2 2 2πε

–

or V⊥ =bisector 0

Moreover the components of electric field are as under,

Ex =0, E z =0

and E
q a

x a

a

x a
y =

+ +







4 0

2 2 3 2 2 2 3 2πε
–

( )
–

( )/ /

=
+

–

( ) /

2

4 0
2 2 3 2

aq

x aπε

or E
p

x a
y = ⋅

+
–

( ) /

1

4 0
2 2 3 2πε

Here, negative sign implies that the electric field is along negative y-direction or antiparallel to p.

Further, at a distance r from the centre of dipole ( )x r= , the magnitude of electric field is

E
p

r a
=

+
1

4 0
2 2 3 2πε ( ) /

or E
p

r
⊥ ≈ ⋅bisector

1

4 0
3πε

(for r a>> )

Electric Dipole in Uniform Electric Field
As we have said earlier also, uniform electric field means, at every point the direction and magnitude

of electric field is constant. A uniform electric field is shown by parallel equidistant lines. The field

due to a point charge or due to an electric dipole is non-uniform in nature. Uniform electric field is

found between the plates of a parallel plate capacitor. Now, let us discuss the behaviour of a dipole in

uniform electric field.

Force on Dipole
Suppose an electric dipole of dipole moment | |p =2aq is placed in a uniform electric field E at an

angle θ. Here, θ is the angle between p and E. A force F E1 = q will act on positive charge and

F E2 = – q on negative charge. Since, F1 and F2 are equal in magnitude but opposite in direction.
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Hence, F F1 2 0+ = or Fnet =0

Thus, net force on a dipole in uniform electric field is zero. While in a non-uniform electric field it

may or may not be zero.

Torque on Dipole
The torque of F1 about O, τ 1 1= × = ×OA F OA Eq ( )

and torque of F2 about O is, τ 2 2= × = ×OB F OB E– ( )q

= ×q( )BO E

The net torque acting on the dipole is

τ τ τ= +1 2 = × + ×q q( ) ( )OA E BO E

= + ×q ( )OA BO E

= ×q ( )BA E

or τ = ×p E

Thus, the magnitude of torque is τ θ= pE sin . The direction of torque is perpendicular to the plane of

paper inwards. Further this torque is zero at θ = °0 or θ = °180 , i.e. when the dipole is parallel or

antiparallel to E and maximum at θ = °90 .

Potential Energy of Dipole
When an electric dipole is placed in an electric field E, a torque τ = ×p E acts on it. If we rotate the

dipole through a small angle dθ, the work done by the torque is

dW d= τ θ
dW pE d= – sin θ θ

The work is negative as the rotation dθ is opposite to the torque. The change in electric potential

energy of the dipole is therefore

dU dW pE d= =– sin θ θ
Now, at angle θ = °90 , the electric potential energy of the dipole may be assumed to be zero as net

work done by the electric forces in bringing the dipole from infinity to this position will be zero.

Integrating, dU pE d= sin θ θ

From 90° to θ, we have dU pE d
90 90° °∫ ∫=
θ θ

θ θsin

or U U pE( ) – ( ) [– cos ]θ θ θ
90

90
° = °

∴ U pE( ) – cos –θ θ= = ⋅p E
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If the dipole is rotated from an angle θ1 to θ2 , then

Work done by external forces = U U( ) – ( )θ θ2 1

or W pE pEext. forces = – cos – (– cos )θ θ2 1

or W pEext. forces = (cos – cos )θ θ1 2

and work done by electric forces,

W W pEelectric force ext. force= =– (cos – cos )θ θ2 1

Equilibrium of Dipole
When an electric dipole is placed in a uniform electric field net force on it is zero for any position of

the dipole in the electric field. But torque acting on it is zero only atθ = °0 and 180°. Thus, we can say

that at these two positions of the dipole, net force and torque on it is zero or the dipole is in

equilibrium

Of this, θ = °0 is the stable equilibrium position of the dipole because potential energy in this

position is minimum ( – cos – )U pE pE= ° =0 and when displaced from this position a torque starts

acting on it which is restoring in nature and which has a tendency to bring the dipole back in its

equilibrium position. On the other hand, at θ = °180 , the potential energy of the dipole is maximum

( – cosU pE= °180 = + pE ) and when it is displaced from this position, the torque has a tendency to

rotate it in other direction. This torque is not restoring in nature. So, this equilibrium is known as

unstable equilibrium position.

Chapter 24 Electrostatics � 151

p

–q +q

E E

–q

+q
F1

F2

Restoring torque

p

+q –q

E E

–q

+q

F1

F2

Torque in opposite
direction

θ °= 0

θ °= 180

U = minimum = pE−

U = maximum = + pE

Fnet = 0, = 0τ

Fnet = 0, = 0τ

When displaced from equilibrium
position a restoring torque
acts on the dipole

When displaced from equilibrium
position, torque acts in
opposite direction

⇒

⇒

Fig. 24.49



Important Formulae
1. As there are too many formulae in electric dipole, we have summarised them as under :

| | ( )p = 2a q

Direction of p is from −q to +q.

2. If a dipole is placed along y-axis with its centre at origin, then

V x y z
q

x y a z

q

x y a z
( , , )

( – )
–

( )
=

+ + + + +













1

4 0
2 2 2 2 2 2πε

E
V

x
x = ∂

∂
– , E

V

y
y = ∂

∂
–

and E
V

z
z = ∂

∂
–

3. On the axis of dipole x z= =0 0,

(i) V
p

y a
= 1

4 0
2 2πε ( – )

= ⋅1

4 0
2 2πε

p

r a–
if y r=

or V
p

r
axis

≈ 1

4 0
2πε

if r a>>

(ii) E Ex z= =0 and

E E
py

y a
y= = ⋅1

4

2

0
2 2 2πε ( – )

(along p )

= 1

4

2

0
2 2 2πε

pr

r a( – )
if y r=

or E
p

r
axis

≈ ⋅1

4

2

0
3πε

for r a>>

4. On the perpendicular bisector of dipole Along x-axis, y = 0, z = 0

(i) V⊥ =
bisector

0

(ii) E x = 0, Ez = 0 and

E
p

x a
y = ⋅

+
–

( ) /

1

4 0
2 2 3 2πε

or E
p

r a
=

+
1

4 0
2 2 3 2πε ( ) /

(opposite to p)

≈ ⋅1

4 0
3πε
p

r
for r a>>

5. Dipole in uniform electric field

(i) Fnet = 0

(ii) τ = ×p E and | | sinτ θ= pE

(iii) U pE( ) – – cosθ θ= ⋅ =p E with U ( )90 0° =
(iv) ( ) ( – cos )W pEθ θ θ θ

1 2 1 2→ =
ext. force

cos

(v) ( ) (cos – cos ) – ( )W pE Wθ θ θ θθ θ
1 2 1 22 1→ →= =

electric force ext. force

(vi) At θ = °0 ,F
net

= 0, τ
net

= 0, U = minimum (stable equilibrium position)

(vii) At θ = °180 , Fnet = 0, τnet = 0, U = maximum (unstable equilibrium position)



V Example 24.30 Draw electric lines of forces due to an electric dipole.

Solution Electric lines of forces due to an electric dipole are as shown in figure.

V Example 24.31 Along the axis of a dipole, direction of electric field is always
in the direction of electric dipole moment p. Is this statement true or false?

Solution False. In the above figure, we can see that direction of electric field is in the opposite

direction of p between the two charges.

V Example 24.32 At a far away distance r along the axis from an electric dipole
electric field is E. Find the electric field at distance 2r along the perpendicular
bisector.

Solution Along the axis of dipole,

E
p

r
= 1

4

2

0
3πε

…(i)

This electric field is in the direction of p. Along the perpendicular bisector at a distance 2r,

E
p

r
′ = 1

4 20
3πε ( )

…(ii)

From Eqs. (i) and (ii), we can see that

E
E′ =
16

Moreover, E ′ is in the opposite direction of p. Hence,

E
E′ = −
16

Ans.

24.12 Gauss’s Law
Gauss’s law is a tool of simplifying electric field calculations where there is symmetrical distribution

of charge. Many physical systems have symmetry, for example a cylindrical body doesn’t look any

different if we rotate it around its axis.

Before studying the detailed discussion of Gauss's law let us understand electric flux.

Electric Flux ( )φ
(i) Electric flux is a measure of the field lines crossing a surface.

(ii) It is a scalar quantity with SI units
N

C
- m 2 or V- m.
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(iii) Electric flux passing through a small surface dS is given by

d d E dSφ = ⋅ =E S cos θ …(i)

Here, dS is an area vector, whose magnitude is equal to dS and whose direction is perpendicular

to the surface.

Note If the surface is open, then dS can be taken in either of the two directions perpendicular to the surface,

but it should not change even if we rotate the surface.

If the surface is closed then by convention, dS is normally taken in outward direction.

(iv) From Eq. (i), we can see that maximum value of dφ is E dS, if θ = °90 or electric lines are

perpendicular to the surface. Electric flux is zero, if θ = °90 or electric lines are tangential to the

surface.

(v) Electric flux passing through a large surface is given by

φ = φ = ⋅ =∫ ∫ ∫d d E dSE S cos θ …(ii)

This is basically surface integral of electric flux over the given surface. But normally we do not

study surface integral in detail in physics.

Here, are two special cases for calculating the electric flux passing through a surface S of finite size

(whether closed or open)

Case 1 φ =ES

If at every point on the surface, the magnitude of electric field is constant and perpendicular (to the

surface).
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Case 2 φ =0

If at all points on the surface the electric field is tangential to the surface.

Gauss’s Law
This law gives a relation between the net electric flux through a closed surface and the charge

enclosed by the surface. According to this law,

“the net electric flux through any closed surface is equal to the net charge inside the surface divided

by ε 0 .” In symbols, it can be written as

φ = ⋅ =∫e

S

d
q

E S
in

ε 0

…(i)

where, q in represents the net charge inside the closed surface and E represents the electric field at any

point on the surface.

In principle, Gauss’s law is valid for the electric field of any system of charges or continuous

distribution of charge. In practice however, the technique is useful for calculating the electric field

only in situations where the degree of symmetry is high. Gauss’s law can be used to evaluate the

electric field for charge distributions that have spherical, cylindrical or plane symmetry.

Simplified Form of Gauss's Theorem
Gauss’s law in simplified form can be written as under

ES
q

= in

ε 0

or E
q

S
= in

ε 0

…(ii)

but this form of Gauss’s law is applicable only under the following two conditions :

(i) The electric field at every point on the surface is either perpendicular or tangential.

(ii) Magnitude of electric field at every point where it is perpendicular to the surface has a constant

value (say E).

Here, S is the area where electric field is perpendicular to the surface.

Applications of Gauss’s Law
As Gauss’s law does not provide expression for electric field but provides only for its flux through a

closed surface. To calculate E we choose an imaginary closed surface (called Gaussian surface) in

which Eq. (ii) can be applied easily. Let us discuss few simple cases.

Chapter 24 Electrostatics � 155

S
E

Closed
surface

E

Fig. 24.54



Electric field due to a point charge

The electric field due to a point charge is everywhere radial. We wish to

find the electric field at a distance r from the charge q. We select Gaussian

surface, a sphere at distance r from the charge. At every point of this

sphere the electric field has the same magnitude E and it is perpendicular

to the surface itself. Hence, we can apply the simplified form of Gauss’s

law,

ES
q

= in

ε 0

Here, S r= area of sphere = 4 2π and

q in = net charge enclosing the Gaussian surface = q

∴ E r
q

( )4 2

0

π
ε

=

∴ E
q

r
= ⋅

1

4 0
2πε

It is nothing but Coulomb’s law.

Electric field due to a linear charge distribution

Consider a long line charge with a linear charge density (charge per unit

length) λ. We have to calculate the electric field at a point, a distance r from

the line charge. We construct a Gaussian surface, a cylinder of any arbitrary

length l of radius r and its axis coinciding with the axis of the line charge.

This cylinder have three surfaces. One is curved surface and the two plane

parallel surfaces. Field lines at plane parallel surfaces are tangential (so flux

passing through these surfaces is zero). The magnitude of electric field is

having the same magnitude (say E) at curved surface and simultaneously the

electric field is perpendicular at every point of this surface.

Hence, we can apply the Gauss’s law as

ES
q

= in

ε 0

Here, S = area of curved surface = ( )2πrl
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and q in net charge enclosing this cylinder= = λl

∴ E rl
l

( )2
0

π
λ
ε

=

∴ E
r

=
λ

πε2 0

i.e. E
r

∝
1

or E-r graph is a rectangular hyperbola as shown in Fig. 24.58.

Electric field due to a plane sheet of charge

Figure shows a portion of a flat thin sheet, infinite in size with constant surface charge density σ
(charge per unit area). By symmetry, since the sheet is infinite, the field must have the same

magnitude and the opposite directions at two points equidistant from the sheet on opposite sides. Let

us draw a Gaussian surface (a cylinder) with one end on one side and other end on the other side and

of cross-sectional area S 0 . Field lines will be tangential to the curved surface, so flux passing through

this surface is zero. At plane surfaces electric field has same magnitude and perpendicular to surface.

Hence, using ES
q

= in

ε 0

∴ E S
S

( )
( ) ( )

2 0
0

0

=
σ

ε

∴ E =
σ
ε2 0

Thus, we see that the magnitude of the field is independent of the distance from the sheet. Practically,

an infinite sheet of charge does not exist. This result is correct for real charge sheets if points under

consideration are not near the edges and the distances from the sheet are small compared to the

dimensions of sheet.

Electric field near a charged conducting surface

When a charge is given to a conducting plate, it distributes itself over the entire outer surface of the

plate. The surface densityσ is uniform and is the same on both surfaces if plate is of uniform thickness

and of infinite size.
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This is similar to the previous one the only difference is that this time charges are on both sides.

Hence, applying ES
q

= in

ε 0

Here, S S=2 0 and q Sin = ( ) ( )σ 2 0

∴ E S
S

( )
( ) ( )

2
2

0
0

0

=
σ

ε

∴ E =
σ
ε 0

Thus, field due to a charged conducting plate is twice the field due to plane sheet of charge. It also has

same limitations.

Later, we will see that the electric field near a charged conducting surface of any shape isσ/ε 0 and it is

normal to the surface.

Note In case of closed symmetrical body with charge q at its centre, the electric flux linked with each half will

be
φ =
2 2 0

q

ε
. If the symmetrical closed body has n identical faces with point charge at its centre, flux

linked with each face will be
φ =
n

q

n ε0

.

� Net electric flux passing through a closed surface in uniform electric field is zero.

V Example 24.33 An electric dipole is placed at the centre of a sphere. Find the
electric flux passing through the sphere.

Solution Net charge inside the sphere qin = 0. Therefore, according to Gauss’s law net flux

passing through the sphere is zero. Ans.
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V Example 24.34 A point charge q is placed at the centre of a cube. What is the
flux linked

(a) with all the faces of the cube?

(b) with each face of the cube?

(c) if charge is not at the centre, then what will be the answers of parts (a) and (b)?

Solution (a) According to Gauss’s law,

φ = =total
inq q

ε ε0 0

Ans.

(b) The cube is a symmetrical body with 6 faces and the point charge is at its centre, so electric

flux linked with each face will be

φ =
φ

=each face
total

6 6 0

q

ε
Ans.

(c) If charge is not at the centre, the answer of part (a) will remain same while that of  part

(b) will change.

1. In figure (a), a charge q is placed just outside the centre of a closed hemisphere. In figure

(b), the same charge q is placed just inside the centre of the closed hemisphere and in

figure (c), the charge is placed at the centre of hemisphere open from the base. Find the

electric flux passing through the hemisphere in all the three cases.

2. Net charge within an imaginary cube drawn in a uniform electric field is always zero. Is this

statement true or false?

3. A hemispherical body of radius R is placed in a uniform electric field E. What is the flux linked

with the curved surface if, the field is (a) parallel to the  base, (b) perpendicular to the base.

4. A cube has sides of lengthL = 0.2 m. It is placed with one corner at the origin as shown in figure.

The electric field is uniform and given by E i j= −( ) $ ( ) $2.5 N/C 4.2 N/C . Find the electric flux

through the entire cube.

v

Chapter 24 Electrostatics � 159

INTRODUCTORY EXERCISE 24.7

(a) (b) (c)

q

q

q

Fig. 24.62

x

y

z

Fig. 24.63



24.13 Properties of a Conductor
Conductors (such as metals) possess free electrons. If a resultant electric field exists in the conductor

these free charges will experience a force which will set a current flow. When no current flows, the

resultant force and the electric field must be zero. Thus, under electrostatic conditions the value of E

at all points within a conductor is zero. This idea, together with the Gauss’s law can be used to prove

several interesting facts regarding a conductor.

Excess Charge on a Conductor Resides on its Outer Surface

Consider a charged conductor carrying a charge q and no currents are flowing in it. Now, consider a

Gaussian surface inside the conductor everywhere on which E =0.

Thus, from Gauss’s law,

E S

S

d
q

∫ ⋅ = in

ε 0

We get, q in =0, as E =0

Thus, the sum of all charges inside the Gaussian surface is zero. This surface can be taken just inside

the surface of the conductor, hence, any charge on the conductor must be on the surface of the

conductor. In other words,

“Under electrostatic conditions, the excess charge on a conductor resides on its outer surface.”

Electric Field at Any Point Close to the Charged Conductor is
σ
ε0

Consider a charged conductor of irregular shape. In general, surface charge

density will vary from point to point. At a small surface ∆S, let us assume it to be a

constant σ. Let us construct a Gaussian surface in the form of a cylinder of

cross-section ∆S. One plane face of the cylinder is inside the conductor and other

outside the conductor close to it. The surface inside the conductor does not

contribute to the flux as E is zero everywhere inside the conductor. The curved

surface outside the conductor also does not contribute to flux as E is always normal

to the charged conductor and hence parallel to the curved surface. Thus, the only

contribution to the flux is through the plane face outside the conductor. Thus, from

Gauss’s law,
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E S⋅ =∫ d
q

S

in

ε 0

or E S
S

∆
∆

=
( ) ( )σ

ε 0

or E =
σ
ε 0

Note (i) Electric field changes discontinuously at the surface of a conductor. Just inside the conductor it is zero

and just outside the conductor it is
σ
ε0

. In fact, the field gradually decreases from
σ
ε0

to zero in a small

thickness of about 4 to 5 atomic layers at the surface.

(ii) For a non-uniform conductor the surface charge density (σ)varies inversely as the radius of curvature (ρ)
of that part of the conductor, i.e.

σ
ρ

∝ 1

Radius of curvature ( )

For example in the figure, ρ ρ1 2< ∴ σ σ1 2>

or E E1 2> as E = σ
ε0

Electric Field and Field Lines are Normal to the Surface of a Conductor
Net field inside a conductor is zero. It implies that no field lines enter a conductor. On the surface of a

conductor, electric field and hence field lines are normal to the surface of the conductor.

If a conducting box is immersed in a uniform electric field, the field lines near the box are somewhat

distorted. Similarly, if a conductor is positively charged, the field lines originate from the surface and

are normal at every point and if it is negatively charged the field lines terminate on the surface

normally at every point.
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Cavity Inside a Conductor

Consider a charge + q suspended in a cavity in a conductor. Consider a Gaussian surface just outside

the cavity and inside the conductor. E =0on this Gaussian surface as it is inside the conductor. Hence,

from Gauss’s law,

E S⋅ =∫ d
q in

ε 0

gives q in =0

This concludes that a charge of – q must reside on the metal surface of the cavity so that the sum of

this induced charge – q and the original charge + q within the Gaussian surface is zero. In other

words, a charge q suspended inside a cavity in a conductor induces an equal and opposite charge – q

on the surface of the cavity. Further as the conductor is electrically neutral a charge + q is induced on

the outer surface of the conductor. As field inside the conductor is zero, the field lines coming from q

cannot penetrate into the conductor. The field lines will be as shown in Fig. (b).

The same line of approach can be used to show that the field inside the cavity of a conductor is zero

when no charge is suspended in it.

Electrostatic shielding

Suppose we have a very sensitive electronic instrument that we want to protect from external electric

fields that might cause wrong measurements. We surround the instrument with a conducting box or

we keep the instrument inside the cavity of a conductor. By doing this charge in the conductor is so

distributed that the net electric field inside the cavity becomes zero and the instrument is protected

from the external fields. This is called electronic shielding.

The Potential of a Charged Conductor Throughout its Volume is Same

In any region in which E =0 at all points, such as the region very far from all charges or the interior of

a charged conductor, the line integral of E is zero along any path. It means that the potential difference

between any two points in the conductor are at the same potential or the interior of a charged

conductor is an equipotential region.
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24.14 Electric Field and Potential Due to Charged Spherical Shell
or Solid Conducting Sphere

Electric Field
At all points inside the charged spherical conductor or hollow spherical shell, electric field E =0, as

there is no charge inside such a sphere. In an isolated charged spherical conductor any excess charge

on it is distributed uniformly over its outer surface same as that of charged spherical shell or hollow

sphere. The field at external points has the same symmetry as that of a point charge. We can construct

a Gaussian surface (a sphere) of radius r R> . At all points of this sphere the magnitude of electric

field is the same and its direction is perpendicular to the surface.

Thus, we can apply

ES
q

= in

ε 0

or E r
q

( )4 2

0

π
ε

=

∴ E
q

r
= ⋅

1

4 0
2πε

Hence, the electric field at any external point is the same as if the total charge is concentrated at

centre.

At the surface of sphere r R= ,

∴ E
q

R
= ⋅

1

4 0
2πε

Thus, we can write E inside =0

E
q

R
surface =

1

4 0
2πε

E
q

r
outside = ⋅

1

4 0
2πε

The variation of electric field (E) with the distance from the

centre ( )r is as shown in Fig. 24.70.

Note (i) At the surface graph is discontinuous

(ii) E
q

R

q R
surface = ⋅ = =1

4

4

0
2

2

0 0πε
π

ε
σ
ε

/
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Potential

As we have seen, E
q

r
outside = ⋅

1

4 0
2πε

∴
– dV

dr

q

r

outside





 = ⋅

1

4 0
2πε

E
dV

dr
=





–

∴ dV
q dr

r

V r

outside0
0

24∫ ∫=
∞

–

πε
( )V∞ =0

∴ V
q

r
= ⋅

1

4 0πε
or V

r
∝

1

Thus, at external points, the potential at any point is the same when the whole charge is assumed to be

concentrated at the centre. At the surface of the sphere, r R=

∴ V
q

R
= ⋅

1

4 0πε

At some internal point electric field is zero everywhere,

therefore, the potential is same at all points which is equal to the

potential at surface. Thus, we can write

V V
q

R
inside surface= = ⋅

1

4 0πε

and V
q

r
outside = ⋅

1

4 0πε

The potential ( )V varies with the distance from the centre ( )r as shown in Fig. 24.71.

24.15 Electric Field and Potential Due to a Solid Sphere of Charge

Electric Field
Positive charge q is uniformly distributed throughout the volume of a

solid sphere of radius R. For finding the electric field at a distance r

( )< R from the centre let us choose as our Gaussian surface a sphere of

radius r, concentric with the charge distribution. From symmetry, the

magnitude E of electric field has the same value at every point on the

Gaussian surface and the direction of E is radial at every point on the

surface. So, applying Gauss’s law

ES
q

= in

ε 0

…(i)

Here, S r= 4 2π and q rin = 





( )ρ π
4

3

3

Here, ρ
π

= =charge per unit volume
q

R
4

3

3
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Substituting these values in Eq. (i)

We have, E
q

R
r= ⋅ ⋅

1

4 0
3πε

or E r∝

At the centre r =0, so E =0

At surface r R= , so E
q

R
= ⋅

1

4 0
2πε

To find the electric field outside the charged sphere, we use a spherical Gaussian surface of radius

r R( )> . This surface encloses the entire charged sphere, so q qin = , and Gauss’s law gives

E r
q

( )4 2

0

π
ε

= or E
q

r
= ⋅

1

4 0
2πε

or E
r

∝
1
2

Notice that if we set r R= in either of the two expressions for E (outside and inside the sphere), we

get the same result, E
q

R
= ⋅

1

4 0
2πε

this is because E is continuous function of r in this case. By contrast,

for the charged conducting sphere the magnitude of electric field is

discontinuous at r R= (it jumps from E =0 to E = σ/ε0).

Thus, for a uniformly charged solid sphere we have the following

formulae for magnitude of electric field :

E
q

R
rinside = ⋅ ⋅

1

4 0
3πε

E
q

R
surface = ⋅

1

4 0
2πε

E
q

r
outside = ⋅

1

4 0
2πε

The variation of electric field (E) with the distance from the centre of the sphere (r) is shown in

Fig. 24.73.

Potential
The field intensity outside the sphere is

E
q

r
outside = ⋅

1

4 0
2πε

dV

dr
E

outside
outside= –

∴ dV E droutside outside= –
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or dV
q

r
dr

V r

outside∞ ∞∫ ∫= ⋅–
1

4 0
2πε

∴ V
q

r
= ⋅

1

4 0πε
as V∞ =0 or V

r
∝

1

At r R= , V
q

R
= ⋅

1

4 0πε

i.e. at the surface of the sphere potential is V
q

R
S = ⋅

1

4 0πε

The electric intensity inside the sphere,

E
q

R
rinside = ⋅ ⋅

1

4 0
3πε

dV

dr
E

inside
inside= –

∴ dV E drinside inside= –

∴ dV
q

R
r dr

V

V

R

r

S
inside∫ ∫= ⋅–

1

4 0
3πε

∴ V V
q

R

r
S

R

r

– –= ⋅










1

4 20
3

2

πε

Substituting V
q

R
S = ⋅

1

4 0πε
,  we get

V
q

R
R r= −

1

4 0
3

2 2

πε
( )1.5 0.5

At the centre r =0 andV
q

R
Vc s= ⋅







 =

3

2

1

4

3

20πε
, i.e. potential at

the centre is 1.5 times the potential at surface.

Thus, for a uniformly charged solid sphere we have the following

formulae for potential :

V
q

r
outside = ⋅

1

4 0πε

V
q

R
surface = ⋅

1

4 0πε

and V
q

R

r

R
inside = ⋅











1

4

3

2

1

20

2

2πε
–

The variation of potential (V) with distance from the centre (r) is as shown in Fig. 24.74. For inside

points variation is parabolic.
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List of formulae for field strength E and potential V k =








1

4 0πε

Table 24.1

S.No.
Charge

Distribution

E V

Formula Graph Formula Graph

1. Point charge E
kq

r
=

2
V

kq

r
=

2. Uniformly charged
spherical shell

Ei = 0

E k
q

R
s = ⋅

2
=

ε
σ

0

E
kq

r
o =

2

V V
kq

R
i s= =

=
ε

σ R

0

V
kq

r
o =

3. Solid sphere of
charge

E
kqr

R
i =

3

E
kq

R
s =

2

E
Kq

r
o =

2

V
kq

R
R ri = −

3

2 215 0 5( . . )

V
kq

R
s =

V
kq

r
o =

4. On the axis of
uniformly charged
ring

E
kqx

R x
=

+( ) /2 2 3 2

At centre

x = 0

∴ E = 0

V
kq

R x
=

+2 2

At centre

x = 0

∴ V
kq

R
=

5. Infinitely long line
charge

E
r

=
ε

λ
π2 0

PD =
ε









λ
π2 0

2

1

ln
r

r

Not required
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Final Touch Points

1. Permittivity Permittivity or absolute permittivity is a measure of resistance that is encountered when

forming an electric field in a medium. Thus, permittivity relates to a material's ability to resist an

electric field (while unfortunately, the word “permit” suggests the inverse quantity).

The permittivity of a medium describes how much electric field (more correctly, flux) is generated per

unit charge in that medium. More electric flux (per unit charge) exists in a medium with a low

permittivity. Vacuum has the lowest permittivity (therefore maximum electric flux per unit charge). Any

other dielectric medium has K -times (K = dielectric constant) the permittivity of vacuum. This is

because, due to polarization effects electric flux per unit charge deceases K - times ( ).K >1

2. Dielectric constant ( )K Also known as relative permittivity of a given material is the ratio of

permittivity of the material to the permittivity of vacuum. This is the factor by which the electric force

between the two charges is decreased relative to vacuum. Similarly, in the chapter of capacitors we

will see that it is the ratio of capacitance of a capacitor using that material as a dielectric compared to

a similar capacitor that has vacuum as its dielectric.

3. Electric field and potential due to a dipole at polar coordinates ( , )r θ

or V
p

r
= cos θ

πε4
0

2

The electric field E can be resolved into two components Er and E θ, where

or E
p

r
r = ⋅1

4

2

0

3πε
θcos

and E
p

r
θ πε

θ= 1

4
0

3

sin

The magnitude of resultant electric field E E Er= +2 2

θ

or E
p

r
= +

4

1 3

0

3

2

πε
θcos

Its inclination φ to OA is given by

tan

sin

cos

φ = =E

E

p r

p rr

θ θ/ πε
θ/ πε
4

2 4

0

3

0

3

or tan

tanφ = θ
2
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4. Force between two dipoles The force between two dipoles varies inversely with the fourth power

of the distance between their centres or

F
r

∝ 1

4

In the, figure, a dipole on left with dipole moment p
1

interacts with the dipole on the right with dipole

moment p
2
. We assume that the distance between them is quite large. The electric field of the dipole

on the left hand side exerts a net force on the dipole on the right hand side. Let us now calculate the

net force on the dipole on right hand side.

The electric field at the centre of this dipole

E
p

r
= ⋅1

4

2

0

1

3πε

∴ dE
p

r
dr= ⋅–

1

4

6

0

1

4πε

Now, the electric field at the point where – q charge of the dipole lies is given by

E E dE
1

= + | |

and force on – q isqE
1

(towards left)

Similarly, electric field at the point where + q charge of the dipole lies is

E E dE
2

= – | |

and force on + q isqE
2

(towards right)

∴ Net force on the dipole is

F q E q E=
1 2

– (towards left)

= 2q dE| |

= 6 2

4

1

0

4

( )qdr p

rπε

or F
p p

r
= 6

4

1 2

0

4πε
[as 2

2
q dr p( ) = ]

Thus, if p p
1 2

| | , the two dipoles attract each other with a force given by the above relation.

5. Earthing a conductor Potential of earth is often taken to be zero. If a conductor is connected to the

earth, the potential of the conductor becomes equal to that of the earth, i.e. zero. If the conductor was

at some other potential, charges will flow from it to the earth or from the earth to it to bring its potential

to zero.
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TYPED PROBLEMS

Type 1. To find electric potential due to charged spherical shells

Concept

To find the electric potential due to a conducting sphere (or shell) we should keep in mind
the following two points

(i) Electric potential on the surface and at any point inside the sphere is

V
q

R
= ⋅1

4 0πε
(R = radius of sphere)

(ii) Electric potential at any point outside the sphere is

V
q

r
= ⋅1

4 0πε
(r = distance of the point from the centre)

For example, in the figure shown, potential at A is

V
q

r

q

r

q

r
A

A

A

B

B

C

C

= + +










1

4 0πε

Similarly, potential at B is V
q

r

q

r

q

r
B

A

B

B

B

C

C

= + +










1

4 0πε

and potential at C is, V
q

r

q

r

q

r
C

A

C

B

C

C

C

= + +










1

4 0πε

V Example 1 Three conducting spherical shells have charges q q, −2 and 3q as

shown in figure. Find electric potential at point P as shown in figure.

Solution Potential at P,

V V V VP q q q= + +−2 3

= − +kq

r

k q

r

k q

R

( ) ( )2 3

3

Solved Examples

A

B

C

qA

qB

qC

3q

–2q

q

R
r

P

2R
3R



= −





kq
R r

1 1
Ans.

Here, k = 1

4 0πε

V Example 2 Figure shows two conducting thin concentric shells of radii r and 3r.

The outer shell carries a charge q. Inner shell is neutral. Find the charge that will

flow from inner shell to earth after the switch S is closed.

Solution Let q′ be the charge on inner shell when it is earthed.

Potential of inner shell is zero.

∴ 1

4 3
0

0πε
q

r

q

r

′ +





=

∴ q
q′ = –
3

i.e. + q

3
charge will flow from inner shell to earth. Ans.

Type 2. Based on the principle of generator

Concept

A generator is an instrument for producing high voltages in the million volt region. Its

design is based on the principle that if a charged conductor (say A) is brought into contact

with a hollow conductor (say B), all of its charge transfers to the hollow conductor no matter

how high the potential of the later may be. This can be shown as under:

In the figure, V
q

r

q

r
A

A

A

B

B

=










1

4 0πε
–

and V
q

r

q

r
B

A

B

B

B

=










1

4 0πε
–

Chapter 24 Electrostatics � 171

r

3r

q

S

B

qA
qBrA

rB

A



∴ V V
q

r r
A B

A

A B

– –=










4

1 1

0πε

From this expression the following conclusions can be drawn :

(i) The potential difference (PD) depends on qA only. It does not depend on qB .

(ii) If qA is positive, thenV VA B– is positive (asr rA B< ), i.e.V VA B> . So if the two spheres
are connected by a conducting wire charge flows from inner sphere to outer sphere
(positive charge flows from higher potential to lower potential) till V VA B= or
V VA B– = 0. But potential difference will become zero only when qA = 0, i.e. all charge
qA flows from inner sphere to outer sphere.

(iii) If qA is negative, V VA B– is negative, i.e. V VA B< . Hence, when the two spheres are
connected by a thin wire all charge qA will flow from inner sphere to the outer sphere.
Because negative charge flows from lower potential to higher potential. Thus, we see
that the whole charge qA flows from inner sphere to the outer sphere, no matter how
high qB is. Charge always flows from A to B, whether q qA B> or q qB A> ,
V VA B> or V VB A> .

V Example 3 Initially the spheres A and B are at potentials VA and VB . Find the

potential of A when sphere B is earthed.

Solution As we have studied above that the potential difference between these two spheres

depends on the charge on the inner sphere only. Hence, the PD will remain unchanged because

by earthing the sphere B charge on A remains constant. Let VA′ be the new potential at A. Then,

V V V VA B A B– –= ′ ′
but VB′ = 0 as it is earthed. Hence,

V V VA A B′ = – Ans.

Type 3. Based on the charges appearing on different surfaces of concentric spherical shells

Concept

Figure shows three concentric thin spherical shells A, B and C of radii a, b and c. The shells
A and C are given charges q1 and q2 and the shell B is earthed. We are interested in finding
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B

qA

qB

A

B

A

S



the charges on inner and outer surfaces of A, B and C. To solve such type of problems we
should keep the following points in mind :

(i) The whole charge q1 will come on the outer surface of A unless some charge is kept
inside A. To understand it let us consider a Gaussian surface (a sphere) through the
material of A. As the electric field in a conducting material is zero. The flux through
this Gaussian surface is zero. Using Gauss’s law, the total charge enclosed must
be zero.

(ii) Similarly, if we draw a Gaussian surface through the material of B we can see that

q q3 1 0+ = or q q3 1= –

and if we draw a Gaussian surface through the material of C, then

q q q q5 4 3 1 0+ + + = or q q5 4= –

(iii) q q q5 6 2+ = . As q2 charge was given to shell C.

(iv) Potential of B should be zero, as it is earthed. Thus,

VB = 0

or
1

4
0

0

1 3 4 5 6

πε
q

b

q q

b

q q

c
+

+
+

+





=

So, using the above conditions we can find charges on different surfaces.

We can summarise the above points as under

1. Net charge inside a closed Gaussian surface drawn in any shell is zero. (provided the

shell is conducting).

2. Potential of the conductor which is earthed is zero.

3. If two conductors are connected, they are at same potential.

4. Charge remains constant in all conductors except those which are earthed.

5. Charge on the inner surface of the innermost shell is zero provided no charge is kept

inside it. In all other shells charge resides on both the surfaces.

6. Equal and opposite charges appear on opposite faces.
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V Example 4 A charge q is distributed uniformly on the

surface of a solid sphere of radius R. It is covered by a

concentric hollow conducting sphere of radius 2R. Find the

charges on inner and outer surfaces of hollow sphere if it is

earthed.

Solution The charge on the inner surface of the hollow sphere should be

–q, because if we draw a closed Gaussian surface through the material of

the hollow sphere the total charge enclosed by this Gaussian surface

should be zero. Let q ′ be the charge on the outer surface of the hollow

sphere.

Since, the hollow sphere is earthed, its potential should be zero. The

potential on it is due to the charges q q, – and q′, Hence,

V
q

R

q

R

q

R
= + ′





=1

4 2 2 2
0

0πε
–

∴ q′ = 0 Ans.

Therefore, there will be no charge on the outer surface of the hollow sphere.

V Example 5 Solve the above problem if thickness of the hollow sphere is

considerable.

Solution In this case, we can set V = 0 at any point on the hollow sphere. Let us select a point

P a distance r from the centre, were R r R2 3< < . So,

VP = 0

∴ 1

4
0

0 3πε
q

r

q

r

q

R
– + ′







 =

∴ q′ = 0 Ans.

i.e. in this case also there will be no charge on the outer surface of the hollow sphere.

V Example 6 Figure shows three concentric thin spherical shells A, B and C of

radii R, 2R and 3R. The shell B is earthed and A and C are given charges q and

2q, respectively. Find the charges appearing on all the surfaces of A, B and C.
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q
–q
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q
–q

q ′
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Solution Since, there is no charge inside A. The whole charge q given

to the shell A will appear on its outer surface. Charge on its inner surface

will be zero. Moreover if a Gaussian surface is drawn on the material of

shell B, net charge enclosed by it should be zero. Therefore, charge on its

inner surface will be – q. Now let q′ be the charge on its outer surface,

then charge on the inner surface of C will be – q′ and on its outer surface

will be, 2 2q q q q– (– )′ = + ′ as total charge on C is 2q.

Shell B is earthed. Hence, its potential should be zero.

VB = 0

∴ 1

4 2 2 2 3

2

3
0

0πε
q

R

q

R

q

R

q

R

q q

R
– –+ ′ ′ + + ′





=

Solving this equation, we get

q q′ = –
4

3

∴ 2 2
4

3

2

3
q q q q q+ ′ = =–

Therefore, charges on different surfaces in tabular form are given below :

Table 24.2

A B C

Inner surface 0 – q 4

3
q

Outer surface q –
4

3
q

2

3
q

Type 4. Based on finding electric field due to spherical charge distribution

Concept

According to Gauss’s theorem, at a distance r from centre of sphere,

E
kq

r
= in

2
k =









1

4 0πε

Here, q in is the net charge inside the sphere of radius r . If volume charge density (say ρ) is

constant, then

q rin volume of sphere of radius= ( )( )ρ = 4

3

3π ρr

If ρ is variable, then q in can be obtained by integration.

Passage (Ex. 7 to Ex. 9)

The nuclear charge ( )Ze is non-uniformly distributed within a
nucleus of radius R. The charge density ρ( )r (charge per unit
volume) is dependent only on the radial distance r from the centre
of the nucleus as shown in figure. The electric field is only along
the radial direction.
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V Example 7 The electric field at r R= is (JEE 2008)

(a) independent of a

(b) directly proportional to a

(c) directly proportional to a2

(d) inversely proportional to a

Solution At r R= , from Gauss’s law

E R
q Ze

( )4 2

0 0

π =
ε

=
ε

in or E
Ze

R
=

ε
⋅1

4 0
2π

E is independent of a.

∴ The correct option is (a).

V Example 8 For a = 0, the value of d (maximum value of ρ as shown in the

figure) is (JEE 2008)

(a)
3

4 3

Ze

Rπ
(b)

3
3

Ze

Rπ
(c)

4

3 3

Ze

Rπ
(d)

Ze

R3 3π
Solution For a = 0,

ρ( )r
d

R
r d= − ⋅ +





Now, ( )4 2

0
πr d

d

R
r dr

R
−



∫ = net charge = Ze

Solving this equation, we get d
Ze

R
= 3

3π
∴ The correct option is (b).

V Example 9 The electric field within the nucleus is generally observed to be

linearly dependent on r. This implies (JEE 2008)

(a) a = 0 (b) a
R=
2

(c) a R= (d) a
R= 2

3

Solution In case of solid sphere of charge of uniform volume

density

E
q

R
r=

ε
⋅ ⋅1

4 0
3π

or E r∝

Thus, for E to be linearly dependent on r, volume charge density

should be constant.

or a R=
∴ The correct option is (c).
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Type 5. Based on calculation of electric flux

Concept

(i) To find electric flux from any closed surface, direct result of Gauss's theorem can be
used,

φ =
q in

ε0

(ii) To find electric flux from an open surface, result of Gauss's theorem and concept of
symmetry can be used.

(iii) To find electric flux from a plane surface in uniform electric field,

φ = ⋅E S or ES cos θ
can be used.

(iv) Net electric flux from a closed surface in uniform electric field is always zero.

V Example 10 The electric field in a region is given by E i j= +a b$ $ . Here, a and b

are constants. Find the net flux passing through a square area of side l parallel to

y-z plane.

Solution A square area of side l parallel to y-z plane in vector form can be written as,

S i= l2$

Given, E i j= +a b$ $

∴ Electric flux passing through the given area will be,

φ = ⋅E S

= + ⋅( $ $) ( $)a b li j i2

= al2 Ans.

V Example 11 Figure shows an imaginary cube of side a. A

uniformly charged rod of length a moves towards right at a

constant speed v. At t = 0, the right end of the rod just touches the

left face of the cube. Plot a graph between electric flux passing

through the cube versus time.

Solution The electric flux passing through a closed surface depends on the net charge inside

the surface. Net charge in this case first increases, reaches a maximum value and finally

decreases to zero. The same is the case with the electric flux. The electric flux φ versus time

graph is as shown in figure below.
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V Example 12 The electric field in a region is given by E i= αx$. Here, α is a

constant of proper dimensions. Find

(a) the total flux passing through a cube bounded by the surfaces, x l= , x l= 2 , y = 0, y l= ,

z = 0 , z l= .

(b) the charge contained inside the above cube.

Solution (a) Electric field is along positive x-direction.

Therefore, field lines are perpendicular to faces ABCD
and EFGH . At all other four faces field lines are

tangential. So, net flux passing through these four faces

will be zero.

Flux entering at face ABCD At this face x l=

∴ E i= α l$

∴ Flux entering the cube from this face,

φ = = =1
2 3ES ( ) ( )α αl l l

Flux leaving the face EFGH At this face x l= 2

∴ E i= 2α l$

∴ Flux coming out of this face

φ = =2
22ES ( ) ( )αl l

= 2 3αl

∴ Net flux passing through the cube,

φ = φ φ =net 2 1
3 32– –α αl l

= αl3 Ans.

(b) From Gauss’s law,

φ =net
inq

ε0

qin net= φ( ) ( )ε0

= α ε0
3l Ans.

V Example 13 Consider the charge configuration and a spherical

Gaussian surface as shown in the figure. When calculating the flux

of the electric field over the spherical surface, the electric field will

be due to (JEE 2004)

(a) q2

(b) only the positive charges

(c) all the charges

(d) + q1 and − q1
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+ q
1

– q1

q
2



Solution At any point over the spherical Gaussian surface, net electric field is the vector sum

of electric fields due to + −q q1 1, and q2

∴ The correct option is (c)..

Note Don't confuse with the electric flux which is zero (net) passing over the Gaussian surface as the net charge

enclosing the surface is zero.

V Example 14 A point charge q is placed on the top of a cone of semi vertex angle

θ. Show that the electric flux through the base of the cone is
q ( – cos )1

2 0

θ
ε

.

HOW TO PROCEED This problem can be solved by the method of symmetry. Consider

a Gaussian surface, a sphere with its centre at the top and radius the slant length of

the cone. The flux through the whole sphere is q/ ε0 . Therefore, the flux through the

base of the cone can be calculated by using the following formula,

φ =






 ⋅e

S

S

q

0 0ε

Here, S0 = area of whole sphere

and S = area of sphere below the base of the cone.

Solution Let R = slant length of cone = radius of Gaussian sphere

∴ S R0
2= =area of whole sphere (4 )π

S = area of sphere below the base of the cone

= 2 12π θR ( – cos )

∴ The desired flux is, φ =






 ⋅S

S

q

0 0ε

= ⋅( ) ( – cos )

( )

2 1

4

2

2
0

π θ
π ε

R

R

q

= q ( – cos )1

2 0

θ
ε

Proved

Note S R= 2 1
2π θ( – cos ) can be calculated by integration.

At θ = °0 , S R= ° =2 1 0 02π ( – cos )

θ = °90 , S R R= ° =2 1 90 22 2π π( – cos )

and θ = °180 , S R R= ° =2 1 180 42 2π π( – cos )
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Proof

dS r Rd= ( )2π α
= ( sin )2π α αR Rd as r R= sin α
= ( ) sin2 2π α αR d

∴ S R d= ∫ ( ) sin2 2

0
π α α

θ

∴ S R= 2 12π θ( – cos )

Students are advised to remember this result.

Type 6. Based on E-r and V-r graphs due to two point charges

Concept

(i) E
kq

r
=

2
k =









1

4 0πε

and V
kq

r
= ± (due to a point charge)

(ii) As r E V→ → ∝ → ± ∝0, and

As r E V→ ∝ → →, 0 0and

(iii) E is a vector quantity. Due to a point charge, its direction is away from the charge and
due to negative charge it is towards the charge. Along one dimension if one direction is
taken as positive direction then the other direction is taken as the negative direction.

(iv) V is a scalar quantity. On both sides of a positive charge it is positive and it is negative
due to negative charge.

(v) Between zero and zero value, normally we get either a maximum or minimum value.

V Example 15 Draw E r- and V r- graphs due to two point charges +q and −2q

kept at some distance along the line joining these two charges.
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Solution E r- graph

In region I E due to +q is towards left (so negative) and E due to −2q is towards right

(so positive). Near + q, electric field of + q will dominate. So, net value will be negative. At some

point say P both positive and negative values are equal. So, E p = 0. Beyond this point, electric

field due to −2q will dominate due to its higher magnitude. So, net value will be positive. E p = 0
and E ∝ (towards left) is also zero. Between zero and zero we will get a maximum positive value.

In region II E due to +q and due to −2q is towards right (so positive). Between the value + ∝
and + ∝ the graph is as shown in figure.

In region III E due to + q is towards right (so positive) and E due to −2q is towards left

(so negative). But electric field of −2q will dominate due to its higher magnitude and lesser

distance. Hence, net electric field is always negative.

V r- graph

The logics developed in E r- graph can also be applied here with V r- graph. At point P, positive

potential due to +q is equal to negative potential due to −2q. Hence, V p = 0, so this point is near

2q. Same is the case at M.

Type 7. E r- and V r- graphs due to charged spherical shells of negligible thickness

Concept

According to Gauss’s theorem,

E
kq

r
= in

2
k =









1

4 0πε
So, only inside charges contribute in the electric field.

V
kq

R
= = constant (inside the shell)

V
kq

r
= ≠ constant (outside the shell)

Here, q is the charge on shell.
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V Example 16 Draw E r- and V r- graphs due to two charged spherical shells as

shown in figure (along the line between C and ∝ ).

Solution

E r- graph

C to P qin = 0 ⇒ E = 0

At M E
kq

R
=

2
( radially outwards, say positive) = E0 (say)

At N E
kq

R

kq

R

E= = =
( )2 4 42 2

0 (radially outwards)

From M to N Value will decrease from E0 to
E0

4

At T E
k q q

R
= − +( )

( )

2

2 2
(radially inwards)

= − E0

4

From T to ∞ Value changes from − E0

4
to zero.

V r- graph

From C to P Points are lying inside both the shells. Hence, potential due to both shells is

constant.
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∞

R
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C

q
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∞



∴ V
kq

R

k q

R
= − =( )2

2
0

From M to N Potential of −2q will remain constant but potential of q will decrease. So, net

value comes out to be negative. At N or T

V
kq

R

k q

R
= −

2

2

2

( )

= − = −kq

R
V

2
0 ( )say

From T to ∞ Value will change from −V0 to zero. The correct graph is as shown below.

Type 8. Based on motion of a charged particle in uniform electric field

Concept

(i) In uniform electric field, force on the charged particle is

F E= q

or qE force acts in the direction of electric field if q is positive and in the opposite

direction of electric field if q is negative.

(ii) Acceleration of the particle is therefore,

a
F

m

qE

m
= =

This acceleration is constant. So, path is therefore either a straight line or parabola. If

initial velocity is zero or parallel to acceleration or antiparallel to acceleration, then

path is straight line. Otherwise in all other cases, path is a parabola.

V Example 17 An electron with a speed of 5.00 × 106 m s/ enters an electric field of

magnitude 103 N C/ , travelling along the field lines in the direction that retards its

motion.

(a) How far will the electron travel in the field before stopping momentarily?
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kq
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C ∞



(b) How much time will have elapsed?

(c) If the region with the electric field is only 8.00 mm long (too short from the electron to

stop with in it), what fraction of the electron’s initial kinetic energy will be lost in that

region?

Solution (a) s
u

a

u

qE m
= =

2 2

2 2 ( / )
= mu

qE

2

2

= × ×
× × ×

−

−
( ) ( )9.1

1.6

10 5 10

2 10

31 6 2

19 310

= × −7.1 m10 2 = 7.1 cm Ans.

(b) t
u

a

u

qE m
= =

/
= mu

qE

= × ×
×

−

−
( ) ( )9.1 10 5 10

16 10 10

31 6

19 3( . ) ( )

= × −2.84 s10 8 Ans.

(c) Loss of energy (in fraction)

=
−1

2

1

2
1

2

2 2

2

mu mv

mu

= −1
2

2

u

u

= − −
1

22

2

u as

u
= =2 2

2 2

as

u

qEs

mu

= × × × × ×
× × ×

− −

−
2 16 10 10 8 10

91 10 5 10

19 3 3

31 6 2

.

. ( )

= 0.11 Ans.

V Example 18 A charged particle of mass m = 1 kg and charge q C= 2 µ is thrown

from a horizontal ground at an angle θ = °45 with speed 20 m/s. In space a

horizontal electric field E V m= ×2 107 / exist. Find the range on horizontal

ground of the projectile thrown.

Solution The path of the particle will be a parabola, but along x-axis

also motion of the particle will be accelerated. Time of flight of the

projectile is

T
u

a

u

g

y

y

y= =
2 2

= × ° =2 20 45

10
2 2

cos
s

Horizontal range of the particle will be

R u T a Tx x= + 1

2

2

Here, a
qE

m
x = = × × =( ) ( )–2 10 2 10

1

6 7
240 m/s

∴ R = ° +( cos ) ( ) ( ) ( )20 45 2 2
1

2
40 2 2 2

= +40 160

= 200 m Ans.
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Type 9. To find potential difference between two points when electric field is known

Concept

In Article 24.9, we have already read the relation between Eand V. There we have taken a
simple case when electric field was uniform. Here, two more cases are possible depending
on the nature of E.

When Ehas a Function Like f x f y f z1 2 3( )$ ( )$ ( ) $i + +j k

In this case also, we will use the same approach. Let us take an example.

V Example 19 Find the potential difference VAB between A ( )2m, 1m, 0 and

B ( , , )0 2m 4m in an electric field,

E i j= +( $ – $ $ ) /x y z V m2 k

Solution dV d= ⋅– E r

dV x y z dx dy dz
B

A

∫ ∫= + ⋅ + +– ( $ – $ $ ) ( $ $

( , , )

( , , )
i j k i j2

0 2 4

2 1 0
$ )k

∴ V V xdx ydy zdzA B− = − − +∫ ( )
( , , )

( , , )

0 2 4

2 1 0
2

or V
x

y
z

AB = +








– –

( , , )

( , , )
2

2
2

0 2 4

2 1 0

2 2

= 3 volt Ans.

When E r⋅ d becomes a Perfect Differential.

Same method is used when E r⋅ d becomes a perfect differential. The following example will

illustrate the theory.

V Example 20 Find potential difference V AB between A ( , , )0 0 0 and B m m m( , , )1 1 1

in an electric field (a) E = +y x$ $i j (b) E = +3 2 3x y x$ $i j

Solution (a) dV d= ⋅– E r

∴ dV y x dx dy dz
B

A

∫ ∫= + ⋅ + +– ( $ $) ( $ $ $ )
( , , )

( , , )
i j i j k

1 1 1

0 0 0

or V V y dx x dyA B– – ( )
( , , )

( , , )
= +∫ 1 1 1

0 0 0

or V d xyAB = ∫– ( )
( , , )

( , , )

1 1 1

0 0 0
[ ( )]as y dx x dy d xy+ =

∴ V xyAB = – [ ]
( , , )

( , , )

1 1 1

0 0 0 = 1 V Ans.

(b) dV d= ⋅– E r

∴ dV x y x dx dy dz
B

A

∫ ∫= + + +•– ( $ $) ( $ $ $

( , , )

( , , )
3 2 3

1 1 1

0 0 0
i j i j k )

or V V x ydx x dyA B– – ( )
( , , )

( , , )
= +∫ 3 2 3

1 1 1

0 0 0

= ∫– ( )
( , , )

( , , )
d x y3

1 1 1

0 0 0

∴ V x yAB = – [ ]
( , , )

( , , )3

1 1 1

0 0 0 = 1 V Ans.
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Type 10. Based on oscillations of a dipole

Concept

In uniform electric field, net force on a dipole is zero at all angles. But net torque is zero for
θ = °0 or 180°. Here, θ = °0 is the stable equilibrium position and θ = °180 is unstable
equilibrium position. If the dipole is released from any angle other than 0° or180°, it rotates
towards 0°. In this process electrostatic potential energy of the dipole decreases. But
rotational kinetic energy increases. At two angles θ1 and θ2, we can apply the equation

U K U Kθ θ θ θ1 1 2 2
+ = +

or − + = − +pE I pE Icos cosθ ω θ ω1 1
2

2 2
21

2

1

2

Moreover, if the dipole is displaced from stable equilibrium position ( )θ = °0 , then it starts

rotational oscillations. For small value of θ, these oscillations are simple harmonic in

nature.

V Example 21 An electric dipole of dipole moment p is placed in a uniform

electric field E in stable equilibrium position. Its moment of inertia about the

centroidal axis is I. If it is displaced slightly from its mean position, find the

period of small oscillations.

Solution When displaced at an angle θ from its mean position, the magnitude of restoring

torque is

τ θ= – sinpE

For small angular displacement sin θ θ≈
τ θ= – pE

The angular acceleration is α τ θ ω θ= = 





=
I

pE

I
– – 2

where, ω2 = pE

I
⇒ T

I

pE
= =2

2
π

ω
π Ans.

Type 11. Based on the work done (by external forces) in moving a charge from one point to another
point

Concept

If kinetic energy of the particle is not changed, then

W U U U q V Vf i f i= = − = −∆ ( ) or q U( )∆
Here, q is the charge to be displaced and V i and V f are the initial and final potentials.
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p

+q–q

E

–q

+q

⇒
τ

θ

E



V Example 22 Two identical thin rings, each of radius R, are coaxially placed a

distance R apart. If Q1 and Q2 are respectively the charges uniformly spread on

the two rings, the work done in moving a charge q from the centre of one ring to

that of the other is (JEE 1992)

(a) zero (b)
q Q Q

R

( ) ( )

( )

1 2

0

2 1

2 4

− −
επ

(c)
q Q Q

R

2

4

1 2

0

( )

( )

+
επ

(d) q Q Q R( / ) ( ) ( )1 2 02 1 2 4+ επ

Solution V V VC Q Q1 1 2
= + = +1

4

1

4 20

1

0

2

πε π ε
Q

R

Q

R
= +





1

4 20
1

2

π ε R
Q

Q

Similarly, V
R

Q
Q

C2

1

4 20
2

1= +



π ε

∴ ∆ V V VC C= −
1 2

= − − −





1

4

1

20
1 2 1 2πε R

Q Q Q Q( ) ( )

= − −Q Q

R

1 2

02 4
2 1

( )
( )

π ε

W q V q Q Q R= = − −∆ ( ) ( ) / ( )1 2 02 1 2 4π ε
∴ The correct option is (b).

V Example 23 Five point charges each of value + q are placed on five vertices of a

regular hexagon of side ‘a’ metre. What is the magnitude of the force on a point

charge of value – q coulomb placed at the centre of the hexagon?

Solution
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Miscellaneous Examples

Q1
Q2

R

RC1 C2

R√2

–q

r

q5 q4

q3

q2q1

a

60°

r

a /2



a

r

/
cos

2
60

1

2
= ° =

∴ a r=
q q q q1 2 5= =… = =

Net force on – q is only due to q3 because forces due to q1 and due to q4 are equal and opposite

so cancel each other. Similarly, forces due to q2 and q5 also cancel each other. Hence, the net

force on – q is

F
q q

r
= ⋅1

4 0
2π ε

( ) ( )
(towards q3 )

or F
q

r
= ⋅1

4 0

2

2π ε
Ans.

V Example 24 A point charge q C1 = 9.1 µ is held fixed at origin. A second point

charge q C2 = – 0.42 µ and a mass 3.2 × −10 4 kg is placed on the x-axis, 0.96 m

from the origin. The second point charge is released at rest. What is its speed

when it is 0.24 m from the origin?

Solution From conservation of mechanical energy, we have

Decrease in electrostatic potential energy = Increase in kinetic energy

or
1

2

2mv U Ui f= – =








q q

r ri f

1 2

04

1 1

π ε
–

=








q q r r

rr

f i

i f

1 2

04π ε
–

∴ v
q q

m

r r

rr

f i

i f

=








1 2

02π ε
–

= × × × × ×
×

( ) (– ) –

(

– –

–

9.1 0.42

3.2

0.24 0.96

0

10 10 2 9 10

10

6 6 9

4 .24 0.96) ( )









= 26 m/s Ans.

V Example 25 A point charge q C1 = – 5.8 µ is held stationary at the origin. A

second point charge q C2 = + 4.3 µ moves from the point ( , )0.26 m, 0 0 to

( , )0.38 m, 0 0 . How much work is done by the electric force on q2?

Solution Work done by the electrostatic forces =U Ui f–

=








q q

r ri f

1 2

04

1 1

π ε
–

=








q q r r

r r

f i

i f

1 2

04π ε
–

= × × ×(– ) ( ) ( ) ( –

( ) (

– –5.8 4.3 0.38 0.26)

0.38 0.2

10 10 9 106 6 9

6)

= – 0.272 J Ans.
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V Example 26 A uniformly charged thin ring has radius 10.0 cm and total charge

+ 12.0 µC. An electron is placed on the ring’s axis a distance 25.0 cm from the

centre of the ring and is constrained to stay on the axis of the ring. The electron is

then released from rest.

(a) describe the subsequent motion of the electron.

(b) find the speed of the electron when it reaches the centre of the ring.

Solution (a) The electron will be attracted towards the centre C of the ring. At C net force is

zero, but on reaching C, electron has some kinetic energy and due to inertia it crosses C, but on

the other side it is further attracted towards C. Hence, motion of electron is oscillatory about

point C.

(b) As the electron approaches C, its speed (hence, kinetic energy) increases due to force of
attraction towards the centre C. This increase in kinetic energy is at the cost of electrostatic
potential energy. Thus,

1

2

2mv U Ui f= –

= =U U e V VP C P C– (– ) [ – ] …(i)

Here, V is the potential due to ring.

V
q

r
P = ⋅1

4 0π ε
(q = charge on ring)

= × ×

+ ×
=( ) ( )

( ( ) ( ) )

–

–

9 10 12 10

10 25 10

9 9

2 2 2
401 V

V
q

R
C = ⋅1

4 0π ε

= × ×
×

=( ) ( )–

–

9 10 12 10

10 10
1080

9 9

2
V

Substituting the proper values in Eq. (i), we have

1

2
10 10 401 108031 2 19× × × = ×9.1 1.6– –(– ) ( – )v

∴ v = ×15.45 m/s106 Ans.

V Example 27 Two points A and B are 2 cm apart and a uniform electric field E

acts along the straight line AB directed from A to B with E N C= 200 / . A particle

of charge + 10 6– C is taken from A to B along AB. Calculate

(a) the force on the charge

(b) the potential difference V VA B– and

(c) the work done on the charge by E
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r
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e–



Solution (a) Electrostatic force on the charge,

F qE= = ( ) ( )–10 2006

= ×2 10 4– N Ans.

(b) In uniform electric field,

PD, V E d= ⋅
or V VA B– –= × ×200 2 10 2

= 4 V Ans.

(c) W = × × °( ) ( ) cos– –2 10 2 10 04 2

= ×4 10 6– J Ans.

V Example 28 An alpha particle with kinetic energy 10 MeV is heading towards a

stationary tin nucleus of atomic number 50. Calculate the distance of closest

approach. Initially they were far apart.

Solution Due to repulsion by the tin nucleus, the kinetic energy of the α-particle gradually

decreases at the expense of electrostatic potential energy.

∴ Decrease in kinetic energy = increase in potential energy

or
1

2

2mv U Uf i= –

or
1

2

1

4
02

0

1 2mv
q q

r
= ⋅

πε
–

∴ r
e e= ⋅1

4

2 50

0πε
( ) ( )

(KE)

Substituting the values,

r = × × × × ×
× × ×

( ) ( ) ( )– –

–

9 10 2 10 10 50

10 10 10

9 19 19

6

1.6 1.6

1.6 19

= ×14.4 m10 15– Ans.

V Example 29 Three point charges of 1 2C C, and 3 C are placed at the corners of

an equilateral triangle of side 1 m. Calculate the work required to move these

charges to the corners of a smaller equilateral triangle of side 0.5 m.

Solution Work done =U Uf i–

=








 + +1

4

1 1

0
3 2 3 1 2 1π ε r r

q q q q q q
f i

– [ ]

= × 





+ +9 10
1 1

1
3 2 3 1 2 19

0.5
– [( )( ) ( )( ) ( )( )]

= ×99 109 J Ans.

Note Work done by electrostatic forces is U Ui f– but work done by external forces is U Uf i– . Sometimes in a

simple way it is asked, find the work done. It means U Uf i– .
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V Example 30 Consider a spherical surface of radius 4 m centred at the origin.

Point charges + q and – 2q are fixed at points A ( 2 m, 0, 0) and B (8 m, 0, 0)

respectively. Show that every point on the spherical surface is at zero potential.

Solution Let P x y z( , , ) be any point on the sphere. From the property of the sphere,

x y z2 2 2 24 16+ + = =( ) …(i)

Further, PA x y z= + +( – )2 2 2 2 …(ii)

and PB x y z= + +( – )8 2 2 2 …(iii)

V
q

PA

q

PB
P = 





1

4

2

0πε
–

=
+ + + +













1

4 2

2

80
2 2 2 2 2 2πε
q

x y z

q

x y z( – )
–

( – )

=
+ + + + + +













1

4 4 4

2

64 160
2 2 2 2 2 2πε

q

x y z x

q

x y z x–
–

–

=
+ +













1

4 16 4 4

2

16 64 160πε
q

x

q

x–
–

–

=












1

4 20 4 20 40πε
q

x

q

x–
–

–

= 0 Proved

V Example 31 The intensity of an electric field depends only on the coordinates x

and y as follows

E
i= +
+

a x y

x y

( $ $)j
2 2

where, a is a constant and $i and $j are the unit vectors of the x and y-axes. Find the

charge within a sphere of radius R with the centre at the origin.

Solution At any point P x y z( , , ) on the sphere a unit vector

perpendicular to the sphere radially outwards is

$
$ $ $n i j k=

+ +
+

+ +
+

+ +

x

x y z

y

x y z

z

x y z2 2 2 2 2 2 2 2 2

= + +x

R

y

R

z

R
$ $ $i j k as x y z R2 2 2 2+ + =

Let us find the electric flux passing through a small area dS at

point P on the sphere,

d dSφ = ⋅E $n =
+

+
+









ax

R x y

ay

R x y
dS

2

2 2

2

2 2( ) ( )

= 





a

R
dS
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x

y

z

dS

n
∧

P x,y,z( )

O



Here, we note that dφ is independent of the coordinates x, y and z. Therefore, total flux passing

through the sphere

φ = φ∫ d = ∫
a

R
dS = 





a

R
R( )4 2π

= 4πaR

From Gauss’s law,

φ = qin

ε0

or ( )4
0

π
ε

aR
q= in

∴ q aRin = 4 0πε Ans.

V Example 32 Find the electric field caused by a disc of radius a with a uniform

surface charge density σ (charge per unit area), at a point along the axis of the

disc a distance x from its centre.

Solution We can assume this charge distribution as a collection of concentric rings of charge.

dA r dr= ( )2π
dq dA r dr= =σ πσ( )2

dE
dq x

x r
x = ⋅

+
1

4 0
2 2 3 2πε
( )

( ) /

=








+
1

4

2

0
2 2 3 2πε
πσ( )

( ) /

r dr x

x r

∴ E dEx x

a
= ∫0

=
+∫

( )

( ) /

2

4 0
2 2 3 20

πσ
π ε

r dr x

x r

a

=
+∫

σ
ε
x r dr

x r

a

2 0
2 2 3 20 ( ) /

or E
a x

x =
+













σ
ε2

1
1

10
2 2

–
/

If the charge distribution gets very large, i.e. a x>> , the term
1

12 2a x/ +
becomes negligibly

small, and we get E = σ
ε2 0

.

Thus, we can say that electric field produced by an infinite plane sheet of charge is independent

of the distance from the sheet. Thus, the field is uniform, its direction is everywhere

perpendicular to the sheet.

V Example 33 A non-conducting disc of radius a and uniform positive surface

charge density σ is placed on the ground with its axis vertical. A particle of mass

m and positive charge q is dropped, along the axis of the disc from a height H

with zero initial velocity. The particle has q/m = 4 0ε σg/ .

(a) Find the value of H if the particle just reaches the disc.

(b) Sketch the potential energy of the particle as a function of its height and find its

equilibrium position.
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Solution Potential at a height H on the axis of the disc V(P). The

charge dq contained in the ring shown in figure, dq rdr= ( )2π σ
Potential of P due to this ring

dV
dq

x
= ⋅1

4 0πε
, where x H r= +2 2

dV
rdr

H r

rdr

H r
= ⋅

+
=

+

1

4

2

20
2 2

0
2 2πε

π σ σ
ε

( )

∴ Potential due to the complete disc,

V dVP
r

r a
=

=

=

∫ 0
=

+=

=

∫
σ
ε2 0

2 20

rdr

H rr

r a

V a H HP = +σ
ε2 0

2 2[ – ]

Potential at centre, O will be

V
a

O = σ
ε2 0

( )H = 0

(a) Particle is released from P and it just reaches point O. Therefore, from conservation of
mechanical energy

decrease in gravitational potential energy = increase in electrostatic potential energy

( )∆ KE because= = =0 0K Ki f

∴ mgH q V VO P= [ – ]

or gH
q

m
a a H H= 











 + +σ

ε2 0

2 2[ – ] …(i)

q

m

g= 4 0ε
σ

⇒ q

m
g

σ
ε2

2
0

=

Substituting in Eq. (i), we get

gH g a H a H= + +2 2 2[ – ]

or
H

a H a H
2

2 2= + +( ) –

or a H a
H2 2

2
+ = +

or a H a
H

aH2 2 2
2

4
+ = + +

or
3

4

2H aH= or H a H= =4

3
0and

∴ H a= ( / )4 3 Ans.

(b) Potential energy of the particle at height H = Electrostatic potential energy

+ gravitational potential energy

∴ U qV mgH= +
Here, V H= Potential at height

∴ U
q

a H H mgH= + +σ
ε2 0

2 2[ – ] …(ii)
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H

P q,m

a O

O

H

P q m( , )

r

a

dr

x



At equilibrium position, F
dU

dH
= =–

0

Differentiating Eq. (ii) w.r.t. H,

or mg
q

H
a H

+ 



 +













=σ
ε2

1

2
2

1
1 0

0
2 2

( ) –
σ
ε
q

mg
2

2
0

=










∴ mg mg
H

a H
+

+













=2 1 0
2 2

–

or 1
2

2 0
2 2

+
+

=H

a H
– ⇒ 2

1
2 2

H

a H+
=

or
H

a H

2

2 2

1

4+
= or 3 2 2H a=

or H
a

3
= Ans.

From Eq. (ii), we can see that

U mga H= =2 0at and

U U mga H
a= = =min 3
3

at

Therefore, U-H graph will be as shown.

Note that at H
a

U=
3

, is minimum.

Therefore, H
a=
3

is stable equilibrium position.

V Example 34 Four point charges + 8 1 1µ µ µC C C, ,– – and + 8 µC are fixed at

the points – / – / /27 2 3 2 3 2m m m, , + and + 27 2/ m respectively on the

Y-axis. A particle of mass 6 10 4× – kg and charge + 0.1 µC moves along the –X

direction. Its speed at x = + ∞ is v0 . Find the least value of v0 for which the

particle will cross the origin. Find also the kinetic energy of the particle at the

origin. Assume that space is gravity free.

Solution In the figure,

q = =1 10 6µC C–

q0
710= + =0.1 Cµ – C

m = ×6 10 4– kg

and Q = 8µC = ×8 10 6– C

Let P be any point at a distance x from origin O.

Then,

AP CP x= = +3

2

2

BP DP x= = +27

2

2
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U

2mga

O Ha/ 3

3mga

y

B +Q

–q

–q–

– +Q

A

O
P

mx

xq0

v0

C

D

27/2 m

3/2 m

3/2 m

27/2 m



Electric potential at point P will be

V
kQ

BP

kq

AP
= 2 2

–

where, k = = ×1

4
9 10

0

9 2 2

πε
Nm C/

∴ V

x x

= × × 







×

+ +









2 9 10
8 10

27

2

10

3

2

9
6

2

6

2

– –

–

V

x x

= × 







+ +









1.8 10
8

27

2

1

3

2

4

2 2

– …(i)

∴ Electric field at P is

E
dV

dx
x= = − × 





+





– ( ) – – ( ) –

– /

1.8 10 8
1

2

27

2
1

14 2
3 2

2

3

2
22

3 2





+

















x x

– /

( )

E = 0 on x-axis where

8

27

2

1

3

2

2
3 2

2
3 2

+





=
+





x x

/ /

⇒ ( ) /

/ /

4

27

2

1

3

2

3 2

2
3 2

2
3 2

+





=
+





x x

⇒ 27

2
4

3

2

2 2+





= +





x x

This equation gives x = ± 5

2
m

The least value of kinetic energy of the particle at infinity should be enough to take the particle

upto x = + 5

2
m because

at x E= + = ⇒5

2
0m, Electrostatic force on charge q0 is zero or Fe = 0

for x > 5

2
m, E is repulsive (towards positive x-axis)

and for x < 5

2
m, E is attractive (towards negative x-axis)

Now, from Eq. (i), potential at x = 5

2
m

V = × 







+ +









1.8. 10
8

27

2

5

2

1

3

2

5

2

4 –

V = ×2.7 V104
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Applying energy conservation at x = ∞ and x = 5

2
m

1

2
0
2

0mv q V= …(ii)

∴ v
q V

m
0

02=

Substituting the values, v0

7 4

4

2 10 10

6 10
= × × ×

×

–

–

2.7

v0 =3 m/s Ans.

∴ Minimum value of v0 is 3 m/s.

From Eq. (i), potential at origin ( )x = 0 is

V0
4 410

8

27

2

1

3

2

10= × 















= ×1.8 2.4– V

Let T be the kinetic energy of the particle at origin.

Applying energy conservation at x = 0 and at x = ∞

T q V mv+ =0 0 0
21

2

But,
1

2
0
2

0mv q V= [ from Eq. (ii)]

∴ T q V V= 0 0( – )

T = × ×( ) ( – )–10 10 107 4 42.7 2.4

T = × −3 410 J Ans.

Note E = 0 or Fe on q0 is zero at x = 0 and x m= ± 5

2
. Of these x = 0 is stable equilibrium position and

x m= ± 5

2
is unstable equilibrium position.
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LEVEL 1

Assertion and Reason

Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : An independent negative charge moves itself from point A to point B. Then,
potential at A should be less than potential at B.

Reason : While moving from A to B kinetic energy of electron will increase.

2. Assertion : When two unlike charges are brought nearer, their electrostatic potential
energy decreases.

Reason : All conservative forces act in the direction of decreasing potential energy.

3. Assertion : At a point electric potential is decreasing along x-axis at a rate of 10 V/m.
Therefore, x-component of electric field at this point should be 10 V/m along x-axis.

Reason : Magnitude of E
V

x
x = ∂

∂

4. Assertion : Electric potential on the surface of a charged sphere of radius R is V . Then

electric field at a distance r
R=
2

from centre is
V

R2
. Charge is distributed uniformly over the

volume.

Reason : From centre to surface, electric field varies linearly with r. Here, r is distance from
centre.

5. Assertion : Gauss’s theorem can be applied only for a closed surface.

Reason : Electric flux can be obtained passing from an open surface also.

6. Assertion : In the electric field E = +( $ $) /4 4i j N C, electric potential at A( , )4 0m is more than
the electric potential at B( , )0 4 m .

Reason : Electric lines of forces always travel from higher potential to lower potential.

7. Assertion : Two charges − q each are fixed at points A Band . When a third charge − q is
moved from A to B, electrical potential energy first decreases than increases.

Reason : Along the line joining A Band , the third charge is in stable equilibrium position at
centre.

Exercises

– q – q

A B



8. Assertion : A small electric dipole is moved translationally from higher potential to lower
potential in uniform electric field. Work done by electric field is positive.

Reason : When a positive charge is moved from higher potential to lower potential, work

done by electric field is positive.

9. Assertion : In case of charged spherical shells, E-r graph is discontinuous while V -r graph is
continuous.

Reason : According to Gauss’s theorem only the charge inside a closed surface can produce
electric field at some point.

10. Assertion : If we see along the axis of a charged ring, the magnitude of electric field is
minimum at centre and magnitude of electric potential is maximum.

Reason : Electric field is a vector quantity while electric potential is scalar.

Objective Questions

1. Units of electric flux are

(a)
N-m

C

2

2
(b)

N

C m2 2-

(c) volt-m (d) volt- m3

2. A neutral pendulum oscillates in a uniform electric field as shown in figure. If a positive charge
is given to the pendulum, then its time period

(a) will increase (b) will decrease

(c) will remain constant (d) will first increase then decrease

3. Identify the correct statement about the charges q q1 2and , then

(a) q q1 2and both are positive (b) q q1 2and both are negative

(c) q1 is positive q2 is negative (d) q2 is positive and q1 is negative

4. Three identical charges are placed at corners of an equilateral triangle of side l. If force
between any two charges is F, the work required to double the dimensions of triangle is

(a) −3 Fl (b) 3 Fl

(c) ( / )−3 2 Fl (d) ( / )3 2 Fl
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5. A proton, a deuteron and an alpha particle are accelerated through potentials of V, 2 V and 4 V

respectively. Their velocity will bear a ratio

(a) 1 1 1: : (b) 1 2 1: :

(c) 2 1 1: : (d) 1 1 2: :

6. Electric potential at a point P r, distance away due to a point charge q kept at point A is V . If
twice of this charge is distributed uniformly on the surface of a hollow sphere of radius 4r with
centre at point A, the potential at P now is

(a) V (b) V /2

(c) V /4 (d) V /8

7. Four charges + − +q q q, , and − q are placed in order on the four consecutive corners of a square
of side a. The work done in interchanging the positions of any two neighbouring charges of the
opposite sign is

(a)
q

a

2

04
4 2

πε
− +( ) (b)

q

a

2

04
4 2 2

πε
+( )

(c)
q

a

2

04
4 2 2

πε
−( ) (d)

q

a

2

04
4 2

πε
+( )

8. Two concentric spheres of radii R Rand 2 are charged. The inner sphere has a charge of 1 µC

and the outer sphere has a charge of 2 µCof the same sign. The potential is 9000 V at a distance

3R from the common centre. The value of R is

(a) 1 m (b) 2 m

(c) 3 m (d) 4 m

9. A ring of radius R is having two charges q and 2q distributed on its two half parts. The electric

potential at a point on its axis at a distance of 2 2 R from its centre is k =
ε









1

4 0π

(a)
3kq

R
(b)

kq

R3

(c)
kq

R
(d)

kq

R3

10. A particle A having a charge of 2.0 C× −10 6 and a mass of 100 g is fixed at the bottom of a

smooth inclined plane of inclination 30°. Where should another particle B having same charge

and mass, be placed on the inclined plane so that B may remain in equilibrium?

(a) 8 cm from the bottom (b) 13 cm from the bottom

(c) 21 cm from the bottom (d) 27 cm from the bottom

11. Four positive charges ( )2 2 1− Q are arranged at the four corners of a square. Another charge

q is placed at the centre of the square. Resulting force acting on each corner charge is zero if q is

(a) − 7

4

Q
(b) − 4

7

Q

(c) −Q (d) − +( )2 1 Q

12. A proton is released from rest, 10 cm from a charged sheet carrying charged density of

− × −2.21 C/ m10 9 2. It will strike the sheet after the time (approximately)

(a) 4 µs (b) 2 µs

(c) 2 2 µs (d) 4 2 µs
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13. Two point charges +q and −q are placed a distance x apart. A third charge is so placed that all
the three charges are in equilibrium. Then,

(a) unknown charge is −4 9q/

(b) unknown charge is −9 4q/

(c) it should be at ( / )x 3 from smaller charge  between them

(d) None of the above

14. Charges 2q qand − are placed at ( , )a 0 and ( , )−a 0 as shown in the
figure. The coordinates of the point at which electric field intensity is
zero will be ( , )x 0 , where

(a) − < <a x a (b) x a< −
(c) x a> − (d) 0 < <x a

15. Five point charges (+ q each) are placed at the five vertices of a regular hexagon of side 2a.
What is the magnitude of the net electric field at the centre of the hexagon?

(a)
1

4 0
2πε

q

a
(b)

q

a16 0
2πε

(c)
2

4 0
2

q

aπε
(d)

5

16 0
2

q

aπε

16. Two identical small conducting spheres having unequal positive charges q q1 2and are
separated by a distancer. If they are now made to touch each other and then separated again to
the same distance, the electrostatic force between them in this case will be

(a) less than before (b) same as before

(c) more than before (d) zero

17. Three concentric conducting spherical shells carry charges + 4Q on the inner shell − 2Q on the
middle shell and + 6Q on the outer shell. The charge on the inner surface of the outer shell is

(a) 0 (b) 4Q

(c) − Q (d) − 2Q

18. 1000 drops of same size are charged to a potential of 1 V each. If they coalesce to form a single
drop, its potential would be

(a) V (b) 10 V

(c) 100 V (d) 1000 V

19. Two concentric conducting spheres of radii R Rand 2 are carrying
charges Q and − 2Q, respectively. If the charge on inner sphere is
doubled, the potential difference between the two spheres will

(a) become two times

(b) become four times

(c) be halved

(d) remain same

20. Charges Q Q, 2 and − Q are given to three concentric conducting spherical
shells A B, and C respectively as shown in figure. The ratio of charges on
the inner and outer surfaces of shell C will be

(a) + 3

4
(b)

−3

4

(c)
3

2
(d)

−3

2
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21. The electric field in a region of space is given by E = +5 2$ $i j N/ C . The flux of Edue to this field

through an area 1 2m lying in the y z- plane, in SI units, is

(a) 5 (b) 10

(c) 2 (d) 5 29

22. A chargeQ is placed at each of the two opposite corners of a square. A charge q is placed at each
of the other two corners. If the resultant force on each charge q is zero, then

(a) q Q= 2 (b) q Q= − 2

(c) q Q= 2 2 (d) q Q= −2 2

23. A Band are two concentric spherical shells. If A is given a charge + q while
B is earthed as shown in figure, then

(a) charge on the outer surface of shell B is  zero

(b) the charge on B is equal and opposite to  that of A

(c) the field inside A and outside B is zero

(d) All of the above

24. A solid sphere of radius R has charge ‘q’ uniformly distributed over its volume. The distance

from its surface at which the electrostatic potential is equal to half of the potential at the centre

is

(a) R (b) 2R

(c)
R

3
(d)

R

2
25. Four dipoles each of magnitudes of charges ± e are placed inside a sphere. The total flux of E

coming out of the sphere is

(a) zero (b)
4

0

e

ε

(c)
8

0

e

ε
(d) None of these

26. A pendulum bob of mass m carrying a charge q is at rest with its string making an angle θ with
the vertical in a uniform horizontal electric field E. The tension in the string is

(a)
mg

sin θ
(b) mg

(c)
qE

sin θ
(d)

qE

cos θ

27. Two isolated charged conducting spheres of radii a band produce the same electric field near
their surfaces. The ratio of electric potentials on their surfaces is

(a)
a

b
(b)

b

a

(c)
a

b

2

2
(d)

b

a

2

2

28. Two point charges + q and − q are held fixed at ( , )− a 0 and ( , )a 0 respectively of a x y- coordinate
system, then

(a) the electric field E at all points on the x-axis has the same direction

(b) E at all points on the y-axis is along $i

(c) positive work is done in bringing a test charge from infinity to the origin

(d) All of the above
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29. A conducting shell S1 having a charge Q is surrounded by an uncharged concentric conducting

spherical shell S2. Let the potential difference between S1 and that S2 be V . If the shell S2 is

now given a charge − 3Q, the new potential difference between the same two shells is

(a) V (b) 2 V

(c) 4 V (d) − 2 V

30. At a certain distance from a point charge, the field intensity is 500 V/m and the potential is

− 3000 V. The distance to the charge and the magnitude of the charge respectively are

(a) 6 m and 6 µC (b) 4 m and 2 µC

(c) 6 m and 4 µC (d) 6 m and 2 µC

31. Two point charges q q1 2and are placed at a distance of 50 m from each other in air, and interact

with a certain force. The same charges are now put in oil whose relative permittivity is 5. If the

interacting force between them is still the same, their separation now is

(a) 16.6 m (b) 22.3 m

(c) 28.4 m (d) 25.0 cm

32. An infinite line of charge λ per unit length is placed along the y-axis. The work done in moving
a charge q from A a( , )0 to B a( , )2 0 is

(a)
qλ
π ε2

2
0

ln (b)
qλ
π ε2

1

20

ln






(c)
qλ
π ε4

2
0

ln (d)
qλ
π ε4

2
0

ln

33. An electric dipole is placed perpendicular to an infinite line of charge at some
distance as shown in figure. Identify the correct statement.

(a) The dipole is attracted towards the line charge

(b) The dipole is repelled away from the line charge

(c) The dipole does not experience a force

(d) The dipole experiences a force as well as a torque

34. An electrical charge 2 10 8× − Cis placed at the point ( , , )1 2 4 m. At the point (4, 2, 0) m,

the electric

(a) potential will be 36 V

(b) field will be along y-axis

(c) field will increase if the space between  the points is filled with a dielectric

(d) All of the above

35. If the potential at the centre of a uniformly charged hollow sphere of radius R isV , then electric

field at a distance r from the centre of sphere will be ( )r R>

(a)
VR

r2
(b)

Vr

R2
(c)

VR

r
(d)

VR

R r2 2+
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36. There is an electric field E in x-direction. If the work done on moving a charge of 0.2 C through a
distance of 2 m along a line making an angle 60° with x-axis is 4 J, then what is the value of E?

(a) 3 N/C (b) 4 N/C

(c) 5 N/C (d) 20 N/C

37. Two thin wire rings each having radius R are placed at a distance d apart with their axes
coinciding. The charges on the two rings are +Q and −Q. The potential difference between the
centres of the two rings is

(a) zero (b)
Q

R R d4

1 1

0
2 2πε

−
+













(c)
Q

d4 0
2πε

(d)
Q

R R d2

1 1

0
2 2πε

−
+













38. The electric field at a distance 2 cm from the centre of a hollow spherical conducting shell of

radius 4 cm having a charge of 2 10 3× − C on its surface is

(a) 1.1 V /m× 1010 (b) 4.5 V /m× −10 10

(c) 4.5 V /m× 1010 (d) zero

39. ChargeQ is given a displacement r = +a b$ $i j in an electric field E = +E E1 2
$ $i j. The work done is

(a) Q E a E b( )1 2+ (b) Q E a E b( ) ( )1
2

2
2+

(c) Q E E a b( )1 2
2 2+ + (d) Q E E a b1

2
2
2 2 2+ +

Subjective Questions

Note You can take approximations in the answers.

1. A certain charge Q is divided into two parts q and Q q− ,which are then separated by a certain
distance. What must q be in terms of Q to maximize the electrostatic repulsion between the two
charges?

2. An α-particle is the nucleus of a helium atom. It has a mass m = × −6.64 kg10 27 and a charge

q e= + = × −2 10 193.2 C. Compare the force of the electric repulsion between two α-particles

with the force of gravitational attraction between them.

3. What is the charge per unit area in C/ m2 of an infinite plane sheet of charge if the electric field

produced by the sheet of charge has magnitude 3.0 N/C?

4. A circular wire loop of radius R carries a total charge q distributed uniformly over its length. A
small length x ( )<< R of the wire is cut off. Find the electric field at the centre due to the
remaining wire.

5. Two identical conducting spheres, fixed in space, attract each other with an electrostatic force
of 0.108 N when separated by 50.0 cm, centre-to-centre. A thin conducting wire then connects
the spheres. When the wire is removed, the spheres repel each other with an electrostatic force
of 0.0360 N. What were the initial charges on the spheres?

6. Show that the torque on an electric dipole placed in a uniform electric field is

τ = ×p E

independent of the origin about which torque is calculated.
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7. Three point charges q q, – 2 and q are located along the x-axis as
shown in figure. Show that the electric field at P y a( )>> along the
y-axis is,

E j= – $
1

4

2

4πε0

3qa

y

Note This charge distribution which is essentially that of two electric dipoles is called an electric quadrupole. Note

thatE varies as r– 4 for a quadrupole compared with variations of r– 3 for the dipole and r– 2 for a monopole

(a single charge).

8. A charge q is placed at point D of the cube. Find the electric flux passing through the face
EFGH and face AEHD.

9. Point charges q1 and q2 lie on the x-axis at points x a= − and x a= + respectively.

(a) How must q1 and q2 be related for the net electrostatic force on point charge + Q, placed at

x a= + / ,2 to be zero?

(b) With the same point charge +Q now placed at x a= + 3 2/ .

10. Two particles (free to move) with charges +q and +4q are a distance L apart. A third charge is
placed so that the entire system is in equilibrium.

(a) Find the location, magnitude and sign of the third charge.

(b) Show that the equilibrium is unstable.

11. Two identical beads each have a mass m and charge q. When placed in a hemispherical bowl of
radius R with frictionless, non-conducting walls, the beads move, and at equilibrium they are a
distance R apart (figure). Determine the charge on each bead.

12. Three identical small balls, each of mass 0.1 g, are suspended at one point on silk thread

having a length of l = 20cm . What charges should be imparted to the balls for each thread to

form an angle of α = °30 with the vertical?

13. Three charges, each equal to q, are placed at the three corners of a square of side a. Find the
electric field at fourth corner.

14. A point charge q = − 8.0 nC is located at the origin. Find the electric field vector at the point
x y= = −1.2 m 1.6 m, .

15. Find the electric field at the centre of a uniformly charged semicircular ring of radius R. Linear
charge density is λ .

16. Find the electric field at a point P on the perpendicular bisector of a uniformly charged rod. The
length of the rod is L, the charge on it is Q and the distance of P from the centre of the rod is a.
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17. Find the direction of electric field at point P for the charge distribution as shown in figure.

18. A clock face has charges − − − …−q q q q, , ,2 3 12 fixed at the position of the corresponding
numerals on the dial. The clock hands do not disturb the net field due to point charges. At what
time does the hour hand point in the direction of the electric field at the centre of the dial.

19. A charged particle of mass m = 1 kg and charge q = 2 µC is thrown from a horizontal ground at
an angle θ = °45 with the speed 25 m/ s. In space, a horizontal electric field E = ×2 107 V/ m
exists in the direction of motion. Find the range on horizontal ground of the projectile thrown.
Take g = 10 m/s2.

20. Protons are projected with an initial speed vi = ×9.55 m/ s103 into a region where a uniform

electric field E j= (– $) /720 N C is present, as shown in figure. The protons are to hit a target that
lies at a horizontal distance of 1.27 mm from the point where the protons are launched. Find

(a) the two projection angles θ that result in a hit and

(b) the total time of flight for each trajectory.

21. At some instant the velocity components of an electron moving between two charged parallel

plates are vx = ×1.5 m/ s105 and vy = ×3.0 10 m/ s6 . Suppose that the electric field between the

plates is given by E j= ( / ) $ .120 N C

(a) What is the acceleration of the electron?

(b) What will be the velocity of the electron after its x-coordinate has changed by 2.0 cm?

22. A point charge q1 2= + µC is placed at the origin of coordinates. A second charge, q2 3= − µC, is
placed on the x-axis at x = 100 cm. At what point (or points) on the x-axis will the absolute
potential be zero?

23. A charge Q is spread uniformly in the form of a line charge density λ = Q

a3
on the sides of an

equilateral triangle of perimeter 3a. Calculate the potential at the centroid C of the triangle.
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24. A uniform electric field of magnitude 250 V/ m is directed in the positive x-direction. A + 12µC

charge moves from the origin to the point ( , )x y = ( )20.0 cm, 5.0 cm .

(a) What was the change in the potential energy of this charge?

(b) Through what potential difference did the charge move?

25. A small particle has charge −5.00 Cµ and mass 2.00 10 kg× −4 . It moves from point A, where the

electric potential is VA = + 200 V, to point B, where the electric potential is VB = + 800 V. The

electric force is the only force acting on the particle. The particle has speed 5.00 m/ s at point A.

What is its speed at point B? Is it moving faster or slower at B than at A? Explain.

26. A plastic rod has been formed into a circle of radius R. It has a positive charge
+Q uniformly distributed along one-quarter of its circumference and a negative
charge of −6Q uniformly distributed along the rest of the circumference
(figure). With V = 0 at infinity, what is the electric potential

(a) at the centre C of the circle and

(b) at point P, which is on the central axis of the circle at distance z from the centre?

27. A point charge q1 = + 2.40 Cµ is held stationary at the origin. A second point charge

q2 = − 4.30 Cµ moves from the point x y= =0.150 m, 0 to the point x y= =0.250 m 0.250 m, .

How much work is done by the electric force on q2?

28. A point charge q1 = 4.00 nC is placed at the origin, and a second point charge q2 = − 3.00 nC is
placed on the x-axis at x = + 20.0 cm. A third point charge q3 = 2.00 nC is placed on the x-axis
between q1 and q2. (Take as zero the potential energy of the three charges when they are
infinitely far apart).

(a) What is the potential energy of the system of the three charges if q3 is placed at x = +10.0 cm?

(b) Where should q3 be placed to make the potential energy of the system equal to zero?

29. Three point charges, which initially are infinitely far apart, are placed at the corners of an

equilateral triangle with sides d. Two of the point charges are identical and have charge q. If

zero net work is required to place the three charges at the corners of the triangles, what must

the value of  the third charge be?

30. The electric field in a certain region is given by E = −( $ $)5 3i j kV/ m . Find the difference in
potential V VB A− . If A is at the origin and point B is at (a)  (0, 0, 5) m, (b)  (4, 0, 3) m.

31. In a certain region of space, the electric field is along +y-direction and has a magnitude of
400 V/ m . What is the potential difference from the coordinate origin to the following points?

(a) x y z= = =0 20 0, ,cm (b) x y z= = − =0 30 0, cm,

(c) x y z= = =0 0 15, , cm

32. An electric field of 20 N/C exists along the x-axis in space. Calculate the potential difference
V VB A− where the points A and B are given by

(a) A B= =( , ), ( )0 0 4 m 2 m, (b) A B= =( , (4 m,2 m) 6 m 5 m),

33. The electric potential existing in space is V x y z A xy yz zx( , , ) ( )= + + .

(a) Write the dimensional formula of A.

(b) Find the expression for the electric field.

(c) If A is 10 SI units, find the magnitude of the electric field at ( , , )1 1 1m m m

34. An electric field E i j= +( $ $)20 30 N/Cexists in the space. If the potential at the origin is taken to
be zero, find the potential at ( , )2 2m m .
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35. In a certain region of space, the electric potential is V x y z Axy Bx Cy( , , ) ,= − +2 where A B,

and C are positive constants.

(a) Calculate the x y, and z - components of the electric field.

(b) At which points is the electric field equal to zero?

36. A sphere centered at the origin has radius 0.200 m. A −500 µC point charge is on the x-axis at

x = 0.300 m. The net flux through the sphere is 360 2N-m / C. What is the total charge inside the

sphere?

37. (a) A closed surface encloses a net charge of −3.60 Cµ . What is the net electric flux through the
surface?

(b) The electric flux through a closed surface is found to be 780 N-m /C2 . What quantity of charge is

enclosed by the surface?

(c) The closed surface in part (b) is a cube with sides of length 2.50 cm. From the information given

in part (b), is it possible to tell where within the cube the charge is located? Explain.

38. The electric field in a region is given by E = +3

5

4

5
0 0E E$ $i jwith E0

310= ×2.0 N/C. Find the flux

of this field through a rectangular surface of area 0.2 m2 parallel to the y z- plane.

39. The electric field in a region is given by E = E x

l

0 $i. Find the charge contained inside a cubical

volume bounded by the surfaces x x a y y a z= = = = =0 0 0, , , , and z a= . Take E0
35 10= × N C/ ,

l = 2 cm and a = 1 cm .

40. A point charge Q is located on the axis of a disc of radius R at a distance b from the plane of the
disc (figure). Show that if one-fourth of the electric flux from the charge passes through the

disc, then R b= 3 .

41. A cube has sides of length L. It is placed with one corner at the origin as shown in figure. The
electric field is uniform and given by E = − + −B C D$ $ $ ,i j k where B C, and D are positive
constants.
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(a) Find the electric flux through each of the six cube faces S S S S S1 2 3 4 5, , , , and S6.

(b) Find the electric flux through the entire cube.

42. Two point charges q and −q are separated by a distance 2l. Find the flux of electric field

strength vector across the circle of radius R placed with its centre coinciding with the mid-point

of line joining the two charges in the perpendicular plane.

43. A point charge q is placed at the origin. Calculate the electric flux through the open

hemispherical surface : ( ) ,x a y z a x a− + + = ≥2 2 2 2

44. A charge Q is distributed over two concentric hollow spheres of radii r and R r( )> such that the
surface charge densities are equal. Find the potential at the common centre.

45. A charge q0 is distributed uniformly on a ring of radius R. A sphere of equal radius R is
constructed with its centre on the circumference of the ring. Find the electric flux through the
surface of the sphere.

46. Two concentric conducting shells A and B are of radii R and 2R. A charge + q is placed at the
centre of the shells. Shell B is earthed and a charge q is given to shell A. Find the charge on
outer surface of A and B.

47. Three concentric metallic shells A B, and C of radii a b, and c a b c( )< < have surface charge
densities, σ σ, − and σ respectively.

(a) Find the potentials of three shells A B, and C.

(b) It is found that no work is required to bring a charge q from shell A to shell C, then obtain the

relation between the radii a b, and c.

48. A charge Q is placed at the centre of an uncharged, hollow metallic sphere of radius a,

(a) Find the surface charge density on the inner surface and on the outer surface.

(b) If a charge q is put on the sphere, what would be the surface charge densities on the inner and

the outer surfaces?

(c) Find the electric field inside the sphere at a distance x from the centre in the situations

(a) and (b).

49. Figure shows three concentric thin spherical shells A, B and C of radii a b, and c respectively.
The shells A and C are given charges q and −q respectively and the shell B is earthed. Find the
charges appearing on the surfaces of B and C.
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50. Three spherical shells have radii R R, 2 and 3R respectively. Total charge on AandC is 3q. Find
the charges on different surfaces of A, B and C . The connecting wire does not touch the shell B.

51. In the above problem, the charges on different surfaces if a charge q is placed at the centre of
the shell with all other conditions remaining the same.

52. A solid sphere of radius R has a charge +2Q. A hollow spherical shell of radius 3R placed
concentric with the first sphere that has net charge −Q.

(a) Find the electric field between the spheres at a distance r from the centre of the inner sphere.

[ ]R r R< <3

(b) Calculate the potential difference between the spheres.

(c) What would be the final distribution of charges, if a conducting wire joins the spheres?

(d) Instead of (c), if the inner sphere is earthed, what is the charge on it?

53. Three concentric conducting spherical shells of radii R R, 2 and 3R carry charges Q Q, − 2 and
3Q, respectively.

(a) Find the electric potential at r R= and r R= 3 , where r is the radial distance from the centre.

(b) Compute the electric field at r R= 5

2

(c) Compute the total electrostatic energy stored in the system.

The inner shell is now connected to the external one by a conducting wire, passing through a very

small hole in the middle shell.

(d) Compute the charges on the spheres of radii R and 3R.

(e) Compute the electric field at r R= 5

2
.
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LEVEL 2

Single Correct Option

1. In the diagram shown, the charge +Q is fixed. Another charge + 2q and mass M is projected
from a distance R from the fixed charge. Minimum separation between the two charges if the

velocity becomes
1

3
times of the projected velocity, at this moment is (Assume gravity to be

absent)

(a)
3

2
R (b)

1

3
R (c)

1

2
R (d) None of these

2. A uniform electric field of strength E exists in a region. An electron enters a point A with

velocity v as shown. It moves through the electric field and reaches at point B. Velocity of

particle at B is 2 v at 30° with x-axis. Then,

(a) electric field E i= − 3

2

2mv

ea
$

(b) rate of doing work done by electric field at B is
3

2

3mv

ea

(c) Both (a) and (b) are correct

(d) Both (a) and (b) are wrong

3. Two point charges a band whose magnitudes are same, positioned at a certain distance along
the positive x-axis from each other. a is at origin. Graph is drawn between electrical field
strength and distance x from a. E is taken positive if it is along the line joining from a to b.
From the graph it can be decided that

(a) a is positive, b is negative (b) a and b both are positive

(c) a and b both are negative (d) a is negative, b is positive

(0, 0) A a( , 0)

y

30°

B a d(2 , )

2v

x

v

30°

+2q+Q
R

V

E

x



Note Graph is drawn only between a and b.

4. Six charges are placed at the vertices of a rectangular hexagon as shown in the figure. The
electric field on the line passing through pointO and perpendicular to the plane of the figure as
a function of distance x from point O x ais ( )> >

(a) 0 (b)
Qa

xπ ε0
3

(c)
2

0
3

Qa

xπ ε
(d)

3

0
3

Qa

xπ ε

5. If the electric potential of the inner shell is 10 V and that of the outer shell is 5 V, then the
potential at the centre will be

(a) 10 V (b) 5 V (c) 15 V (d) zero

6. A solid conducting sphere of radius a having a charge q is surrounded by a concentric
conducting spherical shell of inner radius 2a and outer radius 3a as shown in figure. Find the

amount of heat produced when switch is closed k =
ε









1

4 0π

(a)
kq

a

2

2
(b)

kq

a

2

3
(c)

kq

a

2

4
(d)

kq

a

2

6

7. There are four concentric shells A B C, , and D of radii a a a, ,2 3 and 4a respectively. Shells
B Dand are given charges + q and − q respectively. Shell C is now earthed. The potential

difference V VA C− is k =
ε









1

4 0π

(a)
kq

a2
(b)

kq

a3
(c)

kq

a4
(d)

kq

a6
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8. Potential difference between centre and surface of the sphere of radius R and uniform volume
charge density ρ within it will be

(a)
ρ

ε
R2

06
(b)

ρ
ε
R2

04

(c)
ρ

ε
R2

03
(d)

ρ
ε
R2

02

9. A positively charged disc is placed on a horizontal plane. A charged particle is released from a
certain height on its axis. The particle just reaches the centre of the disc. Select the correct
alternative.

(a) Particle has negative charge on it

(b) Total potential energy (gravitational + electrostatic) of the particle first increases, then

decreases

(c) Total potential energy of the particle first  decreases, then increases

(d) Total potential energy of the particle  continuously decreases

10. The curve represents the distribution of potential along the straight line joining the two
charges Q Q1 2and (separated by a distance r) then which of the following statements are
correct?

1. | | | |Q Q1 2>
2. Q1 is positive in nature

3. A Band are equilibrium points

4. C is a point of unstable equilibrium

(a) 1 and 2 (b) 1, 2 and 3

(c) 1, 2 and 4 (d) 1, 2, 3 and 4

11. A point charge q q1 = is placed at point P. Another point charge q q2 = − is placed at point Q. At
some point R R P R Q( , )≠ ≠ , electric potential due to q1 is V1 and electric potential due to q2 is
V2. Which of the following is correct?

(a) Only for some points V V1 2>
(b) Only for some points V V2 1>
(c) For all points V V1 2>
(d) For all points V V2 1>

12. The variation of electric field between two charges q q1 2and
along the line joining the charges is plotted against distance
from q1 (taking rightward direction of electric field as positive)
as shown in the figure. Then, the correct statement is

(a) q q1 2and are positive and q q1 2<
(b) q q1 2and are positive and q q1 2>
(c) q1 is positive and q2 is negative q q1 2<| |

(d) q q1 2and are negative and| | | |q q1 2<
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13. A charge q is placed at O in the cavity in a spherical uncharged
conductor. Point S is outside the conductor. If q is displaced from O
towards S (still remaining within the cavity)

(a) electric field at S will increase

(b) electric field at S will decrease

(c) electric field at S will first increase and then decrease

(d) electric field at S will not change

14. A uniform electric field of 400 V/m is directed at 45° above the x-axis as shown in the figure. The

potential difference V VA B− is given by

(a) 0 (b) 4 V

(c) 6.4 V (d) 2.8 V

15. Initially the spheres A Band are at potentials V VA Band respectively. Now, sphere B is

earthed by closing the switch. The potential of A will now become

(a) 0 (b) VA (c) V VA B− (d) VB

16. A particle of mass m and charge q is fastened to one end of a string of

length l. The other end of the string is fixed to the point O. The whole

system lies on a frictionless horizontal plane. Initially, the mass is at rest

at A. A uniform electric field in the direction shown is then switched on.

Then,

(a) the speed of the particle when it reaches B is
2qEl

m

(b) the speed of the particle when it reaches B is
qEl

m

(c) the tension in the string when the particle reaches at B is qE

(d) the tension in the string when the particle reaches at B is zero

17. A charged particle of mass m and charge q is released from rest from the position ( , )x0 0 in a
uniform electric field E0

$j. The angular momentum of the particle about origin

(a) is zero (b) is constant

(c) increases with time (d) decreases with time
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18. A charge +Q is uniformly distributed in a spherical volume of radius R. A particle of charge

+ q and mass m projected with velocity v0 from the surface of the spherical volume to its

centre inside a smooth tunnel dug across the sphere. The minimum value of v0 such that it

just reaches the centre (assume that there is no resistance on the particle except electrostatic

force) of the spherical volume is

(a)
Qq

mR2 0πε
(b)

Qq

mRπε0

(c)
2

0

Qq

mRπε
(d)

Qq

mR4 0πε

19. Two identical coaxial rings each of radius R are separated by a distance of 3R. They are

uniformly charged with charges + −Q Qand respectively. The minimum kinetic energy with

which a charged particle (charge + q) should be projected from the centre of the negatively

charged ring along the axis of the rings such that it reaches the centre of the positively charged

ring is

(a)
Qq

R4 0πε
(b)

Qq

R2 0πε
(c)

Qq

R8 0πε
(d)

3

4 0

Qq

Rπε

20. A uniform electric field exists in x-y plane. The potential of points A( , )2 2m m , B( , )−2 2m m

and C ( , )2 4m m are 4 V 16 V and 12 V, respectively. The electric field is

(a) ( $ $)4 5i j+ V /m (b) ( $ $)3 4i j+ V /m

(c) − +( $ $)3 4i j V /m (d) ( $ $)3 4i j− V /m

21. Two fixed charges − 2Q and +Q are located at points ( , )− 3 0a and ( , )+ 3 0a respectively. Then,

which of the following statement is correct?

(a) Points where the electric potential due to the two charges is zero in x-y plane, lie on a circle of

radius 4a and centre ( , )5 0a

(b) Potential is zero at x a= and x a= 9

(c) Both (a) and (b) are wrong

(d) Both (a) and (b) are correct

22. A particle of mass m and charge − q is projected from the origin with a horizontal speed v into
an electric field of intensity E directed downward. Choose the wrong statement. Neglect
gravity

(a) The kinetic energy after a displacement y is qEy

(b) The horizontal and vertical components of acceleration are a a
qE

m
x y= =0,

(c) The equation of trajectory is y
qEx

mv
=









1

2

2

2

(d) The horizontal and vertical displacements x yand after a time t are x vt= and y a ty= 1

2

2
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23. A particle of charge −q and mass m moves in a circle of radius r around an infinitely long line
charge of linear charge density + λ . Then, time period will be

(a) T r
m

k q
= 2

2
π

λ
(b) T

m

k q
r2

2
34

2
= π

λ

(c) T
r

k q

m
= 1

2

2

π
λ

(d) T
r

m

k q
= 1

2 2π λ

where, k =
ε

1

4 0π

24. A small ball of mass m and charge + q tied with a string of length l, rotating in a vertical circle
under gravity and a uniform horizontal electric field E as shown. The tension in the string
will be minimum for

(a) θ = 





−tan 1 qE

mg
(b) θ π=

(c) θ = °0 (d) θ π= + 





−tan 1 qE

mg

25. Four point charges A B C, , and D are placed at the four corners of a square of side a. The energy
required to take the charges C and D to infinity (they are also infinitely separated from each
other) is

(a)
q

a

2

04πε
(b)

2 2

0

q

aπε

(c)
q

a

2

04
2 1

πε
+( ) (d)

q

a

2

04
2 1

πε
( )−
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26. Two identical positive charges are placed at x a= − and x a= . The correct variation of potential
V along the x-axis is given by

(a) (b)

(c) (d)

27. Two identical charges are placed at the two corners of an equilateral triangle. The potential
energy of the system isU . The work done in bringing an identical charge from infinity to the
third vertex is

(a) U (b) 2U

(c) 3U (d) 4U

28. A charged particle q is shot from a large distance towards another charged particle Q which is
fixed, with a speed v. It approachesQ up to a closest distancer and then returns. If q were given
a speed 2v, the distance of approach would be

(a) r (b) 2r

(c) r/2 (d) r/4

29. Two identical charged spheres are suspended by strings of equal length. The strings make an
angle of 30° with each other. When suspended in a liquid of density 0.8 g/ cc, the angle remains
the same. The dielectric constant of the liquid is [density of the material of sphere is 1.6 g/ cc]

(a) 2 (b) 4

(c) 2.5 (d) 3.5

30. The electrostatic potential due to the charge configuration at point P
as shown in figure for b a< < is

(a)
2

4 0

q

aπε

(b)
2

4

2

0
3

qb

aπε

(c)
qb

a

2

0
34πε

(d) zero
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31. The figure shows four situations in which charged particles are at equal distances from the
origin. If E E E E1 2 3 4, and, be the magnitude of the net electric fields at the origin in four
situations (i), (ii), (iii) and (iv) respectively, then

(a) E E E E1 2 3 4= = = (b) E E E E1 2 3 4= > >
(c) E E E E1 2 3 4< < = (d) E E E E1 2 3 4> = <

32. An isolated conducting sphere whose radius R = 1 m has a charge q = 1

9
nC. The energy density

at the surface of the sphere is

(a)
ε0 3

2
J/m (b) ε0

3J/m

(c) 2 0
3ε J/m (d)

ε0 3

3
J/m

33. Two conducting concentric, hollow spheres A Band have radii a band respectively, with A
inside B. Their common potentials is V . A is now given some charge such that its potential
becomes zero. The potential of B will now be

(a) 0 (b) V a b( / )1 −
(c) Va b/ (d) Vb a/

34. In a uniform electric field, the potential is 10 V at the origin of coordinates and 8 V at each of
the points (1, 0, 0), (0, 1, 0) and ( , , )0 0 1 . The potential at the point ( , , )1 1 1 will be

(a) 0 (b) 4 V (c) 8 V (d) 10 V

35. There are two uncharged identical metallic spheres 1 and 2 of radius r separated by a distance
d d r( )>> . A charged metallic sphere of same radius having charge q is touched with one of the
sphere. After some time it is moved away from the system. Now, the uncharged sphere is
earthed. Charge on earthed sphere is

(a) + q

2
(b) − q

2

(c) − qr

d2
(d) − qd

r2

36. Figure shows a closed dotted surface which intersects a conducting uncharged sphere. If a
positive charge is placed at the point P, the flux of the electric field through the closed surface

(a) will remain zero (b) will become positive

(c) will become negative (d) data insufficient
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37. Two concentric conducting thin spherical shells A Band having radii rA and r r rB B A( )> are
charged to QA and − >Q Q QB B A(| | | |). The electrical field along a line passing through the
centre is

(a) (b)

(c) (d) None of these

38. The electric potential at a point ( , )x y in the x-y plane is given by V kxy= − . The field intensity
at a distance r in this plane, from the origin is proportional to

(a) r2 (b) r

(c) 1/r (d) 1 2/r

More than One Correct Options

1. Two concentric shells have radii R Rand 2 charges q qA Band and potentials 2 V and ( / )3 2 V

respectively. Now, shell B is earthed and let charges on them become qA ′ and qB ′. Then,

(a) q qA B/ /= 1 2

(b) q qA B′ ′ =/ 1

(c) potential of A after earthing becomes ( / )3 2 V

(d) potential difference between A Band after earthing becomes V /2

2. A particle of mass 2 kg and charge 1 mC is projected vertically with a velocity 10 1ms− . There is

a uniform horizontal electric field of 104 N/C, then

(a) the horizontal range of the particle is 10 m (b) the time of flight of the particle is 2 s

(c) the maximum height reached is 5 m (d) the horizontal range of the particle is 5 m

3. At a distance of 5 cm and 10 cm from surface of a uniformly charged solid sphere, the potentials

are 100 V and 75 V respectively. Then,

(a) potential at its surface is 150 V (b) the charge on the sphere is
50

3
10 10× − C

(c) the electric field on the surface is 1500 V/m (d) the electric potential at its centre is 25 V
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4. Three charged particles are in equilibrium under their electrostatic forces only. Then,

(a) the particles must be collinear

(b) all the charges cannot have the same magnitude

(c) all the charges cannot have the same sign

(d) the equilibrium is unstable

5. ChargesQ Q1 2and lie inside and outside respectively of a closed surfaceS. Let E be the field at
any point on S and φbe the flux of E over S.

(a) If Q1 changes, both E and φwill change

(b) If Q2 changes, E will change but φwill  not change

(c) If Q1 0= and Q2 0≠ , then E ≠ 0 but φ =0

(d) If Q1 0≠ and Q2 0= , then E = 0 but φ ≠0

6. An electric dipole is placed at the centre of a sphere. Mark the correct options.

(a) The flux of the electric field through the  sphere is zero

(b) The electric field is zero at every point of  the sphere

(c) The electric field is not zero at anywhere  on the sphere

(d) The electric field is zero on a circle on the  sphere

7. Mark the correct options.

(a) Gauss’s law is valid only for uniform  charge distributions

(b) Gauss’s law is valid only for charges placed in vacuum

(c) The electric field calculated by Gauss’s law is the field due to all the charges

(d) The flux of the electric field through a closed surface due to all the charges is equal to the flux

due to the charges enclosed by the surface

8. Two concentric spherical shells have charges + q and − q as shown in figure. Choose the correct
options.

(a) At A electric field is zero, but electric potential is non-zero

(b) At B electric field and electric potential both are non-zero

(c) At C electric field is zero but electric potential is non-zero

(d) At C electric field and electric potential both are zero

9. A rod is hinged (free to rotate) at its centre O as shown in figure.
Two point charges + +q qand are kept at its two ends. Rod is
placed in uniform electric field E as shown. Space is gravity free.
Choose the correct options.

(a) Net force from the hinge on the rod is zero

(b) Net force from the hinge on the rod is leftwards

(c) Equilibrium of rod is neutral

(d) Equilibrium of rod is stable
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10. Two charges +Q each are fixed at points C Dand . Line AB is the

bisector line of CD. A third charge + q is moved from A to B, then from

B to C.

(a) From A to B electrostatic potential energy will decrease

(b) From A to B electrostatic potential energy will increase

(c) From B to C electrostatic potential energy will increase

(d) From B to C electrostatic potential energy will decrease

Comprehension Based Questions

Passage I (Q. No. 1 to 3)

There are two concentric spherical shell of radii r rand 2 . Initially, a charge Q is given to the

inner shell and both the switches are open.

1. If switch S1 is closed and then opened, charge on the outer shell will be

(a) Q (b) Q/2

(c) − Q (d) − Q/2

2. Now, S2 is closed and opened. The charge flowing through the switch S2 in the process is

(a) Q (b) Q/4

(c) Q/2 (d) 2 3Q/

3. The two steps of the above two problems are repeated n times, the potential difference between

the shells will be

(a)
1

2 41
0

n

Q

r+ ε








π

(b)
1

2 4 0
n

Q

rπε










(c)
1

2 2 0
n

Q

rπε








 (d)

1

2 21
0

n

Q

r− ε








π

Passage II (Q. No. 4 to 7)

A sphere of charge of radius R carries a positive charge whose volume charge density depends

only on the distancer from the ball’s centre asρ ρ= −



0 1

r

R
, whereρ0 is a constant. Assume ε as

the permittivity of space.

4. The magnitude of electric field as a function of the distance r inside the sphere is given by

(a) E
r r

R
=

ε
−











ρ0
2

3 4
(b) E

r r

R
=

ε
−











ρ0
2

4 3

(c) E
r r

R
=

ε
+











ρ0
2

3 4
(d) E

r r

R
=

ε
+











ρ0
2

4 3

220 � Electricity and Magnetism

A

B
DC

r

S2 S1
2r



5. The magnitude of the electric field as a function of the distance r outside the ball is given by

(a) E
R

r
=

ε
ρ0

3

28
(b) E

R

r
=

ε
ρ0

3

212

(c) E
R

r
=

ε
ρ0

2

38
(d) E

R

r
=

ε
ρ0

2

312

6. The value of distance rm at which electric field intensity is maximum is given by

(a) r
R

m =
3

(b) r
R

m = 3

2

(c) r
R

m = 2

3
(d) r

R
m = 4

3

7. The maximum electric field intensity is

(a) E
R

m =
ε

ρ0

9
(b) E

R
m = ερ0

9

(c) E
R

m =
ε

ρ0

3
(d) E

R
m =

ε
ρ0

6

Passage III (Q. No. 8 to 10)

A solid metallic sphere of radius a is surrounded by a conducting spherical shell of radius

b b a( ).> The solid sphere is given a charge Q. A student measures the potential at the surface of

the solid sphere as Va and the potential at the surface of spherical shell as Vb. After taking these

readings, he decides to put charge of − 4Q on the shell. He then noted the readings of the

potential of solid sphere and the shell and found that the potential difference is ∆V . He then

connected the outer spherical shell to the earth by a conducting wire and found that the charge

on the outer surface of the shell as q1.

He then decides to remove the earthing connection from the shell and earthed the inner solid

sphere. Connecting the inner sphere with the earth he observes the charge on the solid sphere as

q2. He then wanted to check what happens if the two are connected by the conducting wire. So he

removed the earthing connection and connected a conducting wire between the solid sphere and

the spherical shell. After the connections were made he found the charge on the outer shell as q3 .

Answer the following questions based on the readings taken by the student at various stages.

8. Potential difference ( )∆V measured by the student between the inner solid sphere and outer

shell after putting a charge − 4Q is

(a) V Va b− 3 (b) 3( )V Va b−
(c) Va (d) V Va b−

9. q2 is

(a) Q (b) Q
a

b







(c) − 4Q (d) zero

10. q3 is

(a)
Q a b

a b

( )+
−

(b)
Qa

b

2

(c)
Q a b

b

( )−
(d) − Qb

a
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Match the Columns

1. Five identical charges are kept at five vertices of a regular hexagon. Match the following two
columns at centre of the hexagon. If in the given situation electric field at centre is E. Then,

Column I Column II

(a) If charge at B is removed, then

electric field will become

(p) 2E

(b) If charge at C is removed, then

electric field will become

(q) E

(c) If charge at D is removed then

electric field will become

(r) zero

(d) If charges at B Cand both are

removed, then electric field will

become

(s) 3 E

Note Only magnitudes of electric field are given.

2. In an electric field E i j= +( $ $)2 4 N/C, electric potential at origin is 0 V. Match the following two
columns.

Column I Column II

(a) Potential at ( , )4 0m (p) 8 V

(b) Potential at ( , )−4 0m (q) – 8 V

(c) Potential at ( , )0 4m (r) 16 V

(d) Potential at (0, – 4 m) (s) – 16 V

3. Electric potential on the surface of a solid sphere of charge is V . Radius of the sphere is 1m.
Match the following two columns.

Column I Column II

(a) Electric potential at r
R=
2

(p) V

4

(b) Electric potential at r R= 2 (q) V

2

(c) Electric field at r
R=
2

(r) 3

4

V

(d) Electric field at r R= 2 (s) None of these

4. Match the following two columns.

Column I Column II

(a) Electric potential (p) [ ]MLT A–3 1−

(b) Electric field (q) [ ]ML T A3 3 1− −

(c) Electric flux (r) [ ]ML T A2 3 1− −

(d) Permittivity of free space (s) None of these
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5. Match the following two columns.

Column I Column II

(a) Electric field due to

charged spherical shell

(p)

(b) Electric potential due to

charged spherical shell

(q)

(c) Electric field due to

charged solid sphere

(r)

(d) Electric potential due to

charged solid sphere

(s) None of these

Subjective Questions
1. A 4.00 kg block carrying a charge Q = 50.0 Cµ is connected to a spring for which k = 100 N/ m.

The block lies on a frictionless horizontal track, and the system is immersed in a uniform

electric field of magnitude E = ×5.00 V/ m105 , directed as shown in figure. If the block is

released from rest when the spring is unstretched (at x = 0 ).

(a) By what maximum amount does the spring expand?

(b) What is the equilibrium position of the block?

(c) Show that the block’s motion is simple harmonic and determine its period.

(d) Repeat part (a) if the coefficient of kinetic friction between block and surface is 0.2.

2. A particle of mass m and charge −Q is constrained to move along the axis of a ring of radius a.

The ring carries a uniform charge density +λ along its length. Initially, the particle is in the

centre of the ring where the force on it is zero. Show that the period of oscillation of the particle

when it is displaced slightly from its equilibrium position is given by

T
ma

Q
= 2

2 0
2

π ε
λ
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3. Three identical conducting plane parallel plates, each of area A are held with equal separation
d between successive surfaces. Charges Q Q, ,2 and 3Q are placed on them. Neglecting edge
effects, find the distribution of charges on the six surfaces.

4. A long non-conducting, massless rod of length L pivoted at its centre and balanced with a
weight w at a distance x from the left end. At the left and right ends of the rod are attached
small conducting spheres with positive charges q and 2q respectively. A distance h directly
beneath each of these spheres is a fixed sphere with positive charge Q.

(a) Find the distance x where the rod is horizontal and balanced.

(b) What value should h have so that the rod exerts no vertical force on the bearing when the rod is

horizontal and balanced?

Note Ignore the force between Q (beneath q) and 2q and the force between Q (beneath 2q) and q. Also the force
between Q and Q.

5. The electric potential varies in space according to the relation V x y= +3 4 . A particle of mass
10 kg starts from rest from point (2, 3.2) m under the influence of this field. Find the velocity of
the particle when it crosses the x-axis. The charge on the particle is +1 µC. Assume V x y( , ) are
in SI units.

6. A simple pendulum with a bob of mass m = 1 kg, charge q = 5 µC and string length l = 1 m is

given a horizontal velocity u in a uniform electric field E = ×2 106 V m/ at its bottommost point

A, as shown in figure. It is given that the speed u is such that the particle leaves the circle at

point C. Find the speed u (Take g = 10 2m/ s )

7. Eight point charges of magnitude Q are arranged to form the corners of a cube of side L. The
arrangement is made in manner such that the nearest neighbour of any charge has the
opposite sign. Initially, the charges are held at rest. If the system is let free to move, what
happens to the arrangement? Does the cube-shape shrink or expand? Calculate the velocity of
each charge when the side-length of the cube formation changes from L to nL. Assume that the
mass of each point charge is m.

8. There are two concentric spherical shells of radii r and 2r. Initially, a charge Q is given to the
inner shell. Now, switch S1 is closed and opened then S2 is closed and opened and the process is
repeated n times for both the keys alternatively. Find the final potential difference between
the shells.
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9. Two point charges Q1 and Q2 are positioned at points 1 and 2. The field intensity to the right of
the charge Q2 on the line that passes through the two charges varies according to a law that is
represented schematically in the figure. The field intensity is assumed to be positive if its
direction coincides with the positive direction on the x-axis. The distance between the charges
is l.

(a) Find the sign of each charge.

(b) Find the ratio of the absolute values of the charges
Q

Q

1

2

(c) Find the value of b where the field intensity is maximum.

10. A conducting sphere S1 of radius r is attached to an insulating handle. Another conducting
sphere S2 of radius R r( )> is mounted on an insulating stand, S2 is initially uncharged. S1 is
given a charge Q. Brought into contact with S2 and removed. S1 is recharged such that the
charge on it is againQ and it is again brought into contact withS2 and removed. This procedure
is repeated n times.

(a) Find the electrostatic energy of S2 after n such contacts with S1.

(b) What is the limiting value of this energy as n → ∞?

11. A proton of mass m and accelerated by a potential difference V gets into a uniform electric field
of a parallel plate capacitor parallel to plates of length l at mid-point of its separation between
plates. The field strength in it varies with time as E at= , where a is a positive constant. Find
the angle of deviation of the proton as it comes out of the capacitor. (Assume that it does not
collide with any of the plates.)

12. Two fixed, equal, positive charges, each of magnitude 5 10 5× − C are located at points A and B
separated by a distance of 6 m. An equal and opposite charge moves towards them along the
line COD, the perpendicular bisector of the line AB. The moving charge when it reaches the
point C at a distance of 4 m from O, has a kinetic energy of 4 J. Calculate the distance of the
farthest point D which the negative charge will reach before returning towards C.

13. Positive charge Q is uniformly distributed throughout the volume of a sphere of radius R. A
point mass having charge +q and mass m is fired towards the centre of the sphere with velocity
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v from a point A at distance r r R( )> from the centre of the sphere. Find the minimum velocity v
so that it can penetrate R 2 distance of the sphere. Neglect any resistance other than electric
interaction. Charge on the small mass remains constant throughout the motion.

14. Two concentric rings placed in a gravity free region in yz-plane one of radius R carries a charge
+ Q and second of radius 4R and charge −8Q distributed uniformly over it. Find the minimum
velocity with which a point charge of mass m and charge +q should be projected from a point at
a distance 3R from the centre of rings on its axis so that it will reach to the centre of the rings.

15. An electric dipole is placed at a distance x from centre O on the axis of a charged ring of radius
R and charge Q uniformly distributed over it.

(a) Find the net force acting on the dipole.

(b) What is the work done in rotating the dipole through 180°?

16. A point charge −q revolves around a fixed charge +Q in elliptical orbit. The minimum and
maximum distance of q from Q are r1 and r2 , respectively. The mass of revolving particle is m.
Q q> and assume no gravitational effects. Find the velocity of q at positions when it is at r1 and
r2 distance from Q.

17. Three concentric, thin, spherical, metallic shells have radii 1, 2, and 4 cm and they are held at
potentials 10, 0 and 40 V respectively. Taking the origin at the common centre, calculate the
following:

(a) Potential at r = 1.25 cm

(b) Potential at r = 2.5 cm

(c) Electric field at r = 1.25 cm

18. A thin insulating wire is stretched along the diameter of an insulated circular hoop of radius R.
A small bead of mass m and charge −q is threaded onto the wire. Two small identical charges
are tied to the hoop at points opposite to each other, so that the diameter passing through them
is perpendicular to the thread (see figure). The bead is released at a point which is a distance x0

from the centre of the hoop.  Assume that x R0 << .

(a) What is the resultant force acting on the charged bead?

(b) Describe (qualitatively) the motion of the bead after it is released.

(c) Use the assumption that
x

R
<<1 to obtain an approximate equation of motion, and find the

displacement and velocity of the bead as functions of time.

(d) When will the velocity of the bead will become zero for the first time?

226 � Electricity and Magnetism

O

R

x

–q +q

2a

+Q

R

x0

(– )q m,

+Q

x

y



19. The region between two concentric spheres of radii a and b a( )> contains volume charge

density ρ( ) ,r
C

r
= where C is a constant and r is the radial distance as shown in figure. A point

charge q is placed at the origin, r = 0.

Find the value of C for which the electric field in the region between the spheres is constant (i.e.
r independent).

20. A non-conducting ring of mass m and radius R is charged as shown. The charge density, i.e.
charge per unit length is λ . It is then placed on a rough non-conducting horizontal plane. At
time t = 0, a uniform electric field E i= E0

$ is switched on and the ring starts rolling without
sliding. Determine the friction force (magnitude and direction) acting on the ring when it starts
moving.

21. A rectangular tank of mass m0 and charge Q over it is placed on a smooth horizontal floor. A
horizontal electric field E exists in the region. Rain drops are falling vertically in the tank at
the constant rate of n drops per second. Mass of each drop is m. Find velocity of tank as function
of time.

22. In a region, an electric field E = 15 N/C making an angle of 30° with the horizontal plane is
present. A ball having charge 2C, mass 3 kg and coefficient of restitution with ground 1/2 is
projected at an angle of 30° with the horizontal in the direction of electric field with speed
20 m/s. Find the horizontal distance travelled by ball from first drop to the second drop.
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Answers

Introductory Exercise 24.1
1. No, as attraction can take place between a charged and an uncharged body too.

2. Yes

3. Record gets charged when cleaned and then by induction, it attracts dust particles.

4. − ×2.89 10 C
5

Introductory Exercise 24.2

1. 2.27 10
39× 2. [ ]M L T A

–1 –3 4 2
,

C

V m-

3.
3

4 0

2

πε
q

a







4.
1

2 0

2

πε
⋅ 





q

a

5. No 6. Induction → Conduction → Repulsion 7. Yes

8. No 9. (–
$ $

)4 3i j+ N

Introductory Exercise 24.3
1. False 2. At A 3. False 4. False

5. q1and q3 are positive and q2 is negative 6.
1

4 0

2πε
⋅ q

a

7. – (
$ $

) /4.32 5.76 N Ci j+ × 10
2

Introductory Exercise 24.4
1. 18.97 m/s 2. – 9 mJ 3. – 10.6 10 J

–8× 4. No, Yes

Introductory Exercise 24.5

1. 1.2 10 V
3× 2. (a)

C

m
2

(b)
1

4
1

0πε
α× +











L d
L

d
– ln

3. V
q d

d

= ⋅
+ +

+













1

4 20

2 2

2 2πε l

l l

l l

ln

–

4.
Qq

L2 0πε

Introductory Exercise 24.6

1. (a) E i j= – (
$

–
$
)2a x y (b) E i j= +– (

$ $
)a y x

2.

3. False 4. (a) Zero (b) 20 V (c) – 20 V (d) – 20 V

Introductory Exercise 24.7

1. (a) Zero (b)
q

ε0

(c)
q

2 0ε
2. True 3. (a) Zero (b) πR E

2 4. Zero

2 4 8–2

–5

5

x (m)

E (V/m)



Exercises

LEVEL 1

Assertion and Reason

1. (b) 2. (a,b) 3. (d) 4. (b) 5. (b) 6. (d) 7. (a,b) 8. (d) 9. (c) 10. (b)

Objective Questions

1. (c) 2. (a) 3. (b) 4. (c) 5. (d) 6. (b) 7. (c) 8. (a) 9. (c) 10. (d)

11. (a) 12. (a) 13. (d) 14. (b) 15. (b) 16. (c) 17. (d) 18. (c) 19. (a) 20. (d)

21. (a) 22. (d) 23. (d) 24. (c) 25. (a) 26. (c) 27. (a) 28. (b) 29. (a) 30. (d)

31. (b) 32. (b) 33. (a) 34. (a) 35. (a) 36. (d) 37. (d) 38. (d) 39. (a)

Subjective Questions

1. q
Q=
2

2.
F

F

e

g

= ×3.1 10
35 3. 5.31 10 C m

–11 2× / 4.
qx

R8
2

0

3π ε

5. ±3 1µ µC C, m 8.
q

24 0ε
, zero 9. (a) q q1 29= (b) q q1 225= −

10. (a) Third charge is − 4

9

q
at a distance of

L

3
from q between the two charges.

11.
4

3

0

2
1 2

π ε mgR









/

12. 3.3 10 C
–8× 13. ( )2 2 1

8 0

2
+ q

aπε

14. (
$ $

)14.4 10.8j i− N/C 15.
λ

π ε2 0R
16.

Q

a L a2 40

2 2π ε +

17. (a) Along positive y-axis (b) Along positive x-axis (c) Along positive y-axis

18. 9.30 19. 312.5 m 20. (a) 37° and 53° (b) 1.66 10 s,
7× −

2.2 10 s
–7×

21. (a) (
$
) /− ×2.1 m s

2
10

13 j (b) (1.5 2.0 ) 10 m/s
5$ $

i j+ ×

22. At x = 40 cm and x = − 200 cm 23. V
Q

a
= 2.634

4 0π ε

24. (a) − × −
6 10 J

4
(b) 50 V 25. 7.42 m/s, faster

26. (a)
−5

4 0

Q

Rπ ε
(b)

−

+

5

4 0

2 2

Q

R zπ ε
27. – 0.356 J

28. (a) –3.6 10 J
–7× (b) x 0.0743 m= 29. −q/2

30. (a) zero (b) − 20 kV 31. (a) −80 V (b) 120 V (c) 0 V

32. (a) –80 V (b) – 40 V

33. (a) [ ]MT A
–3 –1

(b) − + + + + +A y z x z x y{( )
$

( )
$

( )
$

i j k} (c) 20 3 N/C 34. –100 V

35. (a) E Ay Bx E Ax C Ex y z= − + = − − =2 0, , , (b) x C A y BC A= − = −/ , / ,2
2

any value of z

36. 3.19 nC 37. (a) − ×4.07 10
N m

C

5

2
-

(b) 6.91 nC (c) No 38. 240
N m

C

2
-

39. 2.2 10 C
–12×

41. (a) φ = −s CL
1

2
, φ = − φ =s sDL CL

2 3

2 2
, , φ = φ = − φ =s s sDL BL BL

4 5 6

2 2 2

,
, , (b) zero



42.
q

Rε0
2

1
1

1

−
+











( / )l

43.
q

2
1

1

20ε
−





44.
Q R r

R r4 0

2 2πε
+
+









 45.

q0

03ε
46. 2q, Zero

47. (a) V a b c V
a

b
b cA B= − + = − +








σ
ε

σ
ε0 0

2

( ), , V
a

c

b

c
cC = − +








σ
ε0

2 2

(b) c a b= +

48. (a)
−Q

a

Q

a4 4
2 2π π

, (b)
− +Q

a

Q q

a4 4
2 2π π

, (c)
Q

x4 0

2πε
in both situations

49. Inner surface of B q→ − , outer surface of B
b

c
q→ , inner surface of C

bq

c
→ −





, outer surface of

C
b

c
q→ −





1

50. A B C

Inner Surface 0 –
6

11
q

18

11
q

Outer Surface
6

11
q –

18

11
q

9

11
q

51. A B C

Inner Surface – q –2q
4

3
q

Outer Surface 2 q –
4

3
q

2

3
q

52. (a)
Q

r2 0

2πε
(b)

Q

R3 0πε
(c) zero on inner and Q on outer (d)

Q

3

53. (a)
Q

R

Q

R4 60 0πε πε
, (b)

−Q

R25 0

2π ε
$r (c)

Q

R

2

04π ε
(d) Q

Q
Q

Q
1 2

2

7

2
= =, (e)

−3

50 0

2

Q

Rπ ε
$r

LEVEL 2

Single Correct Option

1.(a) 2.(a) 3.(a) 4.(b) 5.(a) 6.(c) 7.(d) 8.(a) 9.(c) 10.(a)

11.(c) 12.(a) 13.(d) 14.(d) 15.(c) 16.(b) 17.(c) 18.(d) 19.(a) 20.(d)

21.(d) 22.(a) 23.(a) 24.(d) 25.(c) 26.(c) 27.(b) 28.(d) 29.(a) 30.(c)

31.(a) 32.(a) 33.(b) 34.(b) 35.(c) 36.(c) 37.(a) 38.(b)

More than One Correct Options

1.(a,d) 2.(a,b,c) 3.(a,b,c) 4.(all) 5.(a,b,c) 6.(a,c) 7.(c,d) 8.(a,b,d) 9.(b,c) 10.(b,c)

Comprehension Based Questions

1.(c) 2.(c) 3.(a) 4.(a) 5.(b) 6.(c) 7.(a) 8.(d) 9.(b) 10.(c)
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Match the Columns

1. (a) → s (b) → q (c) → r (d) → p

2. (a) → q (b) → p (c) → s (d) → r

3. (a) → s (b) → q (c) → q (d) → p

4. (a) → r (b) → p (c) → q (d) → s

5. (a) → p (b) → q (c) → r (d) → s

Subjective Questions
1. (a) 0.5 m (b) 0.25 m (c) 1.26 s (d) 0.34 m 3. 3 2 2 0 0 3Q Q Q Q, , , , ,−

4. (a)
L Qq

Wh2
1

4 0

2
+











( )π ε

(b)
3

4 0

Qq

W( )π ε
5. 2.0 10 m/s

3× −

6. 6 m/s 7. shrink,
Q n

nm L

2

0

1 3 6 2 3 3

4 6

( ) ( )− + −
π ε

8.
1

2 4
1

0

n

Q

r
+









π ε

9. (a) Q2 is negative and Q1 is positive (b)
l a

a

+







2

(c)
l

l a

a

+





 −

2 3

1

/

10. (a)
q

R

n

2

08π ε
, where q

QR

r

R

R r
n

n

= −
+























1 (b)
Q R

r

2

0

2
8π ε

11. θ = 







tan
–1

2

4 2

al

V

m

eV
12. 72 m 13.

1

2

3

80

1

2

πε
Qq

Rm

r R

r

–
+


















14.
Qq

mR2

3 10 5

5 100πε
–







 15. (a)

aqQ R x

R x2

2

0

2 2

2 2 5 2πε
–

( )
/+

(b)
aqQx

R xπε0
2 2 3 2

( )
/+

16.
Q q r

mr r r

2

0 1 1 22πε ( )+
,

Qq r

mr r r

1

0 2 1 22πε ( )+
17. (a) 6 V (b) 16 V (c) 1280 V/m

18. (a) F
kQqx

R x
=

+
–

( )
/

2

2 2 3 2
(b) Periodic between ± x0

(c) x x t= 0 cos ω , v x t= – sinω ω0 , where ω = 2

3

Qqk

mR
(d) t

mR

Qqk
= π2 3

2
, Here k =

ε
1

4 0π

19. C
q

a
=

2
2π

20. f RE= λ 0 along positive x-axis

21. v QE
t

m mnt
=

+










0

22. 70 3 m
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25.1 Capacitance
In practice, we cannot handle free point charges or hold them fixed at desired positions. A practical

way to handle a charge would be to put it on a conductor. Thus, one use of a conductor is to store

electric charge (or electric potential energy). But, every conductor has its maximum limit of storing

the electric charge or potential energy. Beyond that limit, the dielectric in which the conductor is

placed, becomes ionized. A capacitor is a device which can store more electric charge or potential

energy compared to an isolated conductor.

Capacitors have a tremendous number of applications. In the flash light used by photographers, the

energy and charge stored in a capacitor are recovered quickly. In other applications, the energy is

released more slowly.

Capacitance of an Isolated Conductor
When a charge q is given to a conductor, it spreads over the outer surface of the

conductor. The whole conductor comes to the same potential (say V ). This

potential V is directly proportional to the charge q, i.e.

V q∝

When the proportionality sign is removed, a constant of proportionality
1

C

comes in picture.

Hence, V
q

C
=

or C
q

V
=

Here, C is called the capacitance of the conductor. The SI unit of capacitance is called one farad

(1 F). One farad is equal to one coulomb per volt ( )1C /V

∴ 1 F 1farad 1C/V 1 coulomb volt= = = /

Note (i) An obvious question arises in mind that when a conductor stores electric charge and energy then why

not the unit of capacitance is coulomb or joule. For example, the capacity of a storage tank is given in

litres (the unit of volume) or gallons not in the name of some scientist. The reason is simple the capacity

of tank does not depend on medium in which it is kept. While the capacity of a conductor to store charge

(or energy) depends on the medium in which it is kept. It varies from medium to medium. So, it is difficult

to express the capacity in terms of coulomb or joule. Because in that case we will have to mention the

medium also.

For example, we will say like this, capacity of this conductor in water is 1 C in oil it is5 C, etc. On the other

hand, the C discussed above gives us an idea about the dimensions of the conductor nothing about the

charge which it can store because as we said earlier also it will vary from medium to medium. By

knowing the C (or the dimensions of conductor) a physics student can easily find the maximum charge

which it can store, provided the medium is also given.

(ii) Farad in itself is a large unit. Microfarad ( )µF is used more frequently.

Method of Finding Capacitance of a Conductor
Give a charge q to the conductor. Find potential on it due to charge q. This potential V will be a

function of q and finally find q /V, which is the desired capacitance C.
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Capacitance of a Spherical Conductor
When a charge q is given to a spherical conductor of radius R, the potential on

it is

V
q

R
= ⋅

1

4 0πε

From this expression, we find that
q

V
R C= =4πε0

Thus, capacitance of the spherical conductor is

C R= 4 0πε
From this expression, we can draw the following conclusions :

(i) C R∝ or C depends on R only. Which we have already stated that C depends on the dimensions

of the conductor. Moreover if two conductors have radii R1 and R2 , then

C

C

R

R

1

2

1

2

=

(ii) Earth is also a spherical conductor of radius R = ×6.4 m106 . The capacity of earth is therefore,

C =
×









 ×

1

9 10
10

9

6( )6.4

≈ ×711 10 6– F

or C = 711µF

From here, we can see that farad is a large unit. As capacity of such a huge conductor is

only F711µ .

� Dielectric strength of an insulator In an insulator, most of the electrons are tightly bounded with the

nucleus. If an electric field is applied on this insulator, an electrostatic force acts on these electrons in the

opposite direction of electric field. As electric field increases, this force also increases. After a certain value

of electric field, force becomes so large that these bounded electrons are knocked out or ionized. This

maximum electric field is called dielectric strength of insulator. Its unit is N/C or V/m.

� With the help of capacitance (or dimensions of conductor) and dielectric strength of an insulator we can

determine the maximum charge or energy which can be stored by this conductor.

V Example 25.1 Capacitance of a conductor is 1 µF. What charge is required to
raise its potential to 100V ?

Solution Using the equation

q CV=
We have, q = ( ) ( )1 100µF V

= 100µC Ans.

Chapter 25 Capacitors � 235

+

+

+ + +

+

+

+

+

+

+++

+

+ R

q

+

Fig. 25.2

Extra Points to Remember



V Example 25.2 Radius of a spherical conductor is 2 m. This is kept in a

dielectric medium of dielectric constant 106 N C/ . Find

(a) capacitance of the conductor

(b) maximum charge which can be stored on this conductor.

Solution (a) C R= 4 0πε

=
×









1

9 10
2

9
( )

= × −2.2 F10 10 Ans.

(b) Maximum electric field on the surface of spherical conductor is

E
q

R
= 1

4 0
2πε

This should not exceed 106 N/C.

∴ E
q

R
max

max= =1

4
10

0
2

6

πε

⇒ q Rmax = ( ) ( )4 100
2 6πε

=
×











1

9 10
2 10

9

2 6( ) ( )

= × −4.4 C10 4 Ans.

25.2 Energy Stored in a Charged Capacitor
Work has to be done in charging a conductor against the force of repulsion by the already existing

charges on it. This work is stored as a potential energy in the electric field of the conductor. Suppose a

conductor of capacity C is charged to a potentialV0 and let q0 be the charge on the conductor at this

instant. The potential of the conductor when (during charging) the charge on it was q q( )< 0 is

V
q

C
=

Now, work done in bringing a small charge dq at this potential is

dW Vdq
q

C
dq= = 





∴ Total work done in charging it from 0 to q0 is

W dW
q

= ∫0

0 = ∫
q

C
dq

q

0

0 =
1

2

0
2q

C

This work is stored as the potential energy,

∴ U
q

C
=

1

2

0
2
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Further by using q CV0 0= , we can write this expression also as

U CV q V= =
1

2

1

2
0
2

0 0

In general, if a conductor of capacity C is charged to a potential V by giving it a charge q, then

U CV
q

C
qV= = =

1

2

1

2

1

2

2
2

Redistribution of Charge
Let us take an analogous example. Some liquid is filled in two vessels of different sizes upto different

heights. These are joined through a valve which was initially closed. When the valve is opened, the

level in both the vessels becomes equal but the volume of liquid in the right side vessel is more than

the liquid in the left side vessel. This is because the base area (or capacity) of this vessel is more.

Now, suppose two conductors of capacities C1 and C2 have charges q1 and q2 respectively when they

are joined together by a conducting wire, charge redistributes in these conductors in the ratio of their

capacities. Charge redistributes till potential of both the conductors becomes equal. Thus, let q1′ and

q2′ be the final charges on them, then

q C′ ∝ or
q

q

C

C

1

2

1

2

′

′
=

and if they are spherical conductors, then

C

C

R

R

1

2

1

2

=

∴
q

q

C

C

R

R

1

2

1

2

1

2

′
′

= =
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Since, the total charge is ( )q q1 2+ . Therefore,

q
C

C C
q q

R

R R
q q1

1

1 2
1 2

1

1 2
1 2′ =

+






 + =

+






 +( ) ( )

and q
C

C C
q q

R

R R
q q2

2

1 2
1 2

2

1 2
1 2′ =

+






 + =

+






 +( ) ( )

Note The common potential is given by

V
Total charge

Total capacity

q q

C C
= = +

+
1 2

1 2

Loss of Energy During Redistribution of Charge
We can show that in redistribution of charge energy is always lost.

Initial potential energy, U
q

C

q

C
i = +

1

2

1

2

1
2

1

2
2

2

Final potential energy, U
q q

C C
f =

+
+

1

2

1 2
2

1 2

( )

∆U U U
q

C

q

C

q q

C C
i f= = +

+
+













– –
( )1

2

1
2

1

2
2

2

1 2
2

1 2

or ∆U
C C C C

q C C q C q C q C C=
+

+ + +
1

2 1 2 1 2
1
2

1 2 1
2

2
2

2
2

1
2

2
2

1 2
( )

[

– – – ]q C C q C C q q C C1
2

1 2 2
2

1 2 1 2 1 22

=
+

+












C C

C C C C

q

C

q

C

q q

C C

1
2

2
2

1 2 1 2

1
2

1
2

2
2

2
2

1 2

1 22

2

( )
–

=
+

+
C C

C C
V V V V

1 2

1 2
1
2

2
2

1 2
2

2
( )

[ – ]

or ∆U
C C

C C
V V=

+
1 2

1 2
1 2

2

2 ( )
( – )

Now, asC C1 2, and ( – )V V1 2
2 are always positive.U Ui f> , i.e. there is a decrease in energy. Hence,

energy is always lost in redistribution of charge. Further,

∆U =0 if V V1 2=
this is because no flow of charge takes place when both the conductors are at same potential.

V Example 25.3 Two isolated spherical conductors have radii 5 cm and 10 cm,
respectively. They have charges of 12 µC and – 3 µC. Find the charges after they
are connected by a conducting wire. Also find the common potential after
redistribution.
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Solution

Net charge C C= =( – )12 3 9µ µ
Charge is distributed in the ratio of their capacities (or radii in case of spherical conductors), i.e.

q

q

R

R

1

2

1

2

5

10

1

2

′
′

= = =

∴ q1

1

1 2
9 3′ =

+






 =( ) µC

and q2

2

1 2
9 6′ =

+






 =( ) µC

Common potential, V
q q

C C R R
=

+
+

= ×
+

1 2

1 2

6

0 1 2

9 10

4

( )

( )

–

πε

= × ×
×

( ) ( )

( )

–

–

9 10 9 10

15 10

6 9

2

= ×5.4 V105 Ans.

V Example 25.4 An insulated conductor initially free from charge is charged by
repeated contacts with a plate which after each contact is replenished to a
charge Q. If q is the charge on the conductor after first operation prove that the

maximum charge which can be given to the conductor in this way is
Qq

Q q–
.

Solution Let C1 be the capacity of plate and C2 that of the conductor. After first contact

charge on conductor is q. Therefore, charge on plate will remain Q q– . As the charge redistrib-

utes in the ratio of capacities.

Q q

q

C

C

– = 1

2

…(i)

Let qm be the maximum charge which can be given to the conductor. Then, flow of charge from

the plate to the conductor will stop when,

V Vconductor plate=

∴
q

C

Q

C

m

2 1

= ⇒ q
C

C
Qm = 






2

1

Substituting
C

C

2

1

from Eq. (i), we get

q
Qq

Q q
m =

–
Hence Proved.
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V Example 25.5 A conducting sphere S1 of radius r is attached to an insulating
handle. Another conducting sphere S2 of radius R is mounted on an insulating
stand. S2 is initially uncharged. S1 is given a charge Q, brought into contact
with S2 and removed. S1 is recharged such that the charge on it is again Q and
it is again brought into contact with S2 and removed. This procedure is
repeated n times. (JEE 1998)

(a) Find the electrostatic energy of S2 after n such contacts with S1.

(b) What is the limiting value of this energy as n → ∞ ?

Solution Capacities of conducting spheres are in the ratio of their radii. Let C1 and C2 be the

capacities of S1 and S 2 , then

C

C

R

r

2

1

=

(a) Charges are distributed in the ratio of their capacities. Let in the first contact, charge

acquired by S 2 is q1 . Therefore, charge on S1will be Q q− 1 . Say it is q ′
1

∴
q

q

q

Q q

C

C

R

r

1

1

1

1

2

1′
=

−
= =

∴ q Q
R

R r
1 =

+






 …(i)

In the second contact, S1 again acquires the same charge Q.

Therefore, total charge in S1 and S 2will be

Q q Q
R

R r
+ = +

+






1 1

This charge is again distributed in the same ratio. Therefore, charge on S 2 in second contact,

q Q
R

R r

R

R r
2 1= +

+








+








=
+

+
+





















Q
R

R r

R

R r

2

Similarly, q Q
R

R r

R

R r

R

R r
3

2 3

=
+

+
+







 +

+




















and q Q
R

R r

R

R r

R

R r
n

n

=
+

+
+







 + +

+




















2

...

or q Q
R

r

R

R r
n

n

= −
+





















1 …(ii)

S
a r

r
n

n

= −
−











( )

( )

1

1
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Therefore, electrostatic energy of S 2after n such contacts

=
q

R

n
2

02 4( )πε
or U

q

R
n

n=
2

08πε

where, qn can be written from Eq. (ii).

(b) As n → ∞

q Q
R

r
∞ =

∴ U
q

C

Q R r

R
∞

∞= =
2 2 2 2

2 8

/

πε0

or U
Q R

r
∞ =

2

0
28 πε

1. Find the dimensions of capacitance.

2. No charge will flow when two conductors having the same charge are connected to each other.

Is this statement true or false?

3. Two conductors of capacitance 1µF and 2 µF are charged to +10 V and −20 V. They are now

connected by a conducting wire. Find

(a) their common potential

(b) the final charges on them

(c) the loss of energy during redistribution of charges.

25.3 Capacitors
Any two conductors separated by an insulator (or a vacuum) form a

capacitor.

In most practical applications, each conductor initially has zero net

charge, and electrons are transferred from one conductor to the other.

This is called charging of the conductor. Then, the two conductors have

charges with equal magnitude and opposite sign, and the net charge on

the capacitor as a whole remains zero. When we say that a capacitor has charge q we

mean that the conductor at higher potential has charge + q and the conductor at lower

potential has charge – q. In circuit diagram, a capacitor is represented by two parallel

lines as shown in Fig. 25.7.

One common way to charge a capacitor is to connect the two conductors to opposite terminals of a
battery. This gives a fixed potential differenceVab between the conductors, which is just equal to the

voltage of the battery. The ratio
q

Vab

is called the capacitance of the capacitor. Hence,

C
q

Vab

= (capacitance of a capacitor)

Chapter 25 Capacitors � 241

INTRODUCTORY EXERCISE 25.1

+q

a b

–q

Fig. 25.6

Fig. 25.7



Calculation of Capacitance
Give a charge +q to one plate and −q to the other plate. Then, find potential differenceV between the

plates. Now,

C
q

V
=

Parallel Plate Capacitor
Two metallic parallel plates of any shape but of same size and separated by a small distance constitute

parallel plate capacitor. Suppose the area of each plate is A and the separation between the two plates

is d. Also assume that the space between the plates contains vacuum.

We put a charge q on one plate and a charge – q on the other. This can be done either by connecting

one plate with the positive terminal and the other with negative plate of a battery [as shown in Fig. (a)]

or by connecting one plate to the earth and by giving a charge + q to the other plate only. This charge

will induce a charge – q on the earthed plate. The charges will appear on the facing surfaces. The

charge density on each of these surfaces has a magnitude σ = q A/ .

If the plates are large as compared to the separation between them, then the electric field between the

plates (at point B) is uniform and perpendicular to the plates except for a small region near the edge.

The magnitude of this uniform field E may be calculated by using the fact that both positive and

negative plates produce the electric field in the same direction (from positive plate towards negative

plate) of magnitude σ/ ε2 0 and therefore, the net electric field between the plates will be

E = + =
σ
ε

σ
ε

σ
ε2 20 0 0
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Outside the plates (at points A and C) the field due to positive sheet of charge and negative sheet of

charge are in opposite directions. Therefore, net field at these points is zero.

The potential difference between the plates is

∴ V E d d
qd

A
= ⋅ =







 =

σ
ε ε0 0

∴ The capacitance of the parallel plate capacitor is

C
q

V

A

d
= =

ε 0

or C
A

d
=

ε 0

Note (i) Instead of two plates if there are n similar plates at equal distances from each other and the alternate

plates are connected together, the capacitance of the arrangement is given by

C
n A

d
= ( – )1 0ε

(ii) From the above relation, it is clear that the capacitance depends only on geometrical factors (A and d).

Effect of Dielectrics
Most capacitors have a dielectric between their conducting plates. Placing a solid dielectric between

the plates of a capacitor serves the following three functions :

(i) It solves the problem of maintaining two large metal sheets at a very small separation without

actual contact.

(ii) It increases the maximum possible potential difference which can be applied between the plates

of the capacitor without the dielectric breakdown. Many dielectric materials can tolerate stronger

electric fields without breakdown than can air.

(iii) It increases the capacitance of the capacitor.

When a dielectric material is inserted between the plates (keeping the charge to be constant) the

electric field and hence the potential difference decreases by a factor K (the dielectric constant of

the dielectric).

∴ E
E

K
= 0

and V
V

K
= 0

(When q is constant)
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Electric field is decreased because an induced charge of the opposite sign

appears on each surface of the dielectric. This induced charge produces an

electric field inside the dielectric in opposite directions and as a result net

electric field is decreased. The induced charge in the dielectric can be

calculated as under

E E E i= 0 – or
E

K
E E i

0
0= –

∴ E E
K

i = 



0 1

1
–

Therefore,
σ
ε

σ
ε

i

K0 0

1
1

= 





–

or σ σi
K

= −





1
1

or q q
K

i = 





1
1

–

For a conductor K = ∞. Hence,

q qi i= =, σ σ and E =0

and otherwise q qi <

Thus, q qi i≤ ≤, σ σ

Hence, we can conclude the above discussion as under:

(i) E E
q

A
vacuum = = =0

0 0

σ
ε ε

(ii) E
E

K
dielectric = 0

(here, K = dielectric constant)

(iii) Econductor =0 ( )as K = ∞
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If we plot a graph between potential and distance

from positive plate, it will be as shown in

Fig. 25.13: Modulus of,

Slope of AB = slope of CD = slope of EF E= 0

Slope of BC
E

K
= 0

and slope of DE =0

Further, the potential difference between positive

and negative plate is

V V E d
E

K
d E d E d+ = + ⋅ + + +– – 0

0
0 00

= + ⋅3 0
0

E d
E

K
d

Here we have used PD = Ed. (in uniform electric field)

Capacitance of a Capacitor Partially Filled with Dielectric

Suppose, a dielectric is partially filled with a dielectric (dielectric constant = K) as shown in figure. If

a charge q is given to the capacitor, an induced charge q i is developed on the dielectric.

where, q q
K

i = 





1
1

–

Moreover, if E0 is the electric field in the region where dielectric is absent, then electric field inside

the dielectric will be E E K= 0/ . The potential difference between the plates of the capacitor is

V V V= + – – = +Et E d t0 ( – )

= +
E

K
t E d t

0
0 ( – ) = +





E d t
t

K
0 –

= +





= +





σ
ε ε0 0

d t
t

K

q

A
d t

t

K
– –

Chapter 25 Capacitors � 245

+

+

+

+

+

+

+

+

+

–

–

–

–

–

–

–

–

–

–q

–

–

–

–

–

–

–

–

–

+

+

+

+

+

+

+

+

+

K

t

d

q –qi qi

⇒ E

E0

t d t–

Fig. 25.14

A

B
C

D E

F

V+

V–

O d 2d 3d 4d 5d
Distance

Potential

Fig. 25.13



Now, as per the definition of capacitance,

C
q

V

A

d t
t

K

= =
+

ε 0

–

or C
A

d t
t

K

=
+

ε 0

–

Different Cases
(i) If more than one dielectric slabs are placed between the capacitor, then

C
A

d t t t
t

K

t

K

t

K
n

n

n

=
… + + +… +









ε 0

1 2
1

1

2

2

( – – – – )

(ii) If the slab completely filles the space between the plates, then t d= and

therefore,

C
A

d K

K A

d
= =

ε ε0 0

/

(iii) If a conducting slab ( )K = ∞ is placed between the plates, then

C
A

d t
t

A

d t
=

+
∞

=
ε ε0 0

–
–

This can be explained from the following figure:

(iv) If the space between the plates is completely filled with a conductor, then t d= and K = ∞.

Then, C
A

d d
d

=
+

∞

= ∞
ε 0

–
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The significance of infinite capacitance can be explained as under:

If one of the plates of a capacitor is earthed and the second one is given a charge q, then the whole

charge transfers to earth and as the capacity of earth is very large compared to the capacitor we can

say that the capacitance has become infinite.

Alternatively, if the plates of the capacitor are connected to a battery, the current starts flowing in the

circuit. Thus, is as much charge enters the positive plate of the capacitor, the same charge leaves the

negative plate. So, we can say, the positive plate can accept infinite amount of charge or its

capacitance has become infinite.

Energy Stored in Charged Capacitor
A charged capacitor stores an electric potential energy in it, which is equal to the work required to

charge it. This energy can be recovered if the capacitor is allowed to discharge. If the charging is done

by a battery, electrical energy is stored at the expense of chemical energy of battery.

Suppose at time t, a charge q is present on the capacitor and V is the potential of the capacitor. If dq

amount of charge is brought against the forces of the field due to the charge already present on the

capacitor, the additional work needed will be

dW dq V
q

C
dq= = 





⋅( ) ( / )asV q C=

∴ Total work to charge a capacitor to a charge q0 ,

W dW
q

C
dq

q

C

q
= = 





⋅ =∫ ∫0

0
2

0

2

∴ Energy stored by a charged capacitor,

U W
q

C
CV q V= = = =0

2

0
2

0 0

1

2

1

22

Thus, if a capacitor is given a charge q, the potential energy stored in it is

U CV
q

C
qV= = =

1

2

1

2

1

2

2
2

The above relation shows that the charged capacitor is the electrical analog of a stretched spring

whose elastic potential energy is
1

2

2Kx . The charge q is analogous to the elongation x and
1

C
, i.e. the

reciprocal of capacitance to the force constant k.

Chapter 25 Capacitors � 247

q
q

q

q

(b)(a)

Fig. 25.18



� Capacitance of a spherical conductor enclosed by an earthed concentric spherical shell

If a charge q is given to the inner spherical conductor, it spreads over the outer surface of it and a charge

– q appears on the inner surface of the shell. The electric field is produced only between the two. From the

principle of generator, the potential difference between the two will depend on the inner charge q only and

is given by

V
q

a b
= 



4

1 1

0πε
–

Hence, the capacitance of this system

C
q

V
=

or C
a b

ab

b a
= −





= 





4

1 1
40 0πε πε

–

From this expression we see that if b = ∞,C a= 4 0πε , which corresponds to that of an isolated sphere, i.e.

the charged sphere may be regarded as a capacitor in which the outer surface has been removed to

infinity.

� Capacitance of a cylindrical capacitor When a metallic cylinder of radius a is placed coaxially inside

an earthed hollow metallic cylinder of radius b a( )> we get cylindrical capacitor. If a charge q is given to the

inner cylinder, induced charge – q will reach to the inner surface of the outer cylinder. Assume that the

capacitor is of very large length ( )l b>> so that the lines of force are radial. Using Gauss’s law, we can

prove that

E r
r

( ) = λ
πε2 0

for a r b≤ ≤

Here, λ = charge per unit length

Therefore, the potential difference between the cylinders

V
r
dr

b

a
d

b

a

b

a

= ⋅ = = 



∫∫– – lnE r

λ
πε

λ
πε2 20 0

∴ λ
V

= =charge length

potential difference

capacitance

le

/

ngth
= 2 0πε

ln ( / )b a

Hence, capacitance per unit length = 2 0πε
ln ( / )b a
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V Example 25.6 A parallel-plate capacitor has capacitance of 1.0 F. If the plates
are 1.0 mm apart, what is the area of the plates?

Solution Q C
A

d
=

ε0

∴ A
Cd= =

×

−

−ε0

3

12

1 10( ) ( )

8.86 10

= ×1.1 108 m2

V Example 25.7 Two parallel plate vacuum capacitors have areas A1 and A2

and equal plate spacing d. Show that when the capacitors are connected in
parallel, the equivalent capacitance is the same as for a single capacitor with
plate area A A1 2+ and spacing d. Note : In parallel C C C= +1 2 .

Solution C C C= +1 2 (in parallel)

∴
ε ε ε0 0 1 0 2A

d

A

d

A

d
= +

or A A A= +1 2

V Example 25.8 (a) Two spheres have radii a and b and their centres are at a
distance d apart. Show that the capacitance of this system is

C

a b d

=
+ ±

4

1 1 2
0πε

provided that d is large compared with a and b.

(b) Show that as d approaches infinity the above result reduces to that of two isolated

spheres in series. Note : In series,
1 1 1

1 2C C C
= + .

Solution (a) PD, V V V= −1 2

= −





− − +








1

4 0πε
q

a

q

d

q

b

q

d

∴ C
q

V

a b d

= =
+ −

4

1 1 2
0πε

If − q is given to first sphere and + q to second sphere, then

C

a b d

=
+ +

4

1 1 2
0πε
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(b) If d → ∞,  then C

a b

=
+

4

1 1
0πε

=
+

( ) ( )4 0πε ab

a b

In series, C
C C

C C
net =

+
1 2

1 2

=
+

( ) ( )

( ) ( )

4 4

4 4

0 0

0 0

π ε π ε
π ε πε

a b

a b
=

+
( )4 0πε ab

a b
Hence Proved.

1. A capacitor has a capacitance of 7.28 Fµ . What amount of charge must be placed on each of its

plates to make the potential difference between its plates equal to25.0 V?

2. A parallel plate air capacitor of capacitance 245µFhas a charge of magnitude0.148 Cµ on each

plate. The plates are 0.328 mm apart.

(a) What is the potential difference between the plates?

(b) What is the area of each plate?

(c) What is the surface charge density on each plate?

3. Two parallel plates have equal and opposite charges. When the space between the plates is

evacuated, the electric field is E0
510= ×3.20 V/m. When the space is filled with dielectric, the

electric field is E = ×2.50 V/m105 .

(a) What is the dielectric constant?

(b) What is the charge density on each surface of the dielectric?

25.4 Mechanical Force on a Charged Conductor
We know that similar charges repel each other, hence the charge on any part of

surface of the conductor is repelled by the charge on its remaining part. The

surface of the conductor thus experiences a mechanical force.

The electric field at any point P near the conductor’s surface can be assumed

as due to a small part of the surface of area say ∆S immediately in the

neighbourhood of the point under consideration and due to the rest of the

surface. Let E1 and E2 be the field intensities due to these parts respectively.

Then, total electric field, E E E= +1 2

E has a magnitude σ/ε 0 at any point P just outside the conductor and is zero at point Q just inside the

conductor. Thus,

E E1 2 0+ = σ/ε at P

and E E1 2 0– = at Q

∴ E E1 2
02

= =
σ
ε

Hence, the force experienced by small surface of area ∆S due to the charge on the rest of the surface is

F qE S E
S

= = =2 2

2

02
( ) ( )

( ) ( )
σ

σ
ε

∆
∆
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∴
Force

Area
= = =

F

S
E

∆
σ
ε

ε
2

0
0

2

2

1

2
as E =









σ
ε 0

∴
Force

Area
=

1

2
0

2ε E

Force between the Plates of a Capacitor
Consider a parallel plate capacitor with plate area A. Suppose a positive charge q is given to one plate
and a negative charge – q to the other plate. The electric field on the negative plate due to positive
charge is

E
q

A
= =

σ
ε ε2 20 0

The magnitude of force on the charge in negative plate is

F qE
q

A
= =

2

02 ε

This is the force with which both the plates attract each other. Thus,

F
q

A
=

2

02 ε

V Example 25.9 A capacitor is given a charge q. The distance between the plates
of the capacitor is d. One of the plates is fixed and the other plate is moved
away from the other till the distance between them becomes 2d. Find the work
done by the external force.

Solution When one plate is fixed, the other is attracted towards the first with a force

F
q

A
= =

2

02 ε
constant

Hence, an external force of same magnitude will have to be applied in opposite direction to

increase the separation between the plates.

∴ W F d d= ( – )2 = q d

A

2

02 ε
Ans.

Alternate solution W U= ∆ =U Uf i– = q

C

q

Cf i

2 2

2 2
– …(i)

Here, C
A

d
f =

ε0

2
and C

A

d
i =

ε0

Substituting in Eq. (i), we have

W
q

A

d

q

A

d

=












2

0

2

02
2

2
ε ε

– = q d

A

2

02ε
Ans.
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25.5 Capacitors in Series and Parallel
In Series

In a series connection, the magnitude of charge on all plates is same. The potential is distributed in the

inverse ratio of the capacity ( / / )as orV q C V C= ∝ 1 . Thus, in the figure, if a potential difference V

is applied across the two capacitors C1 and C2 , then

V

V

C

C

1

2

2

1

=

or V
C

C C
V1

2

1 2

=
+







 and V

C

C C
V2

1

1 2

=
+









Further, in the figure, V V V= +1 2 or
q

C

q

C

q

C
= +

1 2

or
1 1 1

1 2C C C
= +

Here, C is the equivalent capacitance.

The equivalent capacitance of the series combination is defined as the capacitance of a single

capacitor for which the charge q is the same as for the combination, when the same potential

difference V is applied across it. In other words, the combination can be replaced by an equivalent

capacitor of capacitance C. We can extend this analysis to any number of capacitors in series. We find

the following result for the equivalent capacitance.

1 1 1 1

1 2 3C C C C
= + + +…

Following points are important in case of series combination of capacitors.

(i) In a series connection, the equivalent capacitance is always less than any individual capacitance.

(ii) For the equivalent capacitance of two capacitors it is better to remember the following form

C
C C

C C
=

+
1 2

1 2

For example, equivalent capacitance of two capacitors C1 6= µF and C2 3= µF is

C
C C

C C
=

+
1 2

1 2

=
×
+









6 3

6 3
µF =2 µF

(iii) If n capacitors of equal capacity C are connected in series, then their equivalent capacitance is
C

n
.
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V Example 25.10 In the circuit shown in figure, find

(a) the equivalent capacitance,

(b) the charge stored in each capacitor and

(c) the potential difference across each capacitor.

Solution (a) The equivalent capacitance

C
C C

C C
=

+
1 2

1 2

or C =
+

=( ) ( )2 3

2 3
1.2 Fµ Ans.

(b) The charge q stored in each capacitor is

q CV= = ×( ) ( )–1.2 C10 1006

= 120 µC Ans.

(c) In series combination, V
C

∝ 1
or

V

V

C

C

1

2

2

1

=

∴ V
C

C C
V1

2

1 2

3

2 3
100 60=

+






 =

+






 =( ) V

and V V V2 1 100 60= =– – = 40 V Ans.

In Parallel

The arrangement shown in figure is called a parallel connection. In a parallel combination, the

potential difference for all individual capacitors is the same and the total charge q is distributed in the

ratio of their capacities. (as q CV= or q C∝ for same potential difference). Thus,

q

q

C

C

1

2

1

2

=
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or q
C

C C
q1

1

1 2

=
+







 and q

C

C C
q2

2

1 2

=
+









The parallel combination is equivalent to a single capacitor with the same total charge q q q= +1 2

and potential difference V.

Thus, q q q= +1 2

or CV C V C V= +1 2

or C C C= +1 2

In the same way, we can show that for any number of capacitors in parallel,

C C C C= + + +…1 2 3

In a parallel combination, the equivalent capacitance is always greater than any individual

capacitance.

V Example 25.11 In the circuit shown in figure, find

(a) the equivalent capacitance and

(b) the charge stored in each capacitor.

Solution (a) The capacitors are in parallel. Hence, the equivalent capacitance is

C C C C= + +1 2 3

or C = + + =( )1 2 3 6µF Ans.

(b) Total charge drawn from the battery,

q CV= = ×6 100µC = 600µC

This charge will be distributed in the ratio of their capacities. Hence,

q q q C C C1 2 3 1 2 3 1 2 3: : : : : := =

∴ q1

1

1 2 3
600 100=

+ +






 × = µC

q2

2

1 2 3
600 200=

+ +






 × = µC

and q3

3

1 2 3
600 300=

+ +






 × = µC. Ans.
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Alternate solution Since the capacitors are in parallel, the PD across each of them is 100 V.

Therefore, from q CV= , the charge stored in 1µF capacitor is 100µC, in 2µF capacitor is 200µC

and that in 3µF capacitor is 300µC.

1. Find charges on different capacitors.

2. Find charges on different capacitors.

25.6 Two Laws in Capacitors
Like an electric circuit having resistances and batteries in a complex circuit containing capacitors and

the batteries charges on different capacitors can be obtained with the help of Kirchhoff ’s laws.

First Law
This law is basically law of conservation of charge which is normally applied across a battery or in an

isolated system.

(i) In case of a battery, both terminals of the battery supply equal amount of charge.

(ii) In an isolated system (not connected to any source of charge like terminal of a battery or earth)

net charge remains constant.

For example, in the Fig. 25.31, the positive terminal of the battery supplies a positive charge q q1 2+ .

Similarly, the negative terminal supplies a negative charge of magnitude q q3 4+ . Hence,

q q q q1 2 3 4+ = +
Further, the plates enclosed by the dotted lines form an isolated system, as they are neither connected

to a battery terminal nor to the earth. Initially, no charge was present in these plates. Hence, after

charging net charge on these plates should also be zero. Or,

q q q3 5 1 0+ =– and q q q4 2 5 0– – =

Chapter 25 Capacitors � 255

INTRODUCTORY EXERCISE 25.3

3 Fµ

15 V

4 Fµ

2 Fµ

Fig. 25.29

4 Fµ

40 V

9 Fµ

3 Fµ

Fig. 25.30



So, these are the three equations which can be obtained from the first law.

Second Law
In a capacitor, potential drops by q C/ when one moves from positive plate to the negative plate and in

a battery it drops by an amount equal to the emf of the battery. Applying second law in loop

ABGHEFA, we have

– –
q

C

q

C
V

1

1

3

3

0+ =

Similarly, the second law in loop GMDIG gives the equation,

– –
q

C

q

C

q

C

1

1

5

5

2

2

0+ =

V Example 25.12 Find the charges on the three capacitors shown in figure.

Solution Let the charges in three capacitors be as

shown in Fig. 25.33.

Charge supplied by 10 V battery is q1 and that from 20 V

battery is q2 . Thus,

q q q1 2 3+ = …(i)

This relation can also be obtained by a different method.

The charges on the three plates which are in contact add

to zero. Because these plates taken together form an

isolated system which can’t receive charges from the batteries. Thus,

q q q3 1 2 0– – =
or q q q3 1 2= +
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Applying second law in loops BMFAB and MDEFM, we have

– –
q q1 3

2 6
10 0+ =

or q q3 13 60+ = …(ii)

and
q q2 3

4
20

6
0– + =

or 3 2 2402 3q q+ = …(iii)

Solving the above three equations, we have

q1

10

3
= µC

q2

140

3
= µC

and q3 50= µC

Thus, charges on different capacitors are as shown in

Fig. 25.34.

Note In the problem q1 , q2 and q3 are already in microcoulombs.

25.7 Energy Density (u)
The potential energy of a charged conductor or a capacitor is stored in the electric field. The energy

per unit volume is called the energy density ( )u . Energy density in a dielectric medium is given by

u KE=
1

2
0

2ε

This relation shows that the energy stored per unit volume depends on E 2 . If E is the electric field in a

space of volume dV , then the total stored energy in an electrostatic field is given by

U K E dV= ∫
1

2
0

2ε

and if E is uniform throughout the volume (electric field between the plates of a capacitor is almost

uniform), then the total stored energy can be given by

U u K E V= =( )Total volume
1

2
0

2ε

V Example 25.13 Using the concept of energy density, find the total energy
stored in a

(a) parallel plate capacitor

(b) charged spherical conductor.

Solution (a) Electric field is uniform between the plates of the capacitor. The magnitude of

this field is
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E
q

A
= =σ

ε ε0 0

Therefore, the energy density ( )u should also be constant.

u E
q

A
= =1

2 2
0

2
2

2
0

ε
ε

∴ Total stored energy,

U u= ( ) (total volume)

=








 ⋅q

A
A d

2

2
02 ε

( ) =






q

A

d

2

02
ε

= q

C

2

2
as C

A

d
=





ε0

∴ U
q

C
=

2

2
Ans.

(b) In case of a spherical conductor (of radius R) the excess charge resides on the outer surface

of the conductor. The field inside the conductor is zero. It extends from surface to infinity.

And since the potential energy is stored in the field only, it will be stored in the region

extending from surface to infinity. But as the field is non-uniform, the energy density u is

also non-uniform. So, the total energy will be calculated by integration. Electric field at a

distance r from the centre is

E
q

r
= ⋅1

4 0
2πε

∴ u r E( ) = 1

2
0

2ε

= ⋅








1

2

1

4
0

0
2

2

ε
πε

q

r

Energy stored in a volum dV r dr= ( )4 2π is

dU u dV=

∴ Total energy stored, U dU
r R

r
=

=

= ∞
∫

Substituting the values, we get

U
q

R
=

2

02 4( )πε

or U
q

C
=

2

2
Ans.

( )as C R= 4 0πε
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25.8 C R- Circuits

Charging of a Capacitor in C-R Circuit
To understand the charging of a capacitor in C-R circuit, let us first consider the charging of a

capacitor without resistance.

Consider a capacitor connected to a battery of emf V through a switch S. When we close the switch the

capacitor gets charged immediately. Charging takes no time. A charge q CV0 = appears in the

capacitor as soon as switch is closed and the q-t graph in this case is a straight line parallel to t-axis as

shown in Fig. 25.39

If there is some resistance in the circuit charging takes some time. Because

resistance opposes the charging (or current flow in the circuit). Final charge

(called steady state charge) is still q0 but it is acquired after a long period of

time. The q-t equation in this case is

q q e
t C= 0 1( – )

– /τ

Here, q CV0 = and τC CR= = time constant.

q-t graph is an exponentially increasing graph. The charge q increases exponentially from 0 to q0 .

From the graph and equation, we see that

at t q= =0 0, and at t q q= ∞ =, 0
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Definition of τ
C

At t C= τ , q q e= 0
11( – )– ≈ 0.632 q0

Hence, τC can be defined as the time in which 63.2% charging is over. Note that τC is the time.

Hence, [ ] [ ]τC = time

or [ ]CR = [M L T]0 0

Proof : Now, let us derive the q-t relation discussed above.

Suppose the switch is closed at time t =0. At some instant of time, let charge in the capacitor is

q q( )< 0 and it is still increasing and hence current is flowing in the circuit.

Applying loop law in ABEDA, we get

– –
q

C
iR V+ =0

Here, i
dq

dt
=

∴ – –
q

C

dq

dt
R V







+ =0

∴
dq

V
q

C

dt

R
–

=

or
dq

V
q

C

dt

R

q t

–
0 0∫ ∫=

This gives q CV e

t

CR= ( – )
–

1

Substituting CV q= 0 and CR C= τ , we have

q q e
t C= 0 1( – ).

– /τ

Charging Current
Current flows in a C-R circuit during charging of a capacitor. Once charging is over or the steady state

condition is reached the current becomes zero. The current at any time t can be calculated by

differentiating q with respect to t. Hence,

i
dq

dt

d

dt
q e

t C= = { ( – )}
– /

0 1
τ

or i
q

e
C

t C= 0

τ
τ– /

Substituting q CV0 = and τC CR= , we have

i
V

R
e

t C= – /τ
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By letting,
V

R
i= 0 i i e

t C= 0
– /τ

i.e. current decreases exponentially with time.

The i-t graph is as shown in Fig. 25.43.

Here, i
V

R
0 = is the current at time t =0. This is the current which would had

been in the absence of capacitor in the circuit.

Discharging of a Capacitor in C-R Circuit
To understand discharging through a C-R circuit again we first consider the discharging without

resistance.

Suppose a capacitor has a charge q0 . The positive plate

has a charge + q0 and negative plate – q0 . It implies that

the positive plate has deficiency of electrons and negative

plate has excess of electrons. When the switch is closed,

the extra electrons on negative plate immediately rush to

the positive plate and net charge on both plates becomes

zero. So, we can say that discharging takes place

immediately.

In case of a C-R circuit, discharging also takes time. Final charge on the capacitor is still zero but after

sufficiently long period of time. The q-t equation in this case is

v

q q e
t C= 0

– /τ

Thus, q decreases exponentially from q0 to zero, as shown in Fig. 25.46.

From the graph and the equation, we see that

At t q q= =0 0,

At t q= ∞ =, 0.

Definition of Time Constant ( )τ
C

In case of discharging, definition of τC is changed.

At time t C= τ ,

q q e q= =0
1

0
– 0.368

Hence, in this case τC can be defined as the time when charge reduces to 36.8% of its maximum

value q0 .
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+ –

q0
R

S
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t

q

q0

0.368 q0

t = τC
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Discharging Current
During discharging, current flows in the circuit till q becomes zero. This current can be found by

differentiating q with respect to t but with negative sign because charge is decreasing with time. So,

i
dq

dt
= 





– = – ( )
– /d

dt
q e

t C
0

τ

=
q

e
C

t C0

τ
τ– /

By letting,
q

i
C

0
0τ

=

We have, i i e
t C= 0

– /τ

This is an exponentially decreasing equation. Thus, i-t graph decreases exponentially with time from

i0 to 0. The i-t graph is as shown in Fig. 25.47.

25.9 Methods of Finding Equivalent Resistance and Capacitance
We know that in series,

R R R Rneq = + +… +1 2

and
1 1 1 1

1 2C C C Cneq

= + +… +

and in parallel,
1 1 1 1

1 2R R R Rneq

= + +… +

and C C C Cneq = + +… +1 2

Sometimes there are circuits in which resistances/capacitors are in mixed grouping. To find Req or

Ceq for such circuits few methods are suggested here which will help you in finding Req or Ceq .

Method of Same Potential
Give any arbitrary potentials (V V1 2, , .… etc ) to all terminals of capacitors/resistors. But notice that the

points connected directly by a conducting wire will have at the same potential. The

capacitors/resistors having the same PD are in parallel. Make a table corresponding to the figure.

Now, corresponding to this table a simplified figure can be formed and from this figure Ceq and Req

can be calculated.

V Example 25.14 Find equivalent capacitance between points A and B as shown
in figure.
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t

i

i0

Fig. 25.47

A B

C C C C C C

Fig. 25.48



Solution Three capacitors have PD, V V1 2– . So, they are in parallel. Their equivalent

capacitance is 3C.

Two capacitors have PD,V V2 3– . So, their equivalent capacitance is 2C and lastly there is one

capacitor across which PD isV V2 4– . So, let us make a table corresponding to this information.

Table 25.1

PD Capacitance

V V1 2– 3 C

V V2 3– 2C

V V2 4– C

Now, corresponding to this table, we make a simple figure as shown in Fig. 25.50.

As we have to find the equivalent capacitance between points A and B, across which PD is

V V1 4– . From the simplified figure, we can see that the capacitor of capacitance 2C is out of the

circuit and points A and B are as shown. Now, 3C and C are in series and their equivalent

capacitance is

C
C C

C C
Ceq =

+
=

( ) ( )3

3

3

4
Ans.

EXERCISE Find equivalent capacitance between points A and B.

HINT In case PD across any capacitor comes out to be zero (i.e. the plates are short circuited), then

this capacitor will not store charge. So ignore this capacitor.

Ans.
3

4
C
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A B
V1 V4V1 V2 V2 V1 V1 V2 V2 V3 V3 V2 V2 V4
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A

B

C

2C3C

V1 V2 V2 V3

V2 V4

Fig. 25.50

A B

C C C C C
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EXERCISE Identical metal plates are located in air at equal distance d from one another as

shown in figure. The area of each plate is A. Find the capacitance of the system between points P

and Q if plates are interconnected as shown.

Ans. (a)
2

3

0ε A

d
(b)

3

2

0ε A

d
(c)

2 0ε A

d
(d)

3 0ε A

d

EXERCISE Find equivalent resistance between A and B.

Ans. 1 Ω
EXERCISE Find equivalent capacitance between points A and B.

Ans.
5

3
C.

Infinite Series Problems
This circuit consists of an infinite series of identical loops. To find Ceq or Req of such a series first we

consider by ourself a value (say x) of Ceq or Req . Then, we break the chain in such a manner that only

one loop is left with us and in place of the remaining portion we connect a capacitor or resistor x.

Then, we find the Ceq or Req and put it equal to x. With this we get a quadratic equation in x. By

solving this equation, we can find the desired value of x.
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(a)

(c)

(b)

(d)

P

Q

P

Q

P Q P
Q

Fig. 25.52

A B

2 Ω 6 Ω 3 Ω

Fig. 25.53

A B

C

C C

C

Fig. 25.54



V Example 25.15 An infinite ladder network is constructed with 1 Ω and 2 Ω
resistors as shown. Find the equivalent resistance between points A and B.

Solution Let the equivalent resistance between A and B is x. We

may consider the given circuit as shown in Fig. 25.56.

In this diagram,

R
x

x
AB =

+
+2

2
1 or x

x

x
=

+
+2

2
1 (as R xAB = )

or x x x x( )2 2 2+ = + + or x x2 2 0– – =

x =
± +

= Ω Ω
1 1 8

2
1 2– and

Ignoring the negative value, we have R xAB = = Ω2 Ans.

Note Care should be taken while breaking the chain. It should be broken from those points from where the

broken chain resembles with the original chain.

EXERCISE Find equivalent resistance between A and B.

HINT Let R xAB = , then the resistance of the broken chain will be kx.

Ans. R k k k[( – ) ] /2 1 4 1 22+ +
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A

B

1Ω 1Ω 1Ω

2Ω 2Ω 2Ω ∞

Fig. 25.55

A

B

1Ω

2Ω x

Fig. 25.56

R1

∞

R1 R1

R2 R2 R2 ⇒ x

∞

R1 R1

R2 R2 R2 ⇒ x

R1

R2

R1

R2

Fig. 25.57

A

B

R kR k R2

∞R kR k R2

Fig. 25.58



Method of Symmetry
Symmetry of a circuit can be checked in the following four manners :

1. Points which are symmetrically located about the starting and last points are at same potentials.
So, the resistances/capacitors between these points can be ignored. The following example will
illustrate the theory.

V Example 25.16 Twelve resistors each of resistance r are connected together so
that each lies along the edge of the cube as shown in figure. Find the equivalent
resistance between

(a) 1 and 4 (b) 1 and 3

Solution (a) Between 1 and 4 : Points 2 and 5 are

symmetrically located w.r.t. points 1 and 4. So, they are at

same potentials.

Similarly, points 3 and 8 are also symmetrically located

w.r.t. points 1 and 4. So, they are again at same potential.

Now, we have 12 resistors each of resistance r connected

across 1 and 2, 2 and 3,…, etc. So, redrawing them with the

assumption that 2 and 5 are at same potential and 3 and 8

are at same potential. The new figure is as shown in

Fig.25.60.

Now, we had to find the equivalent resistance between

1 and 4. We can now simplify the circuit as

Thus, the equivalent resistance between points 1 and 4 is
7

12
r. Ans.
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1 4
r

7
5

r

⇒
1 4

7
12

r

1 4

2,5 3,8

r

r / 2

r / 2

r / 2

2r

⇒

1 4
r

r

2
r

2
2
5

r

Fig. 25.61

1 4

76

2,5 3,8

Fig. 25.60

1

2
3

4

5

6
7

8

Fig. 25.59



(b) Between 1 and 3 : Points 6 and 8 are symmetrically located w.r.t. points 1 and 3.

Similarly, points 2 and 4 are located symmetrically w.r.t. points 1 and 3. So, points 6 and 8

are at same potential. Similarly, 2 and 4 are at same potentials. Redrawing the simple circuit,

we have Fig. 25.62.

Between 1 and 3, a balanced Wheatstone bridge is formed as shown in Fig. 25.63.

So, the resistance between 2 and 6 and between 4 and 8 can be removed.

Thus, the equivalent resistance between 1 and 3 is
3

4
r. Ans.

EXERCISE Fourteen identical resistors each of resistance r

are connected as shown. Calculate equivalent resistance

between A and B.

Ans. 1.2r

EXERCISE Eight identical resistances r each are connected along

edges of a pyramid having square base ABCD as shown. Calculate

equivalent resistance between A and O.

Ans.
7

15

r
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r /2
3
2

r

3
2

r

⇒
3r

3

r

1

3

⇒
3
4

1

1

r /2

3

r

Fig. 25.64

BA

Fig. 25.65

r

r

r

r

r

r

r

r

r

r

r

r

6,8 2,4

15

7 3

r / 2

r /2

r /2

3

2
r

3

2
r

1

3

2,46,8

Fig. 25.62 Fig. 25.63

A

B C

D

O

Fig. 25.66



2. If points A and B are connected to a battery and AB is a line of symmetry, then all points lying on

perpendiculars drawn to AB are at the same potential. For example,

In Fig. 25.67, points (1, 2), (3, 4, 5) and (6, 7) are at same potential. So, we can join these points

and draw a simple circuit as shown in Fig. 25.68.

Now, the equivalent of this series combination is

R
r r r r r

eq = + + + =
2 4 4 2

3

2

EXERCISE Solve the same problem by connection removal method (will be discussed later).

3. Even if AB is not a line of symmetry but its perpendicular bisector is, then all the points on this

perpendicular bisector are at the same potential.

For example,

In Fig. (a), AB is not a line of symmetry but, 1, 2 and 3 are line of symmetry. Hence, they are at

same potential (if A and B are connected to a battery). This makes the resistors between 1 & 2 and

2 and 3 redundant because no current flows through them. So, the resistance between them can be
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r

r

r

r

6

72

1

B

rr
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5

V
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⇒
r

r r

r
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A B

r

r rr

r r1

2

r

r r

r r
A B

r

rr

r r

(a) (b)
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removed [as shown in Fig. (b)]. The equivalent resistance between A and B can now be easily

determined as
5

4

r
⋅

4. Each wire in the cube has a resistance r. We

are interested in calculating the equivalent

resistance between A and B.

This is a three-dimensional case and in

place of a line of symmetry involving points

A and B we locate a plane of symmetry

involving A and B.

Such a plane is the plane ABce and for this

plane points d and f and g and h have the

same potential.

The equivalent resistance between A and B

can now be easily worked out (Using

Wheatstone’s bridge principle) as

R
r

eq =
3

4

Connection Removal Method
This method is useful when the circuit diagram is symmetric except for the fact that the input and

output are reversed. That is the flow of current is a mirror image between input and output above a

particular axis. In such cases, some junctions are unnecessarily made. Even if we remove that

junction there is no difference in the remaining circuit or current distribution. But after removing the

junction, the problem becomes very simple. The following example illustrates the theory.

V Example 25.17 Find the equivalent resistance between points A and B.

Solution

Input and output circuits are mirror images of each other about the dotted line as shown.

So, if a current i enters from A and leaves from B, it will distribute as shown below.
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d, f

c

A

e

B

g, h

d e

fc

g B

A h

(b)(a)

⇒

Fig. 25.70

A B

r

r

r

r

rr

r

Fig. 25.71

A B
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Now, we can see in figure that the junction where i2 and i4 are meeting can be removed easily

and then the circuit becomes simple.

Hence, the equivalent resistance between A and B is
8

7
r. Ans.

EXERCISE Eight identical resistances r each are connected as shown. Find equivalent resistance

between A and D.

Ans.
8

15

r

EXERCISE Twelve resistors each of resistance r are connected as shown. Find equivalent

resistance between A and B.

Ans. ( / )4 5 r
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C
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A B
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r
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2r
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EXERCISE Find equivalent resistance between A and B.

Ans.
20

3
Ω.

Wheatstone Bridge Circuits
Wheatstone bridge in case of resistors has already been discussed in the

chapter of current electricity.

For capacitor, theory is same.

If
C

C

C

C

1

2

3

4

= , bridge is said to be balanced and in that case

V VE D= or V VE D– or VED =0

i.e. no charge is stored in C5 . Hence, it can be removed from the circuit.

EXERCISE In the circuit shown in figure, prove that VAB =0 if
R

R

C

C

1

2

2

1

= .

By Distributing Current/Charge
Sometimes none of the above five methods is applicable. So, this one is the last and final method

which can be applied everywhere. Of course this method is a little bit lengthy but is applicable

everywhere, under all conditions. In this method, we assume a main current/charge, i or q. Distribute

it in different resistors/capacitors as i i1 2, … (or q q1 2, , ,… etc.). Using Kirchhoff’s laws, we find

i i1 2, ,… etc., (or q q1 2, , ,… etc.) in terms of i (or q). Then, find the potential difference between

starting and end points through any path and equate it with iR net or q C/ net . By doing so, we can

calculate R net or C net .
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The following example is in support of the theory.

V Example 25.18 Find the equivalent capacitance between A and B.

Solution The given circuit forms a Wheatstone bridge. But the bridge is not balanced. Let us

suppose point A is connected to the positive terminal of a battery and B to the negative terminal

of the same battery; so that a total charge q is stored in the capacitors. Just by seeing input and

output symmetry, we can say that charges will be distributed as shown below.

q q q1 2+ = …(i)

Applying second law, we have

–
q

C
–

q

C

q

C

1 3 2

2 2
0+ =

or q q q2 3 12 0– – = …(ii)

Plates inside the dotted line form an isolated system. Hence,

q q q2 3 1 0+ =– …(iii)

Solving these three equations, we have

q q1

2

5
= , q q2

3

5
= and q

q
3

5
= –

Now, let Ceq be the equivalent capacitance between A and B. Then,

V V
q

C

q

C

q

C
A B– = = +

eq

1 2

2

∴ q

C

q

C

q

C

q

Ceq

= + =2

5

3

10

7

10

∴ C Ceq = 10

7
Ans.
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Final Touch Points

1. Now, onwards we will come across the following integration very frequently. So, remember the result

as such.

If

dx

a bx
c dt

x t

–
0 0

∫ ∫= , then x
a

b
e

bct= ( – )

–

1

and if

dx

a bx
c dt

x

x t

–0
0

∫ ∫= , then x
a

b

a

b
x e

bct= 



– –

–

0

Here, a, b and c are constants.

2. Sometimes a physical quantity x decreases from x
1

to x
2
, exponentially, then x-t equation is like

x x x x e
Kt= +

2 1 2
( – )

–

Here, K is a constant.

Similarly, if x increases from x
2

to x
1

exponentially, then x-t equation is

x x x x e
Kt= +

2 1 2
1( – ) ( – )

–

3. Leakage Current Through a Capacitor The space between the capacitor’s plates is filled with a

dielectric and we assume that no current flows through it when the capacitor is connected to a battery

as in figure (a) or if the capacitor is charged, the charge on its plates remains forever. But every

insulator has some conductivity. On account of which some current flows through the capacitor if

connected to a battery. This small current is known as the leakage current. Similarly, when it is

charged, the charge does not remain as it is for a long period of time. But it starts discharging. Or we

can say it becomes a case of discharging of a capacitor in C-R circuit.

In both the cases, we will first find the resistance of the dielectric.

R
l

A
=

σ
( )σ = specific conductance

Here, l d= (the distance between the plates of the capacitor)

∴ R
d

A
=

σ

Thus, the leakage current in the circuit shown in the figure is

i
V

R
=

Chapter 25 Capacitors � 273

i i

R =

d

Aσ

V

x

t

x2

x1

x

t

x1

x2

x x1 2–

or

+ –

q
0

(a) (b)



Similarly, if the capacitor is given a chargeq
0

at time t = 0, then after time t, q charge will remain on it,

where

q q e
t C=

0

– /τ
(Discharging of a capacitor)

Here, τC CR= = 











K A

d

d

A

ε
σ

0

or τ ε
σC

K= 0

4. If capacitors are in series, then charges on them are equal, provided they are

initially uncharged. This can be proved by the following illustration :

Let us suppose that charges on two capacitors are q
1

and q
2
. The two plates

encircled by dotted lines form an isolated system. So, net charge on them will

remain constant.

Σ Σq qf i=
If initially they are uncharged, then

Σqi = 0

Σqf is also zero

or − + =q q
1 2

0 or q q
1 2

=
So, this proves that charges are equal if initially they are uncharged.

5. Independent parallel circuit

Three circuits shown in figure are independently connected in parallel with the battery. Potential

difference across each of the circuit is V . By this potential difference, capacitor C
1

is immediately

charged. Capacitor C
2

is exponentially charged and current grows immediately in R
3
. Thus,

q CVC
1

1
= (immediately)

q C V eC

t

C R

2

2 2

2
1= −

−
( )

I
V

R
R

3

3

= (immediately)

Note If any resistance or capacitance is connected between abcd, then it no longer remains an independent

parallel circuit.

274 � Electricity and Magnetism

+ –

q
0

⇒ + –

q

At = 0t At = tt

+ – + –
q1 q2

C1

C2 R2

R3

V

a

b C

d



TYPED PROBLEMS

Type 1. In a complex capacitor circuit method of finding values of q and V across different
capacitors if values across one capacitor are known

Concept

In series, q is same and V distributes in inverse ratio of capacity.

As, V
q

C
= ⇒ V

C
∝ 1

(q is same)

If capacitance is double, then V will be half.

In parallel, V is same and q distributes in direct ratio of capacity.

As, q CV= ⇒ q C∝ (V is same)

If C is double, then q is also double.

V Example 1

In the circuit shown in figure potential difference across 3 µF is 10 V. Find potential

difference and charge stored in different capacitors. Also find emf of the battery E.

Solution The given circuit can be simplified as under

V1 : 4 µF is
1

3
rd of 12 µF. Therefore, V1 is thrice of 10 V or 30 V.

V2: 6 µF is half of 12 µF. Therefore, V2 is twice of 10 V or 20 V.

E V V= + +1 210

= + +30 10 20

= 60 V Ans.

Solved Examples

4 Fµ

E

9 Fµ

3 Fµ

5 Fµ

1 Fµ

E

4 Fµ

V1

12 Fµ

10 V

6 Fµ

V2



Potential difference and charge on different capacitors in tabular form are given below.

Table 25.2

Capacitance Potential difference Charge q CV=

4 µF 30 V 120 µC

9 µF 10 V 90 µC

3 µF 10 V 30 µC

5 µF 20 V 100 µC

1µF 20 V 20 µC

Type 2. Configuration of capacitor is changed and change in five quantities q, C, V, U and E is asked

Concept

Some problems are asked when a capacitor is charged through a battery and then the
configuration of capacitor is changed :

(i) either by inserting a dielectric slab or removing the slab (if it already exists) or

(ii) by changing the distance between the plates of capacitor or

(iii) by both.

The questions will be based on the change in electric field, potential, etc. In such problems,
two cases are possible.

Case 1 When battery is removed after charging

If the battery is removed after charging, then the charge stored in the capacitor remains
constant.

q = constant

First of all, find the change in capacitance and according to the formula find the change in
other quantities.

V Example 2 An air capacitor is first charged through a battery. The charging

battery is then removed and a dielectric slab of dielectric constant K = 4 is

inserted between the plates. Simultaneously, the distance between the plates is

reduced to half, then find change in C, E, V and U.

Solution Change in capacitance, C
K A

d

K

d
= ∝ε0

∴ Capacitance will become 8 times K d
d= ′ =





4
2

,

Change in electric field

∴ E E K= 0/

or E
K

∝ 1
(if q = constant)

or the electric field will become
1

4
times its initial value.
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Change in potential difference,

V
q

C
=

or V
C

∝ 1
(if q = constant)

Therefore, potential difference becomes
1

8
times of its initial value.

Alternate method

V Ed=

Electric field has become
1

4
times its initial value and d is reduced to half. Hence, V becomes

1

8
times.

Change in stored potential energy,

U
q

C
= 1

2

2

or U
C

∝ 1
( if q = constant )

Capacitance has become 8 times. Therefore, the stored potential energyU will become
1

8
times.

Case 2 When battery remains connected

If the battery remains connected, the potential difference V becomes constant. So, in the

above example, capacitance will become 8 times.

The charge stored ( )q CV or q C= ∝ will also increase to 8 times. The electric field

E
V

d
E

d
= ∝





or
1

becomes twice and the stored PE orU CV U C= ∝





1

2

2 is 8 times.

Type 3. To find self energy of a system of charges

Concept

The self energy of a system of charges is

U Vdqs

q
= ∫0

This comes out to be equal to
q

C

2

2
in case of a capacitor or conductor.

A point charge does not have any self energy.

V Example 3 Find the electric potential energy of a uniformly charged sphere.

Solution Consider a uniformly charged sphere of radius R having a total charge q0. The

volume charge density is

ρ
π π

= =q

R

q

R

0

3

0
34

3

3

4
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When the radius of the sphere is r, the charge contained in it is

q r
q

R
r= 





= 





4

3

3 0
3

3π ρ

The potential at the surface is

V
q

r

q

R
r= =

4 40

0

0
3

2

πε πε

The charge needed to increase the radius from r to r dr+ is

dq r dr= ( )4 2π ρ

= ⋅3 0
3

2q

R
r dr

∴ The self energy of the sphere is

U V dqs

R
= ∫0

=








 ⋅



∫

q

R
r

q

R
r dr

R
0

0
3

2

0

0
3

2

4

3

πε

= 3

20

0
2

0

q

Rπε
Ans.

V Example 4 Find the electric potential energy of a uniformly charged, thin

spherical shell.

Solution Consider a uniformly charged thin spherical shell of radius R having a total charge

q0. Suppose at some instant a charge q is placed on the shell. The potential at the surface is

V
q

R
=

4 0πε

∴ The self energy of the shell is

U V dqs

q
= ∫0

0

=






∫

q

R
dq

q

4 0
0

0

πε

= q

R

0
2

08πε
Ans.

Type 4. Based on flow of charge when position of a switch is changed

Concept

From the flow of charge we mean that when a switch in a circuit is either closed or opened
or it is shifted from one position to the other, then how much charge will flow through
certain points of the circuit. Such problems can be solved by finding charges on different
capacitors at initial and final positions and then by the difference we can find the charge
flowing through a certain point. The following example will illustrate the theory.
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V Example 5 What charges will flow through A, B and C in the directions shown

in the figure when switch S is closed?

Solution Let us draw two figures and find the charge on both the capacitors before closing the

switch and after closing the switch.

Refer Fig. (a), when switch is open Both capacitors are in series. Hence, their equivalent

capacitance is

C
C C

C C
eq =

+
1 2

1 2

=
+

=( ) ( )2 3

2 3

6

5
µF

Therefore, charge on both capacitors will be same. Hence, using q CV= , we get

q = + 





( )30 60
6

5
µC = 108 µC

Refer Fig. (b), when switch is closed Let q1 and q2 be the charges (in µC ) on two

capacitors. Then, applying second law in upper and lower loops, we have

30
2

01–
q = or q1 60= µC

60
3

02–
q = or q2 180= µC

Charges q1 and q2 can be calculated alternatively by seeing that upper plate of 2 µF capacitor is

connected with positive terminal of 30 V battery. Therefore, they are at the same potential.

Similarly, the lower plate of this capacitor is at the same potential as that of the negative

terminal of 30 V battery. So, we can say that PD across 2 µF capacitor is also 30 V.

∴ q C1 = ( ) ( )PD = ( ) ( )2 30 µC

= 60 µC

Similarly, PD across 3 µF capacitor is same as that between 60 V battery. Hence,

q2 3 60= ( ) ( ) µC

= 180 µC
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(a) (b)

A

B

C

30 V

60 V

2 Fµ

3 Fµ

q1

q2

+

–

+

–

30 V

60 V

2 Fµ

3 Fµ

q

q

+

–

+

–

A

B

C

30 V

60 V

2 Fµ

3 Fµ

S



Now, let qA charge flows from A in the direction shown. This charge goes to the upper plate of

2 µF capacitor. Initially, it had a charge + q and final charge on it is + q1. Hence,

q q qA1 = +
or q q qA = 1 – = 60 108–

= – 48 µC Ans.

Similarly, charge qB goes to the upper plate of 3 µF capacitor and lower plate of 2 µF capacitor.

Initially, both the plates had a charge + q q– or zero. And finally they have a charge ( – )q q2 1 .

Hence,

( – )q q qB2 1 0= +
∴ q q qB = =2 1 180 60– –

= 120 µC Ans.

Charge qC goes to the lower plate of 3 µF capacitor. Initially, it had a charge – q and finally – q2.

Hence,

– (– )q q qC2 = +
∴ q q qC = =– –2 108 180

= – 72 µC Ans.

So, the charges will flow as shown below

Type 5. Based on heat generation or loss of energy during shifting of switch

Concept

By heat generation (or loss of energy), we mean that when a switch is shifted from one position

to the other, what amount of heat will be generated (or loss will be there) in the circuit. Such

problems can be solved by simple energy conservation principle. For this, remember that when

a charge + q flows from negative terminal to the positive terminal inside a battery of emf V is

supplied an energy,

E qV=
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30 V

–

–

+

60 V

+

–

–

+

48 Cµ

48 Cµ

120 Cµ

72 Cµ

48 Cµ

72 Cµ

72 Cµ

2 Fµ

3 Fµ

+

V

q

Energy supplied = qV Energy consumed = qV

+

V

q



and if opposite is the case, i.e. charge + q flows in opposite direction, then it consumes
energy by the same amount.

Now, from energy conservation principle we can find the heat generated (or loss of energy)
in the circuit in shifting the switch.

Heat generated or loss of energy = energy supplied by the battery/batteries

– energy consumed by the battery/batteries + Σ ΣU Ui f– .

Here, ΣUi = energy stored in all the capacitors initially and

ΣU f = energy stored in all the capacitors finally

V Example 6 Find loss of energy in example 5.

Solution In the above example, energy is supplied by 60 V battery and consumed by 30 V

battery. Using E qV= , we have

Energy supplied = ×( ) ( )–72 10 606

= × −4.32 J10 3

Energy consumed = ×( ) ( )–48 10 306

= × −1.44 J10 3

ΣUi = × × ×1

2

6

5
10 906 2– ( )

= × −4.86 J10 3

and ΣU f = × × × + × × ×1

2
2 10 30

1

2
3 10 606 2 6 2– –( ) ( )

= × −6.3 J10 3

∴ Loss of energy = − + − × −( )4.32 1.44 4.86 6.3 J10 3

= × −1.44 J10 3 Ans.

V Example 7 Prove that in charging a capacitor half of the energy supplied by the

battery is stored in the capacitor and remaining half is lost during charging.

Solution When switch S is closed, q CV= charge is stored in the capacitor.

Charge transferred from the battery is also q.

Hence,

energy supplied by the battery = = =qV CV V CV( ) ( ) .2

Half of its energy, i.e.
1

2

2CV is stored in the capacitor and the remaining 50 % or
1

2

2CV is lost.
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S

C

V

⇒

C

V

+ –

+

q

q



Type 6. Two or more than two capacitors are charged from different batteries and then connected
in parallel

Concept

In parallel, they come to a common potential given by

V = Total charge

Total capacity

Moreover, total charge on them distributes in direct ratio of their capacity or we can also

find the final charges on the capacitors by using the equation, q CV=

V Example 8 Three capacitors of capacities 1 2µ µF F, and 3 µF are charged by

10 20V V, and 30 V respectively. Now, positive plates of first two capacitors are

connected with the negative plate of third capacitor on one side and negative

plates of first two capacitors are connected with positive plate of third capacitor

on the other side. Find

(a) common potential V

(b) final charges on different capacitors

Solution

Total charge on all three capacitors = 40 µC

Total capacity = + + =( )1 2 3 6µ µF F

(a) Common potential,

V = Total charge

Total capacity

= 40

6

µ
µ

C

F
= 20

3
volt

(b) q C V1 1 1
20

3

20

3
= = 





=( )µ µF C

q C V2 2 2
20

3

40

3
= = 





=( )µ µF C

q C V3 3 3
20

3
20= = 





=( )µ µF C
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10 Cµ

1 F, 10 Vµ

40 Cµ

2 F, 20 Vµ
− µ40 C

3 F, 30 Vµ

S1

S2

q1
––

–

–

++

+

+

q2

q3

–

–

+

+

V

+ µ40 C

90 Cµ



Type 7. To find final charges on different capacitors when position of switch is changed (opened,
closed or shifted from one position to other position)

Concept

(i) To find current in a C R- circuit at any time t, a capacitor may be assumed a battery of

emf E or V
q

C
= .

(ii) Difference between a normal battery and a capacitor battery is, emf of a normal battery
remains constant while emf of a capacitor battery keeps on changing with q.

(iii) Before changing the position of switch, every loop of the circuit may not be balanced by
Kirchhoff's second equation of potential. So, in a single loop problem rotate a charge q,
either clockwise or anti-clockwise. From this charge q, some of the charges on
capacitors may increase and others may decrease. To check this, always concentrate on
positive plate of each capacitors. If positive charge comes towards this plate, then
charge on this capacitor will increase.

(iv) With these charges, apply Kirchhoff's loop equation and find the final charges on them.

(v) In this redistribution of charges, there is some loss of energy as discussed in type 5.

(vi) If there are only capacitors in the circuit, then redistribution of charges is immediate
and if there are resistors in the circuit, then redistribution is exponential.

(vii) If there are only capacitors, then loss is in the form of electromagnetic waves and if
there are resistors in the circuit, then loss is in the form of heat.

Further, this loss is proportional to R if resistors are in series (H i Rt= 2 or H R∝ as i is
same in series) and this loss is inversely proportional to R if resistors are in parallel

(H
V t

R
=

2

or H
R

∝ 1
as V is same in parallel).

V Example 9 In the circuit shown in figure, switch

S is closed at time t = 0. Find

(a) Initial current at t = 0 and final current at t = ∞ in the

loop.

(b) Total charge q flown from the switch.

(c) Final charges on capacitors in steady state at time

t = ∞.

(d) Loss of energy during redistribution of charges.

(e) Individual loss across 1 Ω and 2 Ω resistance.

Solution (a) At t = 0 Three capacitors may be assumed like batteries of emf 40 V, 20 V and

0 V.

∴ i = Net emf

Total resistance

= + − −
+

40 20 10 20

1 2

= 10 A (anti-clockwise)

At t = ∞ When charge redistribution is complete and loop is balanced by Kirchhoff's second

equation of potential, current in the loop becomes zero, as insulator is filled between the

capacitors.
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S

4F

1F 10V 2F

1Ω

20V

2Ω

–+ – +
40V 20V



(b) Redistribution current was anti-clockwise. So, we can assume that +q charge rotates
anti-clockwise in the loop (between time t = 0 and t = ∞). After this rotation of charges, final
charges on different capacitors are as shown below.

Applying loop equation in loop abcda,

− − + + + − + =( ) ( )40

1
10

40

2
20

4
0

q q q

Solving this equation, we get q = 120

7
C Ans.

(c) Final charges

q q1F C= − = − =40 40
120

7

160

7

q q2 40 40
120

7

400

7
F C= + = + =

q q4F C= = 120

7

(d) Total loss of energy during redistribution

ΣUi = × + × =1

2
1 40

1

2
2 20 12002 2( ) ( ) ( ) ( ) J

ΣU f = × + × + ×1

2

160 7

1

1

2

400 7

2

1

2

120 7

4

2 2 2( / ) ( / ) ( / )

= 1114.3 J

∆ Σ ΣU U Uf i= − = −85.7 J

20 V battery will supply energy but 10 V battery will consume energy. So,

Total energy supplied = × − ×20
120

7
10

120

7
= 171.4 J

Total heat produced = Energy supplied − ∆U

= − −171.4 85.7( ) = 257.1 J Ans.

(e) Resistors are in series. Hence,

H R∝ or
H

H

R

R

1

2

1

2

1

2

1

2
= = =Ω

Ω

∴ H1

1

1 2
=

+






 =( )257.1 85.7 J Ans.

H 2

2

1 2
=

+






 =( )257.1 171.4 J Ans.

Note (i) For making the calculations simple, we have taken capacities in Farad, otherwise Farad is a large unit.

(ii) For two loop problems, we will rotate two charges q1 and q2.
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(40– )q 10V

1Ω

20V

2Ω
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(40+ )q
a
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–
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Type 8. Shortcut method of finding time varying functions in a C-R circuit like q or i etc.

Concept

(i) At time t = 0, when capacitor is uncharged it offers maximum current passing through
it. So, it may be assumed like a conducting wire of zero resistance. With this concept,
find initial values of q or i etc.

(ii) At time t = ∞, when capacitor is fully charged it does not allow current through it, as
insulator is filled between the plates. So, its resistance may be assumed as infinite.
With this concept, find steady state values at time t = ∞ of q or i etc.

(iii) Equivalent time constant To find the equivalent time constant of a circuit, the
following steps are followed :

(a) Short-circuit the battery.

(b) Find net resistance across the capacitor (suppose it is Rnet )

(c) τC R C= ( )net

(iv) In C R- circuit, increase or decrease is always exponential. So, first make exponential
graph and then write exponential equation corresponding to this graph with the time
constant obtained by the method discussed above.

V Example 10 Switch S is closed at time t = 0 in the circuit shown in figure.

(a) Find the time varying quantities in the circuit.

(b) Find their values at time t = 0.

(c) Find their values at time t = ∞
(d) Find time constant of all time varying functions.

(e) Make their exponential graphs and write their exponential equations.

(f) Just write the equations to solve them to find different time varying functions.

Solution (a)

There are four times variable functions i i i1 2 3, , and q.

(b) At t = 0, equivalent resistance of capacitor is zero. So, the simple circuit is as shown below
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3Ω

S

15V

3Ω
6Ω

2F

15V
3Ω

6Ω

2F q

3Ω

+
–

i1 i3

i2

15V
3Ω

6Ω

3Ω

i2
i3i1



Rnet = + ×
+

=3
3 6

3 6
5 Ω

i1
15

5
3= = A ⇒ i

i

2

3

6

3

2

1
= =

∴ i2

2

2 1
3 2=

+
=( )A A

i3
1

2 1
3 1=

+






 =( )A A and q = 0

(c) At t = ∞, equivalent resistance of capacitor is infinite. So, equivalent circuit is as shown below

i i1 3

15

3 6

5

3
= =

+
= A

i2 0=

V V iR2F volt= = = 





=6

5

3
6 10Ω ( )

∴ q CV= = =( ) ( )2 10 20 C

(d) By short-circuiting the battery, the simplified circuit is as shown below

Net resistance across capacitor or ab is

Rnet = + ×
+

=3
3 6

3 6
5 Ω

∴ τ C CR= = =net s( ) ( )2 5 10

(e) Exponential graphs and their exponential equations are as under.

i e e

t t

C
1

10
5

3
3

5

3

5

3

4

3
= + −





= +
−

−τ

i e e

t t

C
2

102 2= =
− −τ

i e e

t t

C
3

101
5

3
1 1 1

2

3
1= + −





− = + −
− −

( ) ( )τ

q e e

t t

C= − = −
− −

20 1 20 1 10( ) ( )τ
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i1
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2
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1

t s( )
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q(C)

3Ω
6Ω3Ω

a
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(f) Unknowns are four: i i i1 2 3, , and q. So, corresponding to the figure of part (a), four equations
are

i i i1 2 3= + …(i)

i
dq

dt
2 = …(ii)

Applying loop equation in left hand side loop,

+ − − − =15 3 3
2

01 2i i
q …(iii)

Applying loop equation in right hand side loop,

+ + − =q
i i

2
3 6 02 3 …(iv)

Solving these equations (with some integration), we can find same time functions as we have
obtained in part (e).

Type 9. To find current and hence potential difference between two points in a wire having a
capacitor

Concept

If charge on capacitor is constant, then current through capacitor wire is zero. If charge is
variable, then current is non-zero. Magnitude of this current is

i
dq

dt
=


 




and direction of this current is towards the positive plate if charge is increasing and away

from the positive plate if charge is decreasing.

V Example 11 In the circuit shown in figure, find Vab at 1 s.

Solution Charge on capacitor is increasing. So, there is a current in the circuit from right to

left. This current is given by

i
dq

dt
= =2 A

At 1 s, q = 2 C.

So, at 1 s, circuit is as shown in figure.

V Va b+ + + =2

2
2 4 10( ) ( )

∴ V Va b−
or Vab = −19 volt Ans.
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Type 10. To find capacitance of a capacitor filled with two or more than two dielectrics

Concept

PQ and MN are two metallic plates.

If we wish to find net capacitance between a and b, then

V V VPS SQ= = 1 ( )say

V V VMT TN= = 2 ( )say

Hence, V V V V V VPS MT SQ TN− = − = −1 2

Therefore, there are two capacitors, one on right hand side and

other on left hand side which are in parallel.

∴ C C C= +RHS LHS

For CRHS , we can use the formula,

C
A

d t t
t

K

t

K

=
− − + +

ε0

1 2
1

1

2

2

V Example 12 What is capacitance of the capacitor shown in figure?

Solution C C C= +LHS RHS

= +
− − + +

K A

d

A

d d d d K d K

1 0 0

2 3

2

2

2

2

ε ε( / ) ( / )

( ) ( / ) ( / )

= +
+











ε0 1 2 3

2 32 2

A

d

K K K

K K

Type 11. To find charge on different capacitors in a C-R circuit

Concept

In a C R- circuit, charge on different capacitors is normally asked either at t t= = ∞0, or
t t= . If nothing is given in the question, then we have to find charges on capacitors at t = ∞
or steady state charges.

In steady state, no current flows through a wire having capacitor. But, if there is any other
closed circuit then current can flow through that circuit. So, first find this current and then
steady state potential difference (say V0 ) across two plates of capacitor. Now,

q CV0 0= = steady state charge
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V Example 13 Find potential difference across the capacitor (obviously in steady

state)

Solution In steady state condition, no current will flow through

the capacitor C. Current in the outer circuit,

i
V V

R R

V

R
= −

+
=2

2 3

Potential difference between A and B,

V V V iR VA B− + + =

∴ V V iR
V

R
R

V
B A− = = 





=
3 3

Note In this problem, charge stored in the capacitor can also be asked, which is equal to q C
V=
3

with positive

charge on B side and negative on A side because V VB A> .

V Example 14 Find the charge stored in the capacitor.

HOW TO PROCEED Insulator is filled between the plates of the

capacitor. Therefore, a capacitor does not allow current flow

through it after charging is over. Hence, in the circuit

current will flow through 3 Ω and 5 Ω resistances and it will

not flow through the capacitor. To find the charge stored in

the capacitor, we need the PD across it. So, first we will find

PD across the capacitor and then apply,

q CV=
where, V PD= across the capacitor.

Solution As we said earlier also, current will flow in loop ABCDA when charging is over. And

this current is

i = =
+

=Net emf

Total resistance

24

5 3
3 A
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i
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i
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R
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Now, PD across the capacitor is equal to the PD across the 5 Ω resistance.

Hence, V V V iRA B= = = =– ( ) ( )3 5 15 V

∴ q CV= = ×( )2 15 µC = 30 µC Ans.

Note V V VA B– = 15 , therefore V VA B> , i.e. the positive charge will be collected on the left plate of the capacitor

and negative on the right plate.

Type 12. To find distribution of charges on different faces on parallel conducting plates

Concept

(i) q q
q

1 6
2

= = Total

(ii) q q2 3= − and q q4 5= −

Note The above two results are proved in example 15.

(iii) Electric field between 2 and 3 is due to the charges q2 and q3 . This electric field is given
by

E
q A= =σ

ε ε0 0

/
[| | | | ]q q q2 3= =

(iv) This electric field is uniform, so potential difference between any two points is given by

V Ed=
(v) If two plates are connected to each other, then distance between the plates is required,

otherwise there is no requirement of that.

V Example 15 Three parallel metallic plates each of area A are kept as shown in

figure and charges q q1 2, and q3 are given to them. Find the resulting charge

distribution on the six surfaces, neglecting edge effects as usual.

Solution The plate separations do not affect the distribution of charge  in this problem.

In the figure, q q qb a= 1 – , q q qd c= 2 –

and q q qf e= 3 – .
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Electric field at point P is zero because this point is lying inside a

conductor.

EP = 0

At P, charge qa will give an electric field towards right. All other

charges q qb c, … , etc., will give the electric field towards left. So,

1

2
0

0
1 2 3

A
q q q q q q q q qa a c c e eε

[ – ( – ) – – ( – ) – – ( – )] =

or 2 01 2 3q q q qa – – – =

or q
q q q

a = + +1 2 3

2

Similarly the condition, ER = 0

will give the result,

q
q q q

f = + +1 2 3

2

From here we may conclude that, half of the sum of all charges appears on each of the

two outermost surfaces of the system of plates.

Further we have a condition,

EQ = 0

1

2
0

0
1 2 3

A
q q q q q q q q qa a c c e eε

[ ( – ) – ( – ) – – ( – )]+ + =

or q q q qc1 2 32 0+ =– –

∴ q
q q q

c = +2 3 1

2

–

q q q
q q q

qb a c= = =1
1 2 3

2
–

– –
–

Similarly, we can show that

q qd e= – .

From here we can find another important result that the pairs of opposite surfaces like b, c

and d,e carry equal and opposite charges.

V Example 16 Three identical metallic plates are kept parallel to one another at a

separation of a and b. The outer plates are connected by a thin conducting wire

and a charge Q is placed on the central plate. Find final charges on all the six

plate’s surfaces.

Solution Let the charge distribution in all the six faces be as shown in figure. While

distributing the charge on different faces, we have used the fact that two opposite faces have

equal and opposite charges on them.
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Net charge on plates A and C is zero. Hence,

q q q q Q2 1 3 1 0– –+ + =
or q q Q2 3+ = …(i)

Further A and C are at same potentials. Hence,

V V V VB A B C– –=
or E a E b1 2=

∴ q

A
a

Q q

A
b1

0

1

0ε ε
⋅ = ⋅–

(A = Area of plates)

∴ q a Q q b1 1= ( – )

∴ q
Qb

a b
1 =

+
…(ii)

Electric field inside any conducting plate (say inside C) is zero. Therefore,

q

A

q

A

q

A

Q q

A

q Q

A

q

A

2

0

1

0

1

0

1

0

1

0

3

02 2 2 2 2 2
0

ε ε ε ε ε ε
–

– –
–+ + + =

∴ q q2 3 0– = …(iii)

Solving these three equations, we get q
Qb

a b
q q

Q
1 2 3

2
=

+
= =,

Hence, charge on different faces are as follows.

Table 25.3

Face Charge

1 q
Q

2
2

=

2 – –q
Qb

a b
1 =

+

3 q
Qb

a b
1 =

+

4 Q q
Qa

a b
– 1 =

+

5 q Q
Qa

a b
1 − =

+
–

6 q
Q

3
2

=
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V Example 17 Area of each plate is A. The conducting plates are connected to a

battery of emf V volts. Find charges q1 to q6 .

Solution Net charge drawn from the battery is zero or

qTotal = 0

∴ q q
q

1 6
2

0= = =Total

V VAB = with V VA B>

∴ | | | |q q CV
A

d
V2 3

0= = = 





ε

q
AV

d
2

0= + ε
and q

AV

d
3

0= − ε

Similarly,

V VBC = with V VC B>

∴ | | | |q q CV
A

d
V4 5

0

2
= = = 





ε

with q
AV

d
5

0

2
= + ε

and q
AV

d
4

0

2
= − ε

Type 13. To find total electrostatic potential energy due to spherical charged shells

Concept

(i) Capacity of a spherical capacitor is given by

C

a b

=
−

4

1 1
0πε

(ii) U
q

C
= 1

2

2
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V Example 18 In the figure shown,

(a) Find q1 to q6.

(b) Total electrostatic potential energy.

Solution (a) q1 0=
q q2 4=
q q q3 2 4= − = −
q q q q4 32 6= − =
q q q5 4 6= − = −
q q q q6 5 7= − =

(b) U U U UTotal = + +1 2 3

Here, U
q

C
1

2

1

1

2

4= ( )

where, C

R R

1
04

1 1

2

=
−

πε

U
q

C
2

2

2

1

2

6= ( )

where, C

R R

2
04

1

2

1

3

=
−

πε

and U
q

C
3

2

3

1

2

7= ( )

where, C

R

R3
0

0

4

1

3

1
4 3=

−
∞

=πε πε ( )
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V Example 19 In the circuit shown in figure switch S is closed at time t = 0. Find

the current through different wires and charge stored on the capacitor at any

time t.

Solution Calculation of τC Equivalent resistance across capacitor after short-circuiting the

battery is

R R
R R

R R
Rnet = +

+
=( ) ( )6 3

6 3
3

∴ τC C R RC= =( ) net 3

Calculation of steady state charge q0 At t = ∞, capacitor is fully charged and no current

flows through it.

PD across capacitor PD across= 3R

= 





V

R
R

9
3( )

= V

3

∴ q
CV

0
3

=

R 3R

C

V

S

6R

R 3R

6R

R 3R

q0

V

6R

+

–

i =
V

R9

Miscellaneous Examples



Now, let charge on the capacitor at any time t be q and current through it is i1. Then,

q q e t C= 0 1( – )– / τ

and i
dq

dt

q
e

C

t C
1

0= =
τ

τ– / …(i)

Applying Kirchhoff’s second law in loop ACDFA, we have

– –6 3 02iR i R V+ =

or 2
3

2i i
V

R
+ = …(ii)

Applying Kirchhoff’s junction law at B, we have

i i i= +1 2 …(iii)

Solving Eqs. (i), (ii) and (iii), we have

i
V

R
i2 1

9

2

3
= – = V

R

q
e

C

t C

9

2

3

0– – /

τ
τ and i

V

R

q
e

C

t C= +
9 3

0

τ
τ– /

V Example 20 In the circuit shown in figure, find the steady state charges on both

the capacitors.

HOW TO PROCEED In steady state a capacitor offers an infinite resistance. Therefore,

the two circuits ABGHA and CDEFC have no relation with each other. Hence, the

battery of emf 10 V is not going to contribute any current in the lower circuit.

Similarly, the battery of emf 20 V will not contribute to the current in the upper

circuit. So, first we will calculate the current in the two circuits, then find the

potential difference VBG and VCF and finally we can connect two batteries of emf

VBG and VCF across the capacitors to find the charges stored in them.

Solution Current in the upper circuit, i1
10

3 2
2=

+
= A

∴ V V V iBG B G= = = × =– 3 3 2 61 V
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Current in the lower circuit, i2

20

4 6
2=

+
= A

∴ V V V iCF C F= = = × =– 4 4 2 82 V

Charge on both the capacitors will be same. Let it be q. Applying Kirchhoff’s second law in loop

BGFCB,

– – –
– –

6
6 10

8
3 10

0
6 6

q q

×
+

×
=

or
( )10

2
2

6 q =

or q = ×4 10 6– C

or q = 4 µC Ans.

V Example 21 An isolated parallel plate capacitor has circular plates of radius

4.0 cm. If the gap is filled with a partially conducting material of dielectric

constant K and conductivity 5.0 × Ω10 14 1 1– – –m . When the capacitor is charged to

a surface charge density of 15 2µC cm/ , the initial current between the plates is

1.0 µA?

(a) Determine the value of dielectric constant K.

(b) If the total joule heating produced is 7500 J, determine the separation of the capacitor

plates.

Solution (a) This is basically a problem of discharging of a capacitor from inside the

capacitor. Charge at any time t is

q q e t C= 0
– / τ

Here, q0 = (area of plates) (surface charge density)

and discharging current, i
dq

dt

q
e i e

C

t tC C= 





= ⋅ =– – / – /0
0τ

τ τ

Here, i
q q

CRC
0

0 0= =
τ

C
K A

d
= ε0 and R

d

A
=

σ

∴ CR
K= ε
σ

0
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Therefore, i
q

K

q

K
0

0

0

0

0

= =ε
σ

σ
ε

⇒ K
q

i
= σ

ε
0

0 0

Substituting the values, we have

K = × ×
× ×

( ) ( ) ( ) ( )

( ) (

– –

– –

5.0 4.0

1.0 8.86

10 15 10

10 10

14 2 6

6

π
12)

= 4.25 Ans.

(b) U
q

C

q

K A

d

= =1

2

1

2

0
2

0
2

0ε

∴ d
K AU

q
= 2 0

0
2

ε

= × × × × × × ×
× × ×

2 886 10 10 7500

15 10

12 2 2

6

4.25 4.0

4.

. ( )

(

– –

–

π
π 0 4.0× )2

= ×5.0 m10 3– = 5.0 mm Ans.

V Example 22 Three concentric conducting shells A, B and C of

radii a, b and c are as shown in figure. A dielectric of dielectric

constant K is filled between A and B. Find the capacitance

between A and C.

HOW TO PROCEED When the dielectric is filled between A and B, the

electric field will change in this region. Therefore, the potential

difference and hence the capacitance of the system will change. So,

first find the electric field E r( ) in the region a r c≤ ≤ . Then, find the PD ( )V between

A and C and finally the capacitance of the system will be

C
q

V
=

Here, q = charge on A

Solution E r
q

Kr
( ) =

4 0
2πε

for a r b≤ ≤

= q

r4 0
2πε

for b r c≤ ≤

Using, dV d= ⋅∫– E r

the PD between A and C is

∴ V V V
q

Kr
dr

q

r
drA C

a

b

b

c
= = ⋅∫ ∫– – –

4 40
2

0
2πε πε

= 





+ 











q

K a b b c4

1 1 1 1 1

0πε
– – = +





q b a

Kab

c b

bc4 0πε
( – ) ( – )

= +q

Kabc
c b a Ka c b

4 0πε
[ ( – ) ( – )]

∴ The desired capacitance is

C
q

V

Kabc

Ka c b c b a
= =

+
4 0πε

( – ) ( – )
Ans.
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LEVEL 1

Assertion and Reason
Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : From the relation C
q

V
= . We can say that, if more charge q is given to a

conductor, its capacitance should increase.

Reason : Ratio
q

V
will remain constant for a given conductor.

2. Assertion : A parallel plate capacitor is first charged and then distance between the plates is
increased. In this process, electric field between the plates remains the same, while potential
difference gets decreased.

Reason : E
q

A
=

ε0

and V
q

Ad
=

ε0

. Since, q remains same, E will remain same while V will

decrease.

3. Assertion : When an uncharged capacitor is charged by a battery, only 50% of the energy
supplied by a battery is stored in the capacitor.

Reason : Rest 50% is lost.

4. Assertion : Discharging graphs of two C-R circuits having the same value of C is shown in
figure. From the graph we can say that τ τC C1 2

> .

Reason : R R1 2> .

5. Assertion : In series combination, charges on two capacitors are always equal.

Reason : If charges are same, the total potential difference applied across two capacitors will
be distributed in inverse ratio of capacities.

Exercises

1

2

q

t



6. Assertion : Two capacitors are charged from the same battery and then connected as shown.
A current will flow in anti-clockwise direction as soon as switch is closed.

Reason : In steady state charges on two capacitors are in the ratio 1 2: ..

7. Assertion : In the circuit shown in figure no charge will be stored in the capacitor.

Reason : Current through R2 will be zero.

8. Assertion : In the circuit shown in figure, time constant of charging of capacitor is
CR

2
.

Reason : In the absence of capacitor in the circuit, two resistors are in parallel with the
battery.

9. Assertion : Two capacitors are connected in series with a battery. Energy stored across them
is in inverse ratio of their capacity.

Reason : U qV= 1

2
or U qV∝ .

10. Assertion : In the circuit shown in figure, when a dielectric slab is inserted in C2, the
potential difference across C2 will decrease.

Reason : By inserting the slab a current will flow in the circuit in clockwise direction.
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Objective Questions

1. The separation between the plates of a charged parallel- plate capacitor is increased. The force
between the plates

(a) increases (b) decreases

(c) remains same (d) first increases then decreases

2. If the plates of a capacitor are joined together by a conducting wire, then its capacitance

(a) remains unchanged (b) decreases

(c) becomes zero (d) becomes infinite

3. Two metal spheres of radii a band are connected by a thin wire. Their separation is very large
compared to their dimensions. The capacitance of this system is

(a) 4 0πε ( )ab (b) 2 0πε +( )a b

(c) 4 0πε +( )a b (d) 4
2

0

2 2

πε +







a b

4. n identical capacitors are connected in parallel to a potential differenceV . These capacitors are
then reconnected in series, their charges being left undisturbed. The potential difference
obtained is

(a) zero (b) ( )n V− 1 (c) nV (d) n V2

5. In the circuit shown in figure, the ratio of charge on 5 µF and 2 µF capacitor is

(a) 5 4/ (b) 5 3/ (c) 3 8/ (d) None of these

6. In the circuit shown, a potential difference of 60 V is applied across AB. The potential
difference between the points M Nand is

(a) 10 V (b) 15 V (c) 20 V (d) 30 V

7. In Milikan’s oil drop experiment, an oil drop of radius r and charge q is held in equilibrium
between the plates of a charged parallel-plate capacitor when the potential difference is V . To
keep a drop of radius 2r and with a charge 2q in equilibrium between the plates the potential
difference V required is

(a) V (b) 2 V (c) 4 V (d) 8 V
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8. Two large parallel sheets charged uniformly with surface charge
density σ σand − are located as shown in the figure. Which one of
the following graphs shows the variation of electric field along a
line perpendicular to the sheets as one moves from A to B ?

(a) (b)

(c) (d)

9. When the switch is closed, the initial current through the 1 Ω resistor is

(a) 2 A (b) 4 A (c) 3 A (d) 6 A

10. A capacitor of capacitance C carrying charge Q is connected to a source of emf E. Finally, the
charge on capacitor would be

(a) Q (b) Q CE+ (c) CE (d) None of these

11. In the circuit, the potential difference across the capacitor is 10 V. Each resistance is of 3 Ω.
The cell is ideal. The emf of the cell is

(a) 14 V (b) 16 V (c) 18 V (d) 24 V

12. Four identical capacitors are connected in series with a 10 V
battery as shown in the figure. The point N is earthed. The
potentials of points A Band are

(a) 10 V, 0 V

(b) 7.5 V, – 2.5 V

(c) 5 V, – 5 V

(d) 7.5 V, 2.5 V
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13. A capacitor of capacity 2 µF is charged to 100 V. What is the heat generated when this capacitor
is connected in parallel to an another capacitor of same capacity?

(a) 2.5 mJ (b) 5.0 mJ

(c) 10 mJ (d) 4 mJ

14. A charged capacitor is discharged through a resistance. The time constant of the circuit is η .
Then, the value of time constant for the power dissipated through the resistance will be

(a) η (b) 2η
(c) η/2 (d) zero

15. A capacitor is charged by a cell of emf E and the charging battery is then removed. If an
identical capacitor is now inserted in the circuit in parallel with the previous capacitor, the
potential difference across the new capacitor is

(a) 2E (b) E

(c) E /2 (d) zero

16. The potential difference V VA B− between points A Band for the circuit segment shown in
figure at the given instant is

(a) 12 V (b) – 12 V

(c) 6 V (d) – 6 V

17. For the circuit arrangement shown in figure, in the steady state condition charge on the
capacitor is

(a) 12 µC (b) 14 µC

(c) 20 µC (d) 18 µC

18. In the circuit as shown in figure if all the symbols have their usual meanings, then identify the
correct statement,

(a) q q V V2 3 2 3= =; (b) q q q V V1 2 3 2 3= + =;

(c) q q q V V V V1 2 3 1 2 3= + = + +; (d) q q q V V V V1 2 3 2 3 10+ + = = = −;
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19. An electron enters the region between the plates of a parallel-plate
capacitor at an angle θ to the plates. The plate width is l. The plate
separation is d. The electron follows the path shown, just missing the
upper plate. Neglect gravity. Then,

(a) tan /θ =2d l

(b) tan /θ =4d l

(c) tan /θ =8d l

(d) The data given is insufficient to find a relation between d l, and θ

20. An infinite sheet of charge has a surface charge density of 10 7 2− C m/ . The separation between

two equipotential surfaces whose potentials differ by 5 V is

(a) 0.64 cm (b) 0.88 mm

(c) 0.32 cm (d) 5 10 7× − m

21. Find the equivalent capacitance across A Band for the arrangement shown in figure. All the
capacitors are of capacitance C

(a)
3

14

C
(b)

C

8

(c)
3

16

C
(d) None of these

22. The equivalent capacitance between X Yand is

(a) 5 6/ µF (b) 7 6/ µF

(c) 8 3/ µF (d) 1 µF

23. In the arrangement shown in figure, dielectric constant K K1 22 3= =and . If the capacitance

across P Qand are C C1 2and respectively, then C C1 2/ will be (the gaps shown are negligible)

(a) 1 : 1 (b) 2 : 3

(c) 9 : 5 (d) 25 : 24
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24. Six equal capacitors each of capacitance C are connected as shown in
the figure. The equivalent capacitance between points A Band , is

(a) 1.5 C

(b) C

(c) 2C

(d) 0.5 C

25. Four ways of making a network of five capacitors of the same value are shown in four choices.
Three out of four are identical. The one which is different is

(a) (b)

(c) (d)

26. The equivalent capacitance of the arrangement shown in figure, if A is the area of each plate, is

(a) C
A

d

K K K

K K
= + +









ε0 1 2 3

2 32
(b) C

A

d

K K K

K K
= +

+










ε0 1 2 3

2 32

(c) C
A

d
K

K K

K K
= +

+










ε0
1

2 3

2 32
(d) C

A

d
K

K K

K K
= +

+










ε0
1

2 3

2 3

27. Find equivalent capacitance between points A Band . [Assume each conducting plate is having

same dimensions and neglect the thickness of the plate,
ε µ0 7

A

d
= F, where A is area of plates]

(a) 7 µF (b) 11 µF

(c) 12 µF (d) 15 µF
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Subjective Questions

Note You can take approximations in the answers.

1. Two metallic plates are kept parallel to one another and charges are given to them as shown in
figure. Find the charge on all the four faces.

2. Charges 2q and – 3q are given to two identical metal plates of area of cross-section A. The
distance between the plates is d. Find the capacitance and potential difference between the
plates.

3. Find the charge stored in all the capacitors.

4. Find the charge stored in the capacitor.

5. Find the charge stored in the capacitor.
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6. A 1 µF capacitor and a 2 µF capacitor are connected in series across a 1200 V supply line.

(a) Find the charge on each capacitor and the voltage across them.

(b) The charged capacitors are disconnected from the line and from each other and reconnected with

terminals of like sign together. Find the final charge on each and the voltage across them.

7. A 100 µF capacitor is charged to 100 V. After the charging, battery is disconnected. The
capacitor is then connected in parallel to another capacitor. The final voltage is 20 V. Calculate
the capacity of second capacitor.

8. An uncharged capacitor C is connected to a battery through a resistance R. Show that by the
time the capacitor gets fully charged, the energy dissipated in R is the same as the energy
stored in C.

9. How many time constants will elapse before the current in a charging R C- circuit drops to half
of its initial value?

10. A capacitor of capacitance C is given a charge q0. At time t = 0 it is connected to an uncharged
capacitor of equal capacitance through a resistance R. Find the charge on the first capacitor
and the second capacitor as a function of time t. Also plot the corresponding q-t graphs.

11. A capacitor of capacitance C is given a charge q0. At time t = 0, it is connected to a battery of emf
E through a resistance R. Find the charge on the capacitor at time t.

12. Determine the current through the battery in the circuit shown in figure.

(a) immediately after the switch S is closed

(b) after a long time.

13. For the circuit shown in figure, find

(a) the initial current through each resistor

(b) steady state current through each resistor

(c) final energy stored in the capacitor

(d) time constant of the circuit when switch is opened.

14. Find equivalent capacitance between points A and B,
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15. A 4.00 Fµ capacitor and a 6.00 Fµ capacitor are connected in parallel across a 660 V supply line.

(a) Find the charge on each capacitor and the voltage across each.

(b) The charged capacitors are disconnected from the line and from each other, and then

reconnected to each other with terminals of unlike sign together. Find the final charge on each

and the voltage across each.

16. A 5.80 Fµ parallel-plate air capacitor has a plate separation of 5.00 mm and is charged to a
potential difference of 400 V. Calculate the energy density in the region between the plates,

in J m3/ .

17. The dielectric to be used in a parallel-plate capacitor has a dielectric constant of 3.60 and a

dielectric strength of 1.60 V/ m× 107 . The capacitor is to have a capacitance of 1.25 F× −10 9 and

must be able to withstand a maximum potential difference of 5500 V. What is the minimum

area the plates of the capacitor may have?

18. Two condensers are in parallel and the energy of the combination is 0.1 J, when the difference
of potential between terminals is 2 V. With the same two condensers in series, the energy is

1.6 J× −10 2 for the same difference of potential across the series combination. What are the

capacities?

19. A circuit has section AB as shown in figure. The emf of the source equals E = 10 V, the capacitor
capacitances are equal to C1 = 1.0 Fµ and C2 = 2.0 Fµ , and the potential difference
V VA B− = 5.0 V. Find the voltage across each capacitor.

20. Several 10 pF capacitors are given, each capable of withstanding 100 V. How would you
construct :

(a) a unit possessing a capacitance of 2 pF and capable of withstanding 500 V?

(b) a unit possessing a capacitance of 20 pF and capable of withstanding 300 V?

21. Two, capacitors A and B are connected in series across a 100 V supply and it is observed that
the potential difference across them are 60 V and 40 V. A capacitor of 2 µF capacitance is now
connected in parallel with A and the potential difference across B rises to 90 V. Determine the
capacitance of A and B.

22. A 10.0 Fµ parallel-plate capacitor with circular plates is connected to a 12.0 V battery.

(a) What is the charge on each plate?

(b) How much charge would be on the plates if their separation were doubled while the capacitor

remained connected to the battery?

(c) How much charge would be on the plates if the capacitor were connected to the 12.0 V battery

after the radius of each plate was doubled without changing their separation?

23. A 450 µF capacitor is charged to 295 V. Then, a wire is connected between the plates. How
many joule of thermal energy are produced as the capacitor discharges if all of the energy that
was stored goes into heating the wire?

24. The plates of a parallel-plate capacitor in vacuum are 5.00 mm apart and 2.00 m2 in area. A
potential difference of 10,000 V is applied across the capacitor. Compute

(a) the capacitance

(b) the charge on each plate, and

(c) the magnitude of the electric field in the space between them.
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25. Three capacitors having capacitances of 8.4 Fµ , 8.2 Fµ and 4.2 Fµ are connected in series across
a 36 V potential difference.

(a) What is the charge on 4.2 Fµ capacitor?

(b) What is the total energy stored in all three capacitors?

(c) The capacitors are disconnected from the potential difference without allowing them to

discharge. They are then reconnected in parallel with each other, with the positively charged

plates connected together. What is the voltage across each capacitor in the parallel combination?

(d) What is the total energy now stored in the capacitors?

26. Find the charges on 6 µF and 4 µF capacitors.

27. In figure, C C1 5= = 8.4 Fµ and C C C2 3 4= = = 4.2 Fµ . The applied potential is Vab = 220 V.

(a) What is the equivalent capacitance of the network between points a and b?

(b) Calculate the charge on each capacitor and the potential difference across each capacitor.

28. Two condensers A and B each having slabs of dielectric constant K = 2 are connected in series.
When they are connected across 230 V supply, potential difference across A is 130 V and that
across B is 100 V. If the dielectric in the condenser of smaller capacitance is replaced by one for
which K = 5, what will be the values of potential difference across them?

29. A capacitor of capacitance C1 = 1.0 Fµ charged upto a voltage V = 110 V is connected in parallel
to the terminals of a circuit consisting of two uncharged capacitors connected in series and
possessing the capacitance C2 = 2.0 Fµ and C3 = 3.0 Fµ . What charge will flow through the
connecting wires?

30. In figure, the battery has a potential difference of 20 V. Find
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(a) the equivalent capacitance of all the capacitors across the battery and

(b) the charge stored on that equivalent capacitance.

Find the charge on

(c) capacitor 1,

(d) capacitor 2, and

(e) capacitor 3.

31. In figure, battery B supplies 12 V. Find the charge on each capacitor

(a) first when only switch S1 is closed and

(b) later when S2 is also closed.

(Take C C C1 2 3= = =1.0 F 2.0 F 3.0 Fµ µ µ, , and C4 = 4.0 Fµ )

32. When switch S is thrown to the left in figure, the plates of capacitor 1 acquire a potential
differenceV0. Capacitors 2 and 3 are initially uncharged. The switch is now thrown to the right.
What are the final charges q q1 2, and q3 on the capacitors?

33. A parallel-plate capacitor has plates of area A and separation d and is charged to a potential
difference V. The charging battery is then disconnected, and the plates are pulled apart until
their separation is 2d. Derive expression in terms of A d, and V for

(a) the new potential difference

(b) the initial and final stored energies, Ui and Uf and

(c) the work required to increase the separation of plates from d to 2d.

34. In the circuit shown in figure E E R R1 2 1 22 20 10= = = =V k, Ω and C = 1 µF. Find the current
through R R1 2, and C when

(a) S has been kept connected to A for a long time.

(b) The switch is suddenly shifted to B.
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35. (a) What is the steady state potential of point a with respect to point b in figure when switch S is
open?

(b)  Which point, a or b, is at the higher potential?

(c)  What is the final potential of point b with respect to ground when switch S is closed?

(d)  How much does the charge on each capacitor change when S is closed?

36. (a) What is the potential of point a with respect to point b in figure, when switch S is open?

(b)  Which point, a or b, is at the higher potential?

(c) What is the final potential of point b with respect to ground when switch S is closed?

(d)  How much charge flows through switch S when it is closed?

37. In the circuit shown in figure, the battery is an ideal one with emf V. The capacitor is initially
uncharged. The switch S is closed at time t = 0.

(a)  Find the charge Q on the capacitor at time t.

(b)  Find the current in AB at time t. What is  its limiting value as t → ∞?
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LEVEL 2

Single Correct Option

1. Two very large thin conducting plates having same

cross-sectional area are placed as shown in figure. They are

carrying charges Q Qand 3 , respectively. The variation of

electric field as a function at x (for x = 0 to x d= 3 ) will be best

represented by

(a) (b)

(c) (d)

2. The electric field on two sides of a thin sheet of charge is shown in the figure. The charge
density on the sheet is

(a) 2 0ε (b) 4 0ε
(c) 10 0ε (d) zero

3. In the circuit shown in figure, the capacitors are initially
uncharged. The current through resistor PQ just after
closing the switch is

(a) 2 A from P to Q

(b) 2 A from Q to P

(c) 6 A from P to Q

(d) zero

+
+
+
+
+
+
+
+

E1 = 8 V/m E2 = 12 V/m

6 Ω5 Ω6 Ω

2 Fµ

4 Fµ

P

Q

10 V, 2 Ω

d 2d 3d X

E

d 2d 3d X

E

d

2d

3d X

E

d

2d 3d X

E

(2 , 0)d( , 0)d

3QQY

X
(3 , 0)d



4. A graph between current and time during charging of a capacitor by a
battery in series with a resistor is shown. The graphs are drawn for two
circuits. R1, R C C2 1 2, , and V V1 2, are the values of resistance, capacitance
and EMF of the cell in the two circuits. If only two parameters (out of
resistance, capacitance, EMF) are different in the two circuits. What may
be the correct option(s)?

(a) V V R R C C1 2 1 2 1 2= > >, , (b) V V R R C C1 2 1 2 1 2> > =, ,

(c) V V R R C C1 2 1 2 1 2< < =, , (d) V V R R C C1 2 1 2 1 2< = <, ,

5. A capacitor of capacitance C is charged by a battery of emf E and internal resistance r. A
resistance 2r is also connected in series with the capacitor. The amount of heat liberated inside
the battery by the time capacitor is 50% charged is

(a)
3

8

2E C (b)
E C2

6

(c)
E C2

12
(d)

E C2

24

6. For the circuit shown in the figure, determine the
charge on capacitor in steady state.

(a) 4 µC

(b) 6 µC

(c) 1 µC

(d) Zero

7. For the circuit shown in the figure, find the charge stored on capacitor in steady state.

(a)
RC

R R
E

+ 0

(b)
RC

R
E E

0
0( )−

(c) zero

(d)
RC

R R
E E

+
−

0
0( )

8. Two similar parallel-plate capacitors each of capacity C0 are connected in series. The
combination is connected with a voltage source ofV0. Now, separation between the plates of one
capacitor is increased by a distance d and the separation between the plates of another
capacitor is decreased by the distance d/ 2. The distance between the plates of each capacitor
was d before the change in separation. Then, select the correct choice.

(a) The new capacity of the system will increase

(b) The new capacity of the system will decrease

(c) The new capacity of the system will remain same

(d) data insufficient

9. The switch shown in the figure is closed at t = 0. The charge on the
capacitor as a function of time is given by

(a) CV e t RC( )/1 − −

(b) 3 1CV e t RC( )/− −

(c) CV e t RC( )/1 3− −

(d) CV e t RC( )/1 3− −
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10. A 2 µF capacitor C1 is charged to a voltage 100 V and a 4 µF capacitor C2 is charged to a voltage
50 V. The capacitors are then connected in parallel. What is the loss of energy due to parallel
connection?

(a) 1.7 J (b) 0.17 J

(c) 1.7 J× −10 2 (d) 1.7 J× −10 3

11. The figure shows a graph of the current in a discharging circuit of a
capacitor through a resistor of resistance 10 Ω.

(a) The initial potential difference across the capacitor is 100 V

(b) The capacitance of the capacitor is
1

10 2ln
F

(c) The total heat produced in the circuit will be
500

2ln
J

(d) All of the above

12. Four capacitors are connected in series with a battery of emf 10 V as shown in the figure. The
point P is earthed. The potential of point A is equal in magnitude to potential of point B but
opposite in sign if

(a) C C C C1 2 3 4+ + = (b)
1 1 1 1

1 2 3 4C C C C
+ + =

(c)
C C C

C C C
C1 2 3

1
2

2
2

3
2 4+ +

= (d) It is never possible

13. A capacitor of capacityC is charged to a potential differenceV and another capacitor of capacity
2C is charged to a potential difference 4 V . The charging batteries are disconnected and the
two capacitors are connected with reverse polarity (i.e. positive plate of first capacitor is
connected to negative plate of second capacitor). The heat produced during the redistribution of
charge between the capacitors will be

(a)
125

3

2CV
(b)

50

3

2CV

(c) 2 2CV (d)
25

3

2CV

14. A capacitor of capacitance 2 µF is charged to a potential difference of 5 V.
Now, the charging battery is disconnected and the capacitor is connected
in parallel to a resistor of 5 Ω and another unknown resistor of resistance
R as shown in figure. If the total heat produced in 5 Ω resistance is 10 µJ ,
then the unknown resistance R is equal to

(a) 10 Ω
(b) 15 Ω

(c)
10

3
Ω

(d) 7.5 Ω
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15. In the circuit shown in figure switch S is thrown to position 1 at t = 0. When the current in the
resistor is 1 A, it is shifted to position 2. The total heat generated in the circuit after shifting to
position 2 is

(a) zero (b) 625 µJ (c) 100 µJ (d) None of these

16. The flow of charge through switch S if it is closed is

(a) zero (b) q/4 (c) 2 3q/ (d) q/3

17. Consider the arrangement of three plates X Y, and Z each of the area A and separation d. The
energy stored when the plates are fully charged is

(a) ε0
2 2AV d/ (b) ε0

2AV d/

(c) 2 0
2ε AV d/ (d) 3 0

2ε AV d/

18. Consider a capacitor – charging circuit. Let Q1 be the charge given to the capacitor in time
interval of 20 ms and Q2 be the charge given in the next time interval of 20 ms. Let10 µCcharge
be deposited in a time interval t1 and the next10 µCcharge is deposited in the next time interval
t2. Then,

(a) Q Q t t1 2 1 2> >, (b) Q Q t t1 2 1 2> <,

(c) Q Q t t1 2 1 2< >, (d) Q Q t t1 2 1 2< <,

19. The current in 1 Ω resistance and charge stored in the capacitor are

(a) 4 A , 6 µC (b) 7 A, 12 µC (c) 4 A , 12 µC (d) 7 A, 6 µC
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20. A capacitorC is connected to two equal resistances as shown in the
figure. Consider the following statements.

(i) At the time of charging of capacitor time constant of the circuit is

2CR

(ii)At the time of discharging of the capacitor the time constant of the

circuit is CR

(iii)At the time of discharging of the capacitor the time constant of the circuit is 2CR

(iv)At the time of charging of capacitor the time constant of the circuit is CR

(a) Statements (i) and (ii) only are correct (b) Statements (ii) and (iii) only are correct

(c) Statements (iii) and (iv) only are correct (d) Statements (i) and (iii) only are correct

21. Two capacitors C1 1= µF and C2 3= µF each are charged to a potential difference of 100 V but
with opposite polarity as shown in the figure. When the switch S is closed, the new potential
difference between the points a and b is

(a) 200 V (b) 100 V (c) 50 V (d) 25 V

22. Four capacitors are connected as shown in figure to a 30 V battery. The potential difference
between points a band is

(a) 5 V (b) 9 V

(c) 10 V (d) 13 V

23. Three uncharged capacitors of capacitanceC C1 2, and C3 are connected to one another as shown
in figure. The potential at O will be

(a) 3 V (b)
49

11
V (c) 4 V (d)

3

11
V
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24. In the circuit shown in figure, the potential difference between the points A Band in the steady
state is

(a) zero (b) 6 V (c) 4 V (d)
10

3
V

25. Two cells, two resistors and two capacitors are connected as shown in figure. The charge on 2 µF

capacitor is

(a) 30 µC (b) 20 µC (c) 25 µC (d) 48 µC

26. In the circuit shown in figure, the capacitor is charged with a cell of 5 V. If the switch is closed
at t = 0, then at t = 12 s, charge on the capacitor is

(a) ( )0.37 C10 µ (b) ( )0.37 C210 µ (c) ( )0.63 C10 µ (d) ( )0.63 C210 µ

27. The potential difference between points a band of circuits shown in the figure is

(a)
E E

C C
C1 2

1 2
2

+
+







 (b)

E E

C C
C1 2

1 2
2

−
+







 (c)

E E

C C
C1 2

1 2
1

+
+







 (d)

E E

C C
C1 2

1 2
1

−
+
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28. A capacitor C1 is charged to a potential V and connected to another capacitor in series with a
resistor R as shown. It is observed that heat H1 is dissipated across resistance R, till the
circuit reaches steady state. Same process is repeated using resistance of 2R. If H2 is heat
dissipated in this case, then

(a)
H

H

2

1

1= (b)
H

H

2

1

4=

(c)
H

H

2

1

1

4
= (d)

H

H

2

1

2=

29. In the circuit diagram, the current through the battery immediately after the switch S is
closed is

(a) zero (b)
E

R1

(c)
E

R R1 2+
(d)

E

R
R R

R R
1

2 3

2 3

+
+

30. In the circuit shown, switch S is closed at t = 0. Let i1 and i2 be the current at any finite time t,

then the ratio i i1 2/

(a) is constant (b) increases with time

(c) decreases with time (d) first increases and then decreases

31. A leaky parallel capacitor is filled completely with a material having dielectric constant K = 5

and electrical conductivity σ = × − − −7.4 m10 12 1 1Ω . Charge on the plate at instant t = 0 is

q = 8.885µC. Then, time constant of leaky capacitor is

(a) 3 s (b) 4 s

(c) 5 s (d) 6 s
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32. A charged capacitor is allowed to discharge through a resistor by closing the key at the instant
t = 0. At the instant t = (ln )4 µs, the reading of the ammeter falls half the initial value. The
resistance of the ammeter is equal to

(a) 0.5 Ω (b) 1 Ω
(c) 2 Ω (d) 4 Ω

33. Five identical capacitor plates are arranged such that they make four capacitors each of 2 µF.
The plates are connected to a source of emf 10 V. The charge on plate C is

(a) + 20 µC (b) + 40 µC

(c) + 60 µC (d) + 80 µC

34. A capacitor of capacitance C is charged to a potential difference V from a cell and then
disconnected from it. A charge + Q is now given to its positive plate. The potential difference
across the capacitor is now

(a) V (b) V
Q

C
+

(c) V
Q

C
+

2
(d) V

Q

C
− , if Q CV<

More than One Correct Options

1. X Yand are large, parallel conducting plates close to each other. Each face has an area A. X is
given a charge Q. Y is without any charge. Points A B C, and are as shown in the figure.

(a) The field at B is
Q

A2 0ε

(b) The field at B is
Q

Aε0

(c) The fields at A B C, and are of the same magnitude

(d) The fields at A Cand are of the same magnitude, but in opposite directions
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2. In the circuit shown in the figure, switchS is closed at time t = 0. Select the correct statements.

(a) Rate of increase of charge is same in both the capacitors

(b) Ratio of charge stored in capacitors C and 2C at any time t would be 1 : 2

(c) Time constants of both the capacitors are equal

(d) Steady state charges on capacitors C and 2C are in the ratio of 1 : 2

3. An electrical circuit is shown in the given figure. The resistance of
each voltmeter is infinite and each ammeter is 100 Ω. The charge
on the capacitor of 100 µF in steady state is 4 mC. Choose correct
statement(s) regarding the given circuit.

(a) Reading of voltmeter V2 is 16 V

(b) Reading of ammeter A1 is zero and A2 is 1/25 A

(c) Reading of voltmeter V1 is 40 V

(d) Emf of the ideal cell is 66 V

4. In the circuit shown, A Band are equal resistances. When S is closed, the capacitor C charges
from the cell of emf ε and reaches a steady state.

(a) During charging, more heat is produced in A than in B

(b) In steady state, heat is produced at the same rate in A Band

(c) In the steady state, energy stored in C is
1

4

2Cε

(d) In the steady state energy stored in C is
1

8

2Cε

5. A parallel-plate capacitor is charged from a cell and then isolated from it. The separation
between the plates is now increased

(a) The force of attraction between the plates will decrease

(b) The field in the region between the plates will not change

(c) The energy stored in the capacitor will increase

(d) The potential difference between the plates will decrease
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6. In the circuit shown, each capacitor has a capacitanceC. The emf of the
cell is E. If the switch S is closed, then

(a) positive charge will flow out of the positive terminal of the cell

(b) positive charge will enter the positive terminal of the cell

(c) the amount of the charge flowing through the cell will be
1

3
CE

(d) the amount of charge flowing through the cell is
4

3







CE

7. Two capacitors of 2 µF and 3 µF are charged to 150 V and 120 V,

respectively. The plates of capacitor are connected as shown in the

figure. An uncharged capacitor of capacity 1.5 Fµ falls to the free end

of the wire. Then,

(a) charge on 1.5 Fµ capacitor is 180 µC

(b) charge on 2 µF capacitor is 120 µC

(c) positive charge flows through A from right to left

(d) positive charge flows through A from left to right

8. A parallel plate capacitor is charged and then the battery is disconnected. When the plates of
the capacitor are brought closer, then

(a) energy stored in the capacitor decreases

(b) the potential difference between the plates decreases

(c) the capacitance increases

(d) the electric field between the plates decreases

9. A capacitor of 2 F (practically not possible to have a capacity of 2 F) is
charged by a battery of 6 V. The battery is removed and circuit is made
as shown. Switch is closed at time t = 0. Choose the correct options.

(a) At time t = 0 current in the circuit is 2 A

(b) At time t = ( ln )6 2 second, potential difference across capacitor is 3 V

(c) At time t = ( ln )6 2 second, potential difference across 1 Ω resistance is
1 V

(d) At time t = ( ln )6 2 second, potential difference across 2 Ω resistance is
2 V.

10. Given that potential difference across 1 µF capacitor is 10 V. Then,

(a) potential difference across 4 µF capacitor is 40 V

(b) potential difference across 4 µF capacitor is 2.5 V

(c) potential difference across 3 µF capacitor is 5 V

(d) value of E is 50 V

Chapter 25 Capacitors � 321

++ – –

3 Fµ2 Fµ

1.5 Fµ
A

S

2 Ω

1 Ω

6 V
+–

2 F

E

1 Fµ 4 Fµ

6 Fµ

3 Fµ

S

E

–+

C

C

C



Comprehension Based Questions

Passage I (Q. No. 1 and 2)

The capacitor C1 in the figure shown initially carries a charge q0. When the switches S1 and S2

are closed, capacitor C1 is connected in series to a resistor R and a second capacitor C2, which is
initially uncharged.

1. The charge flown through wires as a function of time t is

(a) q e
C

C
qt RC

0
2

0
− +/ (b)

q C

C
e t RC0

1

1× − −[ ]/

(c) q
C

C
e t CR

0
1

− / (d) q e t RC
0

− /

where, C
C C

C C
=

+
1 2

1 2

2. The total heat dissipated in the circuit during the discharging process of C1 is

(a)
q

C
C0

2

1
22

× (b)
q

C

0
2

2

(c)
q C

C

0
2

2

1
22

(d)
q

C C

0
2

1 22

Passage II (Q. No. 3 and 4)

Figure shows a parallel plate capacitor with plate area A and plate separation d. A potential
difference is being applied between the plates. The battery is then disconnected and a dielectric
slab of dielectric constant K is placed in between the plates of the capacitor as shown.

Now, answer the following questions based on above information.

3. The electric field in the gaps between the plates and the dielectric slab will be

(a)
ε0AV

d
(b)

V

d
(c)

KV

d
(d)

V

d t−

4. The electric field in the dielectric slab is

(a)
V

Kd
(b)

KV

d
(c)

V

d
(d)

KV

t
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Match the Columns

1. In the figure shown, C1 4= µF (without dielectric) and
C2 4= µF (with a dielectric slab of dielectric constant
K = 2) . Now, the same slab after removing from C2 is
filled in C1. Then, match the following two columns.

Column I Column II

(a) Charge on C2 (p) will increase

(b) Energy stored in C2 (q) will decrease

(c) Potential difference across C2 (r) will remain same

(d) Electric field between the

plates of C2

(s) data insufficient

2. In the circuit shown in figure, match the following two columns for
the flow of charge when switch is closed.

Column I Column II

(a) From the battery (p) 40 µC

(b) From 2 µF capacitor (q) 100 µC

(c) From 3 µF (r) 60 µC

(d) From 4 µF capacitor (s) None of these

3. Three identical capacitors are connected in three different configurations as shown in
Column II. Points a and b are connected with a battery. Match the two columns.

Column I Column II

(a) Maximum charge on C1

(p)

(b) Minimum charge on C2 (q)

(c) Maximum potential difference

across C1

(r)

(d) Minimum potential difference

across C1

(s)
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4. A capacitor C is charged by a battery of V volts. Then, it is connected to an uncharged capacitor
of capacity 2C as shown in figure. Now, match the following two columns.

Column I Column II

(a) After closing the switch energy stored

in C.

(p)
1

9

2CV

(b) After closing the switch energy stored

in 2C.

(q)
1

6

2CV

(c) After closing the switch loss of energy

during redistribution of charge.

(r)
1

18

2CV

(s) None of these

5. Two identical sized capacitors C C1 2and are connected with a battery as shown in figure.
Capacitor plates are square plates. A dielectric slab of dielectric constant K = 2, is filled in half
the region of the two capacitors as shown :

C → capacity, q → charge stored,U → energy stored. Match the following two columns.

Column I Column II

(a) C C1 2/ (p) 9 4/

(b) q q1 2/ (q) 4 9/

(c) U U1 2/ (r) 4 3/

(s) None of these

6. Four large parallel identical conducting plates are arranged as
shown.

Column I Column II

(a) Surfaces having charges of

same magnitude and sign

(p) 1 and 8

(b) Surfaces having positive

charges

(q) 3 and 5

(c) Uncharged surfaces (r) 2 and 3

(d) Charged surfaces (s) 6 and 7

324 � Electricity and Magnetism

S

C

2C

–+

C1 C2

(1) (2)

4Q

(3) (4)

Q

(5) (6)

2Q

(7) (8)

7Q

d d d



Subjective Questions

1. Five identical conducting plates, 1, 2, 3,4 and 5 are fixed parallel plates equidistant from each
other (see figure). A conductor connects plates 2 and 5 while another conductor joins 1 and 3.
The junction of 1 and 3 and the plate 4 are connected to a source of constant emf V0. Find

(a) the effective capacity of the system between the terminals of source.

(b) the charges on the plates 3 and 5.

Given, d = distance between any two successive plates and A = area of either face of each plate.

2. A 8 µF capacitor C1 is charged to V0 120= V. The charging battery is then removed and the
capacitor is connected in parallel to an uncharged + 4µF capacitor C2.

(a) what is the potential difference V across the combination?

(b) what is the stored energy before and after the switch S is closed?

3. Condensers with capacities C C C, ,2 3 and 4C are charged to the voltage, V, V, V2 3 and 4 V

correspondingly. The circuit is closed. Find the voltage on all condensers in the equilibrium.

4. In the circuit shown, a time varying voltage V t= 2000 volt is applied where t is in second. At
time t = 5 ms, determine the current through the resistor R = 4 Ω and through the capacitor
C = 300 µF.
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5. A capacitor of capacitance 5 µF is connected to a source of constant emf of 200 V. Then, the
switch was shifted to contact 2 from contact 1. Find the amount of heat generated in the 400 Ω
resistance.

6. Analyze the given circuit in the steady state condition. Charge on the capacitor is q0 16= µC.

(a) Find the current in each branch

(b) Find the emf  of the battery.

(c) If now the battery is removed and the points A and C are shorted. Find the time during which

charge on the capacitor becomes 8 µC.

7. Find the potential difference between points M and N of the system shown in figure, if the emf

is equal to E = 110 V and the capacitance ratio
C

C

1

2

is 2.

8. In the given circuit diagram, find the charges which flow through directions 1 and 2 when
switch S is closed.
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9. Two capacitors A and B with capacities 3 µF and 2 µF are charged to a
potential difference of 100 V and 180 V, respectively. The plates of the
capacitors are connected as shown in figure with one wire of each
capacitor free. The upper plate of A is positive and that of B is negative. An
uncharged 2 µF capacitor C with lead wires falls on the free ends to
complete the circuit. Calculate

(i) the final charge on the three capacitors,

(ii) the amount of electrostatic energy stored in the system before and after completion of the circuit.

10. The capacitor C1 in the figure initially carries a charge q0. When the

switchS1 and S2 are closed, capacitorC1 is connected to a resistor R and

a second capacitor C2, which initially does not carry any charge.

(a) Find the charges deposited on the capacitors in steady state and the

current through R as a function of time.

(b) What is heat lost in the resistor after a long time of closing the switch?

11. A leaky parallel plate capacitor is filled completely with a material having dielectric constant

K = 5 and electrical conductivity σ = ×7.4 m10– – –12 1 1Ω . If the charge on the capacitor at the

instant t = 0 is q0 = 8.55 Cµ , then calculate the leakage current at the instant t = 12 s.

12. A parallel plate vacuum capacitor with plate area A and separation x has charges +Q and −Q on

its plates. The capacitor is disconnected from the source of charge, so the charge on each plate

remains fixed.

(a) What is the total energy stored in the capacitor?

(b) The plates are pulled apart an additional distance dx. What is the change in the stored energy?

(c) If F is the force with which the plates attract each other, then the change in the stored energy

must equal the work dW Fdx= done in pulling the plates apart. Find an expression for F.

(d) Explain why F is not equal to QE , where E is the electric field between the plates.

13. A spherical capacitor has the inner sphere of radius 2 cm and the outer one of 4 cm. If the inner
sphere is earthed and the outer one is charged with a charge of 2 µC and isolated. Calculate

(a) the potential to which the outer sphere is raised.

(b) the charge retained on the outer surface of the outer sphere.

14. Calculate the charge on each capacitor and the potential difference across it in the circuits
shown in figure for the cases :

(i) switch S is closed and

(ii) switch S is open.

(iii) In figure (b), what is the potential of point A when S is open?
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15. In the shown network, find the charges on capacitors of capacitances 5 µF and 3 µF, in steady

state.

16. In the circuit shown, E = 18 kV, C = 10 µF, R1 4= MΩ, R2 6= MΩ , R3 3= MΩ. With C

completely uncharged, switch S is suddenly closed (at t = 0).

(a) Determine the current through each resistor for t = 0 and t = ∞.

(b) What are the values of V2 (potential difference across R2) at t = 0 and t = ∞ ?

(c) Plot a graph of the potential differenceV2 versus t and determine the instantaneous value ofV2.

17. The charge on the capacitor is initially zero. Find the charge on the capacitor as a function of
time t. All resistors are of equal value R.

18. The capacitors are initially uncharged. In a certain time the capacitor of capacitance 2 µF gets a

charge of 20 µC. In that time interval find the heat produced by each resistor individually.
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19. A capacitor of capacitance C has potential difference E / 2 and another capacitor of capacitance
2C is uncharged. They are joined to form a closed circuit as shown in the figure.

(a) Find the current in the circuit at t = 0.

(b) Find the charge on C as a function of time.

20. The capacitor shown in figure has been charged to a potential difference of V volt, so that it

carries a charge CV with both the switches S1 and S2 remaining open. Switch S1 is closed at

t = 0. At t R C= 1 switch S1 is opened and S2 is closed. Find the charge on the capacitor at

t R C R C= +2 1 2 .

21. The switch S is closed at t = 0. The capacitor C is uncharged but C0 has a charge Q0 2= µC at
t = 0. If R = 100 Ω ,C = 2 µF,C0 2= µF, E = 4 V. Calculate i t( ) in the circuit.

22. A time varying voltage is applied to the clamps A and B such that voltage across the capacitor
plates is as shown in the figure. Plot the time dependence of voltage across the terminals of the
resistance E and D.

23. In the above problem if given graph is between VAB and time. Then, plot graph between VED

and time.
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24. Initially, the switch is in position 1 for a long time. At t = 0, the switch is moved from 1 to 2.
Obtain expressions for VC and VR for t > 0.

25. For the arrangement shown in the figure, the switch is closed at t = 0. C2 is initially uncharged
while C1 has a charge of 2 µC.

(a) Find the current coming out of the battery just after the switch is closed.

(b) Find the charge on the capacitors in the steady state condition.

26. In the given circuit, the switch is closed in the position 1 at t = 0 and then moved to 2 after
250 µs.Derive an expression for current as a function of time for t > 0.Also plot the variation of
current with time.

27. A charged capacitor C1 is discharged through a resistance R by putting switch S in position 1 of
circuit shown in figure. When discharge current reduces to I0 , the switch is suddenly shifted to
position 2. Calculate the amount of heat liberated in resistance R starting from this instant.
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Answers

Introductory Exercise 25.1
1. [M L T A

–1 –2 4 2
] 2. False 3. (a) −10 V  (b) −10 µC , −20 µC (c) 3.0 J× −

10
4

Introductory Exercise 25.2
1. ±182 Cµ 2. (a) 604 V (b) 90.8 cm

2
(c) 16.3 C m

2µ / 3. (a) 1.28 (b) 6.2 10 C m
–7× /

2

Introductory Exercise 25.3
1. q3 30µ µF C,= q4 20µ µF C,= q2 10µ µF C= 2. q4 120µ µF C,= q9 90µ µF C,= q3 30µ µF C=

Exercises

LEVEL 1

Assertion and Reason

1. (d) 2. (a) 3. (a,b) 4. (a,b) 5. (d) 6. (d) 7. (b) 8. (d) 9. (b) 10. (b)

Objective Questions

1. (c) 2. (d) 3. (c) 4. (c) 5. (d) 6. (d) 7. (c) 8. (b) 9. (b) 10. (c)

11. (a) 12. (b) 13. (b) 14. (c) 15. (c) 16. (a) 17. (d) 18. (b) 19. (b) 20. (b)

21. (a) 22. (c) 23. (d) 24. (c) 25. (d) 26. (b) 27. (b)

Subjective Questions

1. Starting from the left face the charges are, 3 µC, 7 µC, –7 µC, 3 µC 2.
ε0A

d
,

5

2 0

dq

Aε

3. 10 µC, 20 µC, 30 µC 4. 40 µC 5. 24 µC

6. (a) 800 µC, 800 V, 800 Cµ , 400 V (b)
1600

3

3200

3

1600

3
µ µC C V, , 7. 400 Fµ

9. 0.69 10. q
q q

e
t RC

1
0 0 2

2 2
= + – /

, q
q

e
t RC

2
0 2

2
1= ( – )

– /

11. CE e q e
t CR t CR

( – )
– / – /

1 0+

12. (a) E R/ 1 (b) E R R/( )1 3+ 13. (a) i E R1 1= / , i E R2 2= / (b) i E R1 1= / , i2 0= (c)
1

2

2
CE (d) C R R( )1 2+

14. (a)
5

3

C
(b)

4

3

C
(c) 2C

15. (a) 4.0 F : 2.64 10 C, 660 V, 6.0 F : 3.96 10 C, 660 V
–3 –3µ µ× ×

(b) 4.0 F : 5.28 10 C, 132 V, 6.0 F : 7.92 10 C, 13
–4 –4µ µ× × 2 V

t

q1

q
0

q
0

2

t

q2

q
0

2



16. 2.83 10 J m
–2 3× / 17. 0.0135 m

2 18. 40 mF, 10 mF 19. 10 V, 5 V

20. (a) Five capacitors in series   (b) Six rows of three capacitors in each row.

21. 0.16 F, 0.24 Fµ µ 22. (a) 120 Cµ (b) 60 Cµ (c) 480 Cµ 23. 19.6 J

24. (a) 3.54 10 F
–9× (b) ±35.4 Cµ (c) 2.0 10 N C

6× /

25. (a) 76 Cµ (b) 1.4 mJ (c) 11 V (d) 1.2 mJ 26. 10 C,
40

3
Cµ µ

27. (a) 2.5 Fµ (b) Q1

–4
5.5 10 C,= × V1 66 V,= Q2

–4

23.7 10 C, V 88 V= × = , Q Q V V3 4

–4

3 41.8 10 C, 44 V= = × = = ,

Q Q V V5 1 5 1,= =
28. 78.68 V, 151.32 V 29. 60 Cµ 30. (a) 3 Fµ (b) 60 Cµ (c) 30 Cµ (d) 20 Cµ (e) 20 Cµ

31. (a) q q q q1 3 29 C 16 C= = = =µ µ, 4 (b) q q q q1 2 48.64 C, 17.28 C, 10.08 C 13.44 C= = = =µ µ µ µ3 ,

32. q q
CV

C

C

C

C

, q CV
CV

2 3
1 0

1

2

1

3

1 1 0
1 0

1 1

= =
+ +

= −
+ C

C

C

C

1

2

1

3

+

33. (a) 2 V (b) U
A

d
V U

A

d
Vi f= ε





= ε





1

2

0 2 0 2
, (c) W

A

d
V= ε





1

2

0 2

34. (a) 1 mA, 1 mA, 0 (b) 2 mA, 1mA, 3 mA 35. (a) 18 V (b) a is at higher potential (c) 6 V

(d) –36 Cµ on both the capacitors

36. (a) –6.0 V (b) b (c) 6.0 V (d) –54.0 Cµ

37. (a)
CV

e
t

2
1( )

–− α
(b)

V

R

V

R
e

V

R

t

2 6 2
− −α

, Here α = 2

3RC

LEVEL 2

Single Correct Option

1.(c) 2.(b) 3.(d) 4.(c) 5.(d) 6.(d) 7.(d) 8.(b) 9.(c) 10.(d)

11.(d) 12.(b) 13.(d) 14.(c) 15.(c) 16.(a) 17.(b) 18.(b) 19.(b) 20.(c)

21.(c) 22.(d) 23.(b) 24.(d) 25.(a) 26.(b) 27.(c) 28.(a) 29.(b) 30.(b)

31.(d) 32.(c) 33.(b) 34.(c)

More than One Correct Options

1. (a,c,d) 2. (b,c,d) 3. (b,c) 4. (a,b,d) 5. (b,c) 6. (a,d) 7. (a,b,d) 8. (a,b,c) 9. (a,b,c,d) 10. (b)

Comprehension Based Questions

1.(b) 2.(a) 3.(b) 4.(a)

Match the Columns
1. (a) → q (b) → p (c) → p (d) → p

2. (a) → s (b) → p (c) → r (d) → s

3. (a) → q (b) → p,r (c) → q (d) → p,s

4. (a) → r (b) → p (c) → s

5. (a) → s (b) → s (c) → s

6. (a) → p (b) → p,q (c) → s (d) → p,q,r
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Subjective Questions

1. (a)
5

3

0ε





A

d
(b) q3

4

3
= ε





0 0AV

d
, q

AV

d
5

0 02

3
= ε





2. (a) 80 V (b) 57.6 mJ, 38.4 mJ

3. − −19

5
V,

2

5
V,

7

5
V,

14

5
V 4. 2.5 A, 0.6 A 5. 44.4 mJ

6. (a) 3 A, 2.67A (b) 24 V (c) 11.1 sµ 7. V VN M− = 110

3
volt 8. q EC q

EC C

C C
1 2 2

1 2

1 2

= = −
+

,
( )

9. (i) 90 C, 210 C,150 Cµ µ µ (ii) (a) 47.4 mJ (b) 18 mJ

10. (a) q
C

C C
q1

1

1 2

0=
+









 and q

C

C C
q2

2

1 2

0=
+









 , i

q

RC
e

t RC= −0

1

/
(b) ∆ =

+
H

q C

C C C

0

2

2

1 1 22 ( )
, here C

C C

C C
=

+
1 2

1 2

11. 0.193 Aµ 12. (a)
Q x

A

2

02ε
(b)

Q

A
dx

2

02ε






 ⋅ (c)

Q

A

2

02ε
13. (a) 2.25 10 V

5× (b) +1 Cµ

14. Fig. (a) Fig. (b)

6µF 3µF 1µF 6µF 2µF

(i) PD (volts) 30 30 0 10 30

charge ( )µC 180 90 0 60 60

(ii) PD (volts) 0 90 100 25 75

charge (µC) 0 270 100 150 150

(iii) VA = 75 volt

15. 15 µC, 15 µC

16. (a) At t = 0, i i1 23 1= =mA mA, , i3 2= mA At t = ∞,

i i1 2= = 1.8 mA, i3 0= (b) At t = 0, V2 6= kV At t = ∞, V2 = 10.8 kV

(c) V e
t

2

54= ( )
– /

10.8 – 4.8 kV

17. q
CE

e

t

CR= −










−

2
1

2

18. H2 = 0.075 mJ, H3 = 0.05 mJ, H6 = 0.025 mJ

19. (a)
E

R2
(b)

CE
e

t RC

6
5 2

3 2
[ – ]

– / 20. EC
e

VC

e
1

1

2
–







+ 21. (0.03 e ) A
–10

4
t

22. 23.

24. V eC

t= 50 3 1
200

( – )
–

, V eR

t= 150
200– 25. (a)

7

50
A or

11

50
A (b) Q C1 = 9 µ , Q2 0=

26. i e
t= ( )

–
0.04

4000
A for t s≤ 250 µ , = – ( )

–
0.11e

t4000
A for t s≥ 250 µ

For i t- graph, see the hints.

27.
( )

( )

I R C C

C C

0

2

1 2

1 22 +
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26.1 Introduction
The fascinating attractive properties of magnets have been known since ancient times. The word

magnet comes from ancient Greek place name Magnesia (the modern town Manisa in Western

Turkey), where the natural magnets called lodestones were found. The fundamental nature of

magnetism is the interaction of moving electric charges. Unlike electric forces which act on electric

charges whether they are moving or not, magnetic forces act only on moving charges and current

carrying wires.

We will describe magnetic forces using the concept of a field. A magnetic field is established by a

permanent magnet, by an electric current or by other moving charges. This magnetic field, in turn,

exerts forces on other moving charges and current carrying conductors. In this chapter, first we study

the magnetic forces and torques exerted on moving charges and currents by magnetic fields, then we

will see how to calculate the magnetic fields produced by currents and moving charges.

26.2 Magnetic Force on a Moving Charge ( )F
m

An unknown electric field can be determined by magnitude and direction of the force on a test charge

q0 at rest. To explore an unknown magnetic field (denoted by B), we must measure the magnitude and

direction of the force on a moving test charge.

The magnetic force ( )Fm on a charge q moving with velocity v in a magnetic field B is given, both in

magnitude and direction, by

F v Bm q= ×( ) …(i)

Following points are worthnoting regarding the above expression.

(i) The magnitude of Fm is

F Bqvm = sin θ
where, θ is the angle between v and B.

(ii) Fm is zero when,

(a) B =0, i.e. no magnetic field is present. (b) q =0, i.e. particle is neutral.

(c) v =0, i.e. charged particle is at rest or (d) θ = ° °0 180or , i.e. v B↑↑ or v B↑↓
(iii) Fm is maximum at θ = °90 and this maximum value is Bqv.

(iv) The units of B must be the same as the units of F qv. Therefore, the SI unit of B is equivalent to

N-s

C-m
. This unit is called the tesla (abbreviated as T), in honour of Nikola Tesla, the prominent

Serbian-American scientist and inventor.

Thus,

1 tesla = 1T =
1 N-s

C-m

1 N

A-m
=

The CGS unit of B, the gauss ( )–1 10 4G T= is also in common use.

(v) In equation number (i) q is to be substituted with sign. If q is positive, magnetic force is along

v B× and if q is negative, magnetic force is in a direction opposite to v B× .
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(vi) Direction of F
m

From the property of cross product we can infer that Fm is perpendicular to

both v and Bor it is perpendicular to the plane formed by v and B. The exact direction of Fm can

be given by any of the following methods:

(a) Direction of Fm = (sign of q) (direction of v B× ) or, as we stated earlier also,

F v Bm ↑↑ × if q is positive and

F v Bm ↑↓ × if q is negative.

(b) Fleming's left hand rule According to this rule, the forefinger, the central finger and the

thumb of the left hand are stretched in such a way that they are mutually perpendicular to each

other. If the central finger shows the direction of velocity of positive charge ( )v +q and

forefinger shows the direction of magnetic field ( )B , then the thumb will give the direction of

magnetic force ( )Fm . If instead of positive charge we have the negative charge, then Fm is in

opposite direction.

(c) Right hand rule Wrap the fingers of your right hand around the line perpendicular to the

plane of v and Bas shown in figure, so that they curl around with the sense of rotation from v

to B through the smaller angle between them. Your thumb then points in the direction of the

force Fm on a positive charge. (Alternatively, the direction of the force Fm on a positive

charge is the direction in which a right hand thread screw would advance if turned the same

way).

(vii) F vm ⊥ or F
s

m

d

dt
⊥ . Therefore, F sm d⊥ or the work done by the magnetic force in a static magnetic

field is zero.

W
mF =0

So, from work energy theorem KE and hence the speed of the charged particle remains constant

in magnetic field. The magnetic force can change the direction only. It cannot increase or

decrease the speed or kinetic energy of the particle.
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Note By convention the direction of magnetic field B perpendicular to the paper going inwards is shown by

and the direction perpendicular to the paper coming out is shown by .

V Example 26.1 A charged particle is projected in a magnetic field

B = + ×( $ $ ) –3 4 10 2
i j T

The acceleration of the particle is found to be

a = +( $ $ )x mi j2 2/s

Find the value of x.

Solution As we have read, F Bm ⊥
i.e. the acceleration a B⊥ or a B⋅ = 0

or ( $ $ ) ( $ $ ) –xi j i j+ ⋅ + × =2 3 4 10 02

or ( ) –3 8 10 02x + × =

∴ x = –
8

3

2m/s Ans.

V Example 26.2 When a proton has a velocity v i= + ×( $ $ )2 3 106
j m/s, it

experiences a force F = ×– ( $ )–1.28 10 13
k N. When its velocity is along the

z-axis, it experiences a force along the x-axis. What is the magnetic field?

HOW TO PROCEED In the second part of the question, it is given that magnetic force

is along x-axis when velocity is along z-axis. Hence, magnetic field should be along

negative y-direction. As in case of positive charge (here proton)

F v Bm ↑↑ ×
So, let B = – $B0 j

where, B0 = positive constant.

Now, applying F v Bm q= ×( ) we can find value of B0 from the first part of the

question.

Solution Substituting proper values in, F v Bm q= ×( )

We have, – ( $ ) ( ) [( $ $ ) (– $ )]– –1.28 1.6× = × + × ×10 10 2 3 1013 19
0

6
k i j jB

∴ 1.28 1.6= × ×2 0B

or B0 = =1.28

3.2
0.4

Therefore, the magnetic field is B j T= (– $ )0.4 Ans.
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V Example 26.3 A magnetic field of ( $ )–4.0 × 10 3
k T exerts a force

( $ $ ) –4.0 3.0i j+ × 10 10 N on a particle having a charge 10 9– C and moving in the

x-y plane. Find the velocity of the particle.

Solution Given, B k= × =( $ ) ,– –4 10 103 9T Cq

and magnetic force F i jm = + ×( $ $ ) –4.0 3.0 N10 10

Let velocity of the particle in x-y plane be

v i j= +v vx y
$ $

Then, from the relation

F v Bm q= ×( )

We have

( $ $ ) [( $ $ ) ( $ )]– – –4.0 3.0i j i j k+ × = + × ×10 10 4 1010 9 3v vx y

= × ×( $ – $ )– –4 10 4 1012 12v vy xi j

Comparing the coefficients of $i and $j , we have

4 10 4 1010 12× = ×– –v y

∴ v y = =10 1002 m/s m/s

and 3.0 × = ×10 4 1010 12– –– vx

∴ vx = – 75 m/s

∴ v i j= +(– $ $ )75 100 m/s Ans.

1. Write the dimensions of E/B. Here, E is the electric field and B the magnetic field.

2. In the relation F v B= ×q ( ), which pairs are always perpendicular to each other.

3. If a beam of electrons travels in a straight line in a certain region. Can we say there is no

magnetic field?

4. A charge q = – 4 µC has an instantaneous velocity v i j k= + ×( $ – $ $ )2 3 106 m/s in a uniform

magnetic field B i j k= + ×( $ $ – $ ) –2 5 3 10 2 T. What is the force on the charge?

5. A particle initially moving towards south in a vertically downward magnetic field is deflected

toward the east. What is the sign of the charge on the particle?

6. An electron experiences a magnetic force of magnitude 4.60 N× −10 15 , when moving at an

angle of 60° with respect to a magnetic field of magnitude 3.50 T× −10 3 . Find the speed of the

electron.

7. He2+ ion travels at right angles to a magnetic field of 0.80 T with a velocity of 105 m/s. Find the

magnitude of the magnetic force on the ion.
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26.3 Path of a Charged Particle in Uniform Magnetic Field
The path of a charged particle in uniform magnetic field depends on the angle θ (the angle between v

and B ). Depending on the different values of θ, the following three cases are possible.

Case 1 When θ is 0° or 180°
As we have seen in Art. 26.2, Fm =0, when θ is either 0° or180°. Hence, path of the charged particle is

a straight line (undeviated) when it enters parallel or antiparallel to magnetic field.

Case 2 When θ = °90

When θ = °90 , the magnetic force is F Bqv Bqvm = ° =sin 90 . This magnetic force is perpendicular to

the velocity at every instant. Hence, path is a circle. The necessary centripetal force is provided by the

magnetic force. Hence, if r be the radius of the circle, then

mv

r
Bqv

2

=

or r
mv

Bq
=

This expression of r can be written in the following different ways

r
mv

Bq

p

Bq

Km

Bq

qVm

Bq
= = = =

2 2

Here, p = momentum of particle

K =KE of particle =
p

m

2

2
or p Km= 2

We also know that if the charged particle is accelerated by a potential difference of V volts, it acquires

a KE given by

K qV=
Further, time period of the circular path will be

T
r

v

mv

Bq

v

m

Bq
= =







=
2

2
2π

π
π

or T
m

Bq
=

2π
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or   The angular speed ( )ω of the particle is ω
π

= =
2

T

Bq

m

∴ ω =
Bq

m

Frequency of rotation is f
T

=
1

or f
Bq

m
=

2π

The following points are worthnoting regarding a circular path:

(i) The plane of the circle is perpendicular to magnetic field. If the magnetic field is along

z-direction, the circular path is in x-y plane. The speed of the particle does not change in magnetic

field.

Hence, if v0 be the speed of the particle, then velocity of particle at any instant of time will be

v i j= +v vx y
$ $

where, v v vx y
2 2

0
2+ =

(ii) T f, and ωare independent of v while the radius is directly proportional to v.

Hence, if two charged particles of equal mass and charge enter in a magnetic field B with

different speeds v1 and v v2 1( )> at right angles, then

T T1 2=
but r r2 1>

as shown in figure.

Note Charge per unit mass
q

m
is known as specific charge. It is sometimes denoted by α . So, in terms of α , the

above formulae can be written as

r
v

B
=

α
, T

B
= 2π

α
, f

B= α
π2

and ω α= B

Case 3 When θ is other than 0 180° °, or 90°

In this case velocity can be resolved into two components, one along B and another perpendicular to

B. Let the two components be v| | and v ⊥ .
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Then,

v v| | cos= θ
and v v⊥ = sin θ

The component perpendicular to field ( )v ⊥ gives a circular path and the

component parallel to field ( )| |v gives a straight line path. The resultant path is

a helix as shown in figure.

The radius of this helical path is

r
mv

Bq

mv

Bq
= =⊥ sin θ

Time period and frequency do not depend on velocity and so they are given by

T
m

Bq
=

2π
and f

Bq

m
=

2π

There is one more term associated with a helical path, that is pitch (p) of the helical path. Pitch is

defined as the distance travelled along magnetic field in one complete cycle.

i.e. p v T= | |

or p v
m

Bq
= ( cos )θ

π2

∴ p
mv

Bq
=

2π θcos

V Example 26.4 Two particles A and B of masses mA and mB respectively and
having the same charge are moving in a plane. A uniform magnetic field exists
perpendicular to this plane. The speeds of the particles are vA and vB

respectively and the trajectories are as shown in the figure. Then, (JEE 2001)

(a) m v m vA A B B< (b) m v m vA A B B>
(c) m m v vA B A B< <and (d) m m v vA B A B= =and
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Solution Radius of the circle = mv

Bq

or radius ∝ mv if B and q are same.

( ) ( )Radius RadiusA B>
∴ m v m vA A B B>
∴ Correct option is (b).

V Example 26.5 A proton, a deuteron and an α-particle having the same kinetic
energy are moving in circular trajectories in a constant magnetic field. If rp ,rd

and rα denote respectively the radii of the trajectories of these particles, then

(a) r r rp dα = < (b) r r rd pα > > (JEE 1997)

(c) r r rd pα = > (d) r r rp d= = α

Solution Radius of the circular path is given by

r
mv

Bq

Km

Bq
= = 2

Here, K is the kinetic energy to the particle.

Therefore, r
m

q
∝ if K and B are same.

∴ r r rp d: : : : : :α = =1

1

2

1

4

2
1 2 1

Hence, r r rp dα = <
∴ Correct option is (a).

V Example 26.6 Two particles X and Y having equal charges, after being
accelerated through the same potential difference, enter a region of uniform
magnetic field and describe circular paths of radii R1and R2 , respectively. The
ratio of the mass of X to that of Y is (JEE 1988)

(a) ( / ) /R R1 2
1 2 (b) R R2 1/

(c) ( / )R R1 2
2 (d) R R1 2/

Solution R
qVm

Bq
=

2

or R m∝

or
R

R

m

m

X

Y

1

2

=

or
m

m

R

R

X

Y

=






1

2

2

∴ Correct option is (c).
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1. A neutron, a proton, an electron and anα - particle enter a region of constant magnetic field with

equal velocities. The magnetic field is along the inward normal to the plane of the paper. The

tracks of the particles are labeled in figure. The electron follows track…… and the α - particle

follows track…… (JEE 1984)

2. An electron and a proton are moving with the same kinetic energy along the same direction.

When they pass through a uniform magnetic field perpendicular to the direction of their motion,

they describe circular path of the same radius. Is this statement true or false? (JEE 1985)

3. A charged particle enters a region of uniform magnetic field at an angle of 85° to the magnetic

line of force. The path of the particle is a circle. Is this statement true or false? (JEE 1983)

4. Can a charged particle be accelerated by a magnetic field. Can its speed be increased?

5. An electron beam projected along positive x-axis deflects along the positive y-axis. If this

deflection is caused by a magnetic field, what is the direction of the field?

6. An electron and a proton are projected with same velocity perpendicular to a magnetic field.

(a) Which particle will describe the smaller circle?

(b) Which particle will have greater frequency?

7. An electron is accelerated through a PD of 100 V and then enters a region where it is moving

perpendicular to a magnetic field B = 0.2 T. Find the radius of the circular path. Repeat this

problem for a proton.

26.4 Magnetic Force on a Current Carrying Conductor
A charged particle in motion experiences a magnetic

force in a magnetic field. Similarly, a current carrying

wire also experiences a force when placed in a

magnetic field. This follows from the fact that the

current is a collection of many charged particles in

motion. Hence, the resultant force exerted by the field

on the wire is the vector sum of the individual forces

exerted on all the charged particles making up the

current. The force exerted on the particles is transmitted

to the wire when the particles collide with the atoms

making up the wire.
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Suppose a conducting wire carrying a current i is placed in a magnetic field B. The length of the wire

is l and area of cross-section is A. The free electrons drift with a speed vd opposite to the direction of

current. The magnetic force exerted on the electron is

d em dF v B= ×– ( )

If n be the number of free electrons per unit volume of the wire, then total number of electrons in

volume Al of the wire are, nAl. Therefore, total force on the wire is

F v Bm de= ×– ( ) ( )nAl

If we denote the length l along the direction of the current by l, then the above equation becomes

F l Bm i= ×( ) …(i)

where, neAv id =
The following points are worthnoting regarding the above expression :

(i) Magnitude of Fm is, F ilBm = sin θ, here θ is the angle between l and B. Fm is zero for θ = °0 or

180° and maximum for θ = °90 .

(ii) Here, l is a vector that points in the direction of the current i and has a magnitude equal to the

length.

(iii) The above expression applies only to a straight segment of wire in a uniform magnetic field.

(iv) For the magnetic force on an arbitrarily shaped wire segment, let us consider the magnetic force

exerted on a small segment of vector length d l.

d i dmF l B= ×( ) …(ii)

To calculate the total force Fm acting on the wire shown in figure, we integrate Eq. (ii) over the

length of the wire.

F l Bm i d= ×∫ ( )
A

D

…(iii)

Now, let us consider two special cases involving Eq. (iii). In both cases, the magnetic field is

taken to be constant in magnitude and direction.

Case 1 A curved wire ACD as shown in Fig. (a) carries a current i and is located in a uniform

magnetic field B. Because the field is uniform, we can take B outside the integral in Eq. (iii) and

we obtain,

F l Bm A

D
i d= 



 ×∫ …(iv)

But, the quantity d
A

D
l∫ represents the vector sum of all length elements from A to D. From the

polygon law of vector addition, the sum equals the vector l directed from A to D. Thus,
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F l Bm i= ×( )

or we can write

F F AD BACD AD i= = ×( ) in uniform field.

Case 2 An arbitrarily shaped closed loop carrying a current i is placed in a uniform magnetic

field as shown in Fig. (b). We can again express the force acting on the loop in the form of

Eq. (iv), but this time we must take the vector sum of the length elements d l over the entire loop,

F l Bm i d= ×∫( )

Because the set of length elements forms a closed polygon, the vector sum must be zero.

∴ Fm = 0

Thus, the net magnetic force acting on any closed current carrying loop in a uniform

magnetic field is zero.

(v) The direction of Fm can be given by Fleming's left hand rule as

discussed in Art. 26.2. According to this rule, the forefinger, the

central finger and the thumb of the left hand are stretched in such

a way that they are mutually perpendicular to each other. If the

central finger shows the direction of current (or l) and forefinger

shows the direction of magnetic field ( )B , then the thumb will

give the direction of magnetic force ( )Fm .

V Example 26.7 A horizontal rod 0.2 m long is mounted on a balance and
carries a current. At the location of the rod a uniform horizontal magnetic field
has magnitude 0.067 T and direction perpendicular to the rod. The magnetic
force on the rod is measured by the balance and is found to be 0.13 N. What is
the current?

Solution F ilB= °sin 90

∴ i
F

lB
= =

×
0.13

0.2 0.067

= 9.7 A Ans.

V Example 26.8 A square of side 2.0 m is placed in a
uniform magnetic field B = 2.0 T in a direction
perpendicular to the plane of the square inwards. Equal
current i A= 3.0 is flowing in the directions shown in
figure. Find the magnitude of magnetic force on
the loop.

Solution Force on wire ACD = Force on AD = Force on AED

∴ Net force on the loop = 3 ( )FAD

or F i AD Bnet = 3 ( ) ( ) ( )

= ( ) ( ) ( ) ( )3 2 23.0 2.0 N= 36 2 N

Direction of this force is towards EC.
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V Example 26.9 In the figure shown a semicircular wire loop is placed in a
uniform magnetic field B T= 1.0 . The plane of the loop is perpendicular to the
magnetic field. Current i A= 2 flows in the loop in the directions shown. Find
the magnitude of the magnetic force in both the cases (a) and (b). The radius of
the loop is 1.0 m

Solution Refer figure (a) It forms a closed loop and the

current completes the loop. Therefore, net force on the loop in

uniform field should be zero. Ans.

Refer figure (b) In this case although it forms a closed loop, but

current does not complete the loop. Hence, net force is not zero.

F FACD AD=
∴ F F F Floop = + =ACD AD AD2

∴ | | | |F Floop = 2 AD

= 2ilB sin θ [l r= =2 2.0 m]

= °( ) ( ) ( ) ( ) sin2 2 2 1 90 = 8 N Ans.

1. A wire of length l carries a current i along the x-axis. A magnetic field B j k= +B0($ $ ) exists in the

space. Find the magnitude of the magnetic force acting on the wire.

2. In the above problem will the answer change if magnetic field becomes B i j k= + +B0 ($ $ $ ).

3. A wire along the x-axis carries a current of 3.50 A in the negative direction. Calculate the force

(expressed in terms of unit vectors) on a 1.00 cm section of the wire exerted by these magnetic

fields

(a) B j= – ( )$0.65 T (b) B k= + ( ) $0.56 T (c) B i= – ( )$0.31 T

(d) B i k= + −( ) $ ( ) $0.33 T 0.28 T (e) B j k= + −( ) $ ( ) $0.74 T 0.36 T

4. Find net force on the equilateral loop of side 4 m carrying a current of 2 A kept in a uniform
magnetic field of 2 T as shown in figure.
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26.5 Magnetic Dipole
Every current carrying loop is a magnetic dipole. It has two poles: south ( )S and north ( )N . This is

similar to a bar magnet. Magnetic field lines emanate from the north pole and after forming a closed

path terminate on south pole. Each magnetic dipole has some magnetic moment ( )M . The magnitude

of M is

| |M = NiA

Here, N = number of turns in the loop

i = current in the loop and

A = area of cross-section of the loop.

For the direction of M any one of the following methods can be used:

(i) As in case of an electric dipole, the dipole moment p has a direction from

negative charge to positive charge. In the similar manner, direction of M is

from south to north pole. The south and north poles can be identified by the

sense of current. The side from where the current seems to be clockwise

becomes south pole and the opposite side from where it seems

anti-clockwise becomes north pole.

Now, let us find the direction and magnitude of M in the three loops shown in Fig. 26.18.

Refer figure (a) In this case, current appears to be clockwise from outside the paper, so this

side becomes the south pole. From the back of the paper it seems anti-clockwise. Hence, this side

becomes the north pole. As the magnetic moment is from south to north pole. It is directed

perpendicular to paper inwards. Further,

| |M = =NiA R iπ 2

Refer figure (b) Here, opposite is the case. South pole is into the paper and north pole is

outside the paper. Therefore, magnetic moment is perpendicular to paper in outward direction.

The magnitude of M is

| |M = a i2

Refer figure (c) In this case, south pole is on the right side of the loop and north pole on the left

side. Hence, M is directed from right to left. The magnitude of magnetic moment is

| |M = abi

(ii) Vector M is along the normal to the plane of the loop. The orientation (up or down along the

normal) is given by the right hand rule. Wrap your fingers of the right hand around the perimeter
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of the loop in the direction of current as shown in figure. Then, extend your thumb so that it is

perpendicular to the plane of the loop. The thumb points in the direction of M.

.

� In addition to the method discussed above for finding M here are two more

methods for calculating M.

Method 1 This method is useful for calculating M for a rectangular or square

loop.

The magnetic moment ( )M of the rectangular loop shown in figure is

M AB BC BC CD CD DA DA AB= × = × = × = ×i i i i( ) ( ) ( ) ( )

Here, the cross product of any two consecutive sides (taken in order) gives the

area as well as the correct direction of M also.

Note If coordinates of vertices are known. Then, vector of any side can be written in terms of

coordinates, e.g.

AB i j k= + +( – ) $ ( – ) $ ( – ) $x x y y z zB A B A B A

Method 2 Sometimes, a current carrying loop does not lie in a single plane. But by assuming two equal

and opposite currents in one branch (which obviously makes no change in the given circuit) two (or more)

closed loops are completed in different planes. Now, the net magnetic moment of the given loop is the

vector sum of individual loops.

For example, in Fig. (a), six sides of a cube of side l carry a current i in the directions shown. By assuming

two equal and opposite currents in wire AD, two loops in two different planes (xy and yz) are completed.

M kABCDA il= – $2

M iADGFA il= – $2

∴ M i knet = +– ($ $ )il2
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V Example 26.10 A square loop OABCO of side l carries a current i. It is placed
as shown in figure. Find the magnetic moment of the loop.

Solution As discussed above, magnetic moment of the loop can be written as

M BC CO= ×i ( )

Here, BC k= – $l , CO i j i j= ° ° =– cos $ – sin $ – $ – $l l
l l

60 60
2

3

2

∴ M k i j= ×
















i l

l l
(– $ ) – $ – $

2

3

2

or M j i= il2

2
3($ – $ ) Ans.

V Example 26.11 Find the magnitude of magnetic moment of the current
carrying loop ABCDEFA. Each side of the loop is 10 cm long and current in the
loop is i A= 2.0 .

Solution By assuming two equal and opposite currents in BE,

two current carrying loops (ABEFA and BCDEB) are formed. Their

magnetic moments are equal in magnitude but perpendicular to

each other. Hence,

M M M Mnet = + =2 2 2

where, M iA= = ( ) ( ) ( )2.0 0.1 0.1 = 0.02 A-m2

∴ M net 0.02 A-m= ( ) ( )2 2

= 0.028 A-m2
Ans.
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26.6 Magnetic Dipole in Uniform Magnetic Field
Let us consider a rectangular ( )a b× current carrying loop OACDO placed in xy - plane. A uniform

magnetic field

B i j k= + +B B Bx y z
$ $ $

exists in space.

We are interested in finding the net force and torque in the loop.

Force : Net force on the loop is

F F F F F= + + +OA AC CD DO

= × + × + × + ×i [ ( ) ( ) ( ) ( )]OA B AC B CD B DO B

= + + + ×i [( ) ]OA AC CD DO B

= null vector

or | |F =0, as OA AC CD DO+ + + forms a null vector.

Torque : Using F l B= ×i ( ), we have

F OA B i i j kOA x y zi i a B B B= × = × + +( ) [( $ ) ( $ $ $ )] = ia B By z[ $ – $ ]k j

F AC B j i j kAC x y zi i b B B B= × = × + +( ) [( $ ) ( $ $ $ )] = +ib B Bx z[– $ $ ]k i

F CD B i i j kCD x y zi i a B B B= × = × + +( ) [(– $ ) ( $ $ $ )] = +ia B By z[– $ $ ]k j

F DO B j i j kDO x y zi i b B B B= × = × + +( ) [(– $ ) ( $ $ $ )] = ib B Bx z[ $ – $ ]k i

All these forces are acting at the centre of the wires. For example, FOA will act at the centre of OA.

When the forces are in equilibrium, net torque about any point remains the same. Let us find the

torque about O.

E F G, , and H are the mid-points of OA AC CD, , and DO, respectively.
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Using τ = ×r F, we have

τO OA AC CD DO= × + × + × + ×( ) ( ) ( ) ( )OE F OF F OG F OH F

= 





×






+ +





×
a

ia B B a
b

y z
2 2

$ { ( $ – $ )} $ $ {i k j i j ib B Bx z(– $ $ )}k i+







+ +





× +






+ 





×
a

b ia B B
b

y z
2 2

$ $ { (– $ $ )} $i j k j j ib B Bx z( $ – $ )k i







= iab B iabBx y
$ – $j i

This can also be written as

τO x y ziab B B B= × + +( $ ) ( $ $ $ )k i j k

Here, iab $k = magnetic moment of the dipole M

and B B Bx y z
$ $ $i j k B+ + =

∴ τ = ×M B

Note that although this formula has been derived for a rectangular loop, it comes out to be true for any

shape of loop. The following points are worthnoting regarding the torque acting on the loop in

uniform magnetic field.

(i) Magnitude of τ is MB sin θ or NiAB sin θ. Here, θ is the angle between M and B. Torque is zero

when θ = °0 or 180° and it is maximum at θ = °90 .

(ii) If the loop is free to rotate in a magnetic field, the axis of rotation becomes an axis parallel to τ
passing through the centre of mass of the loop.

The above equation for the torque is very similar to that of an electric dipole in an electric field. The

similarity between electric and magnetic dipoles extends even further as illustrated in the table below.

Table 26.1

S.No. Field of similarity Electric dipole Magnetic dipole

1. Magnitude | | ( )p = q d2 | |M = NiA

2. Direction from –q to +q from S to N

3. Net force in uniform field zero zero

4. Torque τ = ×p E τ = ×M B

5. Potential energy U = ⋅– p E U = ⋅– M B

6. Work done in rotating the dipole W pEθ θ θ θ
1 2 1 2– (cos – cos )= W MBθ θ θ θ

1 2 1 2– (cos – cos )=

7 Field along axis E
p= ⋅1

4

2

0
3πε r

B
M= ⋅µ

π
0

34

2

r

8. Field perpendicular to axis E
p= ⋅–

1

4 0
3πε r

B
M= ⋅–

µ
π
0

34 r

Note In last two points r >> size of loop.
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Note that the expressions for the magnetic dipole can be obtained from the expressions for the electric

dipole by replacing pby Mandε 0 by
1

0µ
. Here,µ 0 is called the permeability of free space. It is related

with ε 0 and speed of light c as

c =
1

0 0ε µ

and it has the value,

µ π0
74 10= × – T-m /A

Dimensions of
1

0 0ε µ
are that of speed or [LT–1].

Hence,
1

0 0

1

ε µ













= [ ]–LT

V Example 26.12 A circular loop of radius R cm= 20 is placed in a uniform
magnetic field B = 2 T in xy-plane as shown in figure. The loop carries a current
i A= 1.0 in the direction shown in figure. Find the magnitude of torque acting
on the loop.

Solution Magnitude of torque is given by

| | sinτ θ= MB

Here, M NiA= = ( ) ( ) ( ) ( )1 21.0 0.2π

= ( )0.04 A-mπ 2

B = 2T

and θ = angle between M and B = °90

∴ | | ( ) ( ) sinτ π= °0.04 2 90

= 0.25 N-m Ans.

Note M is along negative z-direction (perpendicular to paper inwards) while B is in xy-plane. So, the angle

between M and B is 90° not 45°. If the direction of torque is also desired, then we can write

B i j i j= ° + ° = +2 45 2 45 2cos $ sin $ ($ $) T
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and M k= – ( ) $0.04 -π A m2

∴ τ = ×M B = +( ) (–$ $)0.04 2π j i

or τ = 0.18 ($ – $)i j Ans.

1. A charge q is uniformly distributed on a non-conducting disc of radius R. It is rotated with an

angular speedωabout an axis passing through the centre of mass of the disc and perpendicular

to its plane. Find the magnetic moment of the disc.

[Hint : For any charge distribution : Magnetic moment =








q

m2
(angular momentum)]

2. A circular loop of wire having a radius of 8.0 cm carries a current of 0.20 A. A vector of unit

length and parallel to the dipole moment M of the loop is given by 0.60 0.80$ $i j− . If the loop is

located in uniform magnetic field given by B i k= +( )0.25 T 0.30 T$ ( ) $ find,

(a) the torque on the loop and

(b) the magnetic potential energy of the loop.

3. A length L of wire carries a current i. Show that if the wire is formed into a circular coil, then the

maximum torque in a given magnetic field is developed when the coil has one turn only, and that

maximum torque has the magnitude τ π .= L iB
2 4/

4. A coil with magnetic moment 1.45 A -m2 is oriented initially with its magnetic moment

antiparallel to a uniform0.835 T magnetic field. What is the change in potential energy of the coil

when it is rotated 180° so that its magnetic moment is parallel to the field?

26.7 Biot Savart Law
In the preceding articles, we discussed the magnetic force exerted on a

charged particle and current carrying conductor in a magnetic field. To

complete the description of the magnetic interaction, this and the next article

deals with the origin of the magnetic field. As in electrostatics, there are two

methods of calculating the electric field at some point. One is Coulomb's law

which gives the electric field due to a point charge and the another is Gauss's

law which is useful in calculating the electric field of a highly symmetric

configuration of charge. Similarly, in magnetics, there are basically two

methods of calculating magnetic field at some point. One is Biot Savart law

which gives the magnetic field due to an infinitesimally small current

carrying wire at some point and the another is Ampere's law, which is useful in calculating the

magnetic field of a highly symmetric configuration carrying a steady current.

We begin by showing how to use the law of Biot and Savart to calculate the magnetic field produced

at some point in space by a small current element. Using this formalism and the principle of

superposition, we then calculate the total magnetic field due to various current distributions.

From their experimental results, Biot and Savart arrived at a mathematical expression that gives the

magnetic field at some point in space in terms of the current that produces the field. That expression is

based on the following experimental observations for the magnetic field dB at a point P associated

with a length element d l of a wire carrying a steady current i.
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(i) The vector dB is perpendicular to both d l (which points in the direction of the current) and the

unit vector $r directed from d l to P.

(ii) The magnitude of dB is inversely proportional to r 2 , where r is the distance from d l to P.

(iii) The magnitude of dB is proportional to the current and to the magnitude d l of the length element

d l.

(iv) The magnitude of dB is proportional to sin θ where θ is the angle between d l and $r. These

observations are summarized in mathematical formula known today as Biot Savart law

d
i d

r
B

l r
=

×µ
π
0

24

( $ )
…(i)

Here,
µ

π
0 7

4
10= – T-m

A

It is important to note that dB in Eq. (i) is the field created by the current in only a small length

element d l of the conductor. To find the total magnetic field Bcreated at some point by a current

of finite size, we must sum up contributions from all current elements that make up the current.

That is, we must evaluate B by integrating Eq. (i).

B
l r

=
×

∫
µ

π
0

24

i d

r

$

where, the integral is taken over the entire current distribution. This expression must be handled

with special care because the integrand is a cross product and therefore, a vector quantity.

The following points are worthnoting regarding the Biot Savart law.

(i) Magnitude of dB is given by

| |
sin

d
idl

r
B =

µ
π

θ0

24

| |dB is zero at θ = °0 or 180° and maximum at θ = °90 .

(ii) For the direction of dB either of the following methods can be employed.

(a) d dB l r↑↑ × $. So, dB is along d l r× .

(b) If d l is in the plane of paper. dB =0 at all points lying on the straight line passing through d l.

The magnetic field to the right of this line is in ⊗ direction and to the left of this line is inu

direction.
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26.8 Applications of Biot Savart Law
Let us now consider few applications of Biot Savart law.

Magnetic Field Surrounding a Thin, Straight Conductor
According to Biot Savart law,

B
l r

=
×

∫
µ

π
0

24

id

r

$

…(i)

As here every element of the wire contributes to B in the same direction

(which is here ⊗ ).

Eq. (i) for this case becomes,

B
idl

r

i dy

r
= =∫ ∫

µ
π

θ µ
π

θ0

2

0

24 4

sin sin

y d= φtan or dy d d= φ φ( )sec 2

r d= φsec and θ = ° φ90 –

{ }
B

i d d

d
=

φ φ ° − φ

φφ =

φ =
∫

µ
π β

α0

2

24

90( ) sin ( )

( )–

sec

sec

or B
i

d
d= φ ⋅ φ∫

µ
π β

α0

4
cos

–
or B

i

d
= +

µ
π

α β0

4
(sin sin )

Note down the following points regarding the above equation.

(i) For an infinitely long straight wire, α β= = °90

∴ sin sinα β+ =2 or B
i

d
=

µ
π
0

2

(ii) The direction of magnetic field at a point P due to a long

straight wire can be found by the right hand thumb rule.

If we stretch the thumb of the right hand along the

current and curl our fingers to pass through P, the

direction of the fingers at P gives the direction of

magnetic field there.

(iii) B
d

∝
1

, i.e. B-d graph for an infinitely long straight wire is a rectangular hyperbola as shown in

the figure.
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Magnetic Field on the Axis of a Circular Coil
Suppose a current carrying circular loop has a radius R. Current in the loop is i. We want to find the

magnetic field at a point P on the axis of the loop a distance z from the centre.

We can take the loop in xy-plane with its centre at origin and point P on the z-axis.

Let us take a small current element at angle θ as shown.

P z≡ ( , , )0 0

Q R R≡ ( cos , sin , )θ θ 0

d Rd Rdl i j= +– ( ) sin $ ( ) cos $θ θ θ θ
$r = unit vector along QP

=
+(– cos $ – sin $ $ )R R z

r

θ θi j k

Here, r =distance QP R z= +2 2

Now, magnetic field at point P, due to current element d l at Q is

d
i

r
dB l r= ×

µ
π
0

24
( $ )

= + × +
µ

π
θ θ θ θ θ θ0

34

i

r
R d R d R R[(– sin $ cos $ ) (– cos $ – sin $i j i j z$ )]k

or d
i

r
zR d zR d R dB i j k= + +

µ
π

θ θ θ θ θ0

3

2

4
[( cos )$ ( sin )$ ( ) $ ]

= + +dB dB dBx y z
$ $ $i j k

Here, dB
i

r
zR dx =

µ
π

θ θ0

34
( cos )
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dB
i

r
zR dy =

µ
π

θ θ0

34
( sin )

and dB
i

r
R dz =

µ
π

θ0

3

2

4
( )

Integrating these differentials from θ = °0 to θ π=2 for the complete loop, we get

B
ziR

r
dx = =∫

µ
π

θ θ
π0

3 0

2

4
0cos

B
ziR

r
dy = =∫

µ
π

θ θ
π0

3 0

2

4
0sin

and B
iR

r
dz = ∫

µ
π

θ
π0

2

3 0

2

4
=

µ 0
2

32

iR

r

Substituting r R z= +( ) /2 2 1 2 , we get B B
iR

R z
P z= =

+
µ 0

2

2 2 3 22 ( ) /

For N number of loops, B
NiR

R z
=

+
µ 0

2

2 2 3 22 ( ) /

Note down the following points regarding a circular current carrying loop.

(i) At the centre of the loop, z =0

and B
Ni

R
(centre) =

µ 0

2

(ii) For z R>> , z R z2 2 2+ ≈

∴ B
NiR

z
=

µ 0
2

32
= 





µ
π

π0
2

34

2( )Ni R

z
= 











µ
π
0

34

2M

z

Here, M = magnetic moment of the loop = =NiA Ni Rπ 2 .

This result was expected as the magnetic field on the axis of a dipole is
µ

π
0

34

2M

r
.

(iii) Direction of magnetic field on the axis of a circular loop can be obtained using the right hand

thumb rule. If the fingers are curled along the current, the stretched thumb will point towards the

magnetic field.
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(iv) The magnetic field at a point not on the axis is mathematically difficult to calculate. We have

shown qualitatively in figure the magnetic field lines due to a circular current.

(v) Magnetic field is maximum at the centre and decreases as we move away from the centre (on the

axis of the loop). The B z- graph is somewhat like shown in figure.

(vi) Magnetic field due to an arc of a circle at the centre is

B
i

R

i

R
= 





= 





θ
π

µ µ
π

θ
2 2 4

0 0

or B
i

R
= 











µ
π

θ0

4

Here, θ is to be substituted in radians.

Field Along the Axis of a Solenoid
The name solenoid was first given by Ampere to a wire wound in a closely spaced spiral over a hollow

cylindrical non-conducting core. If n is the number of turns per unit length, each carries a current i

uniformly wound round a cylinder of radius R, the number of turns in length dx are ndx. Thus, the

magnetic field at the axial point O due to this element dx is
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dB
indx R

R x
=

+
µ 0

2

2 2 3 22

( )

( ) /
…(i)

Its direction is along the axis of the solenoid. From the geometry, we know

x R= cot θ
dx R d= ⋅– cosec 2 θ θ

Substituting these values in Eq. (i), we get

dB ni d= ⋅– sin
1

2
0µ θ θ

Total field B due to the entire solenoid is

B ni d= ∫
1

2
0

1

2µ θ θ
θ

θ
(– sin )

∴ B
ni

=
µ

θ θ0
2 1

2
(cos – cos )

If the solenoid is very long ( )L R>> and the point O is chosen at the middle, i.e. if θ1 180= ° and

θ2 0= °, then we get

B ni( )centre = µ0 [For L R>> ]

At the end of the solenoid,

θ2 0= °, θ1 90= ° and we get

B ni( )end =
1

2
0µ [For L R>> ]

Thus, the field at the end of a solenoid is just one half at the centre. The field lines are as shown in

Fig. 26.42.
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V Example 26.13 In a high tension wire electric current runs from east to west.
Find the direction of magnetic field at points above and below the wire.

Solution When the current flows from east to west, magnetic field lines are circular round it as

shown in figure (a). And so, the magnetic field above the wire is towards north and below the wire

towards south.

V Example 26.14 A current path shaped as shown in figure produces a
magnetic field at P, the centre of the arc. If the arc subtends an angle of 30° and
the radius of the arc is 0.6 m, what are the magnitude and direction of the field
produced at P if the current is 3.0 A.

Solution The magnetic field at P due to the straight segments AC and DE is zero.

CD is arc of circle.

∴ B
i

R
= 











θ
π

µ
2 2

0 ( )N = 1

or B
i

R
= 










µ
π

θ0

4

∴ B = 











( )–10
6

7 3.0

0.6

π

= ×2.62 T10 7–
Ans.
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V Example 26.15 Figure shows a current loop having two circular arcs joined
by two radial lines. Find the magnetic field B at the centre O.

2

Solution Magnetic field at point O, due to wires CB and AD will be zero.

Magnetic field due to wire BA will be

B
i

a
1

0

2 2
= 











θ
π

µ

Direction of field B1 is coming out of the plane of the figure.

Similarly, field at O due to arc DC will be

B
i

b
2

0

2 2
= 











θ
π

µ

Direction of field B2 is going into the plane of the figure. The resultant field at O is

B B B
i b a

ab
= =1 2

0

4
–

( – )µ θ
π

Ans.

Coming out of the plane.

V Example 26.16 The magnetic field B due to a current carrying circular loop of

radius 12 cm at its centre is 0.5 × 10 4– T. Find the magnetic field due to this

loop at a point on the axis at a distance of 5.0 cm from the centre.

Solution Magnetic field at the centre of a circular loop is

B
i

R
1

0

2
=

µ

and that at an axial point, B
iR

R x
2

0
2

2 2 3 22
=

+
µ

( ) /

Thus,
B

B

R

R x

2

1

3

2 2 3 2
=

+( ) /

or B B
R

R x
2 1

3

2 2 3 2
=

+











( ) /

Substituting the values, we have B2
4

3

3 2
10

12

144 25
= ×

+









( )

( )

( )

–

/
0.5

= ×3.9 T10 5–
Ans.
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1. (a) A conductor in the shape of a square of edge length l = 0.4 m carries a

current i = 10.0 A. Calculate the magnitude and direction of magnetic field

at the centre of the square.

(b) If this conductor is formed into a single circular turn and carries the same

current, what is the value of the magnetic field at the centre.

2. Determine the magnetic field at point P located a distance x from the corner of an infinitely long

wire bent at right angle as shown in figure. The wire carries a steady current i .

3. A conductor consists of a circular loop of radius R = 10 cm and two

straight, long sections as shown in figure. The wire lies in the plane of the

paper and carries a current of i = 7.00 A. Determine the magnitude and

direction of the magnetic field at the centre of the loop.

4. The segment of wire shown in figure carries a current of i = 5.0 A, where the radius of the

circular arc is R = 3.0 cm. Determine the magnitude and direction of the magnetic field at the

origin. (Fig. 26.49)

5. Consider the current carrying loop shown in figure formed of radial lines and segments of circles

whose centres are at point P. Find the magnitude and direction of B at point P. (Fig. 26.50)
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26.9 Ampere’s Circuital Law
The electrical force on a charge is related to the electric field (caused by other charges) by the

equation,

F Ee q=
Just like the gravitational force, the static electrical force is a conservative force. This means that the

work done by the static electric force around any closed path is zero.

q dE l⋅ =∫ 0 J

Hence, we have E l⋅ =∫ d 0 V

In other words, the integral of the static (time independent) electric field around a closed path is zero.

What about the integral of the magnetic field around a closed path? That is, we want to determine the

value of

B l⋅∫ d

Here, we have to be careful. The quantity B l⋅ d does not represent some physical quantity, and

certainly not work. Although the static magnetic force does no work on a moving charge, we cannot

conclude that the path integral of the magnetic field around a closed path is zero. We are just curious

about what this analogous line integral amounts to.

The line integral B l⋅∫ d of the resultant magnetic field along a closed, plane curve is equal toµ 0 times

the total current crossing the area bounded by the closed curve provided the electric field inside the

loop remains constant. Thus,

B l⋅ =∫ d iµ 0 ( )net …(i)

This is known as Ampere's circuital law.

Eq. (i) in simplified form can be written as

Bl i= µ0 ( )net …(ii)

But this equation can be used only under the following conditions.

(i) At every point of the closed path B l| | d .

(ii) Magnetic field has the same magnitude B at all places on the closed path.

If this is not the case, then Eq. (i) is written as

B dl B dl i1 1 1 2 2 2 0cos cos ( )θ θ µ+ +… = net

Here, θ1 is the angle between B1 and d l1 , θ2 the angle between B2 and d l 2 and so on. Besides the

Biot Savart law, Ampere’s law gives another method to calculate the magnetic field due to a given

current distribution. Ampere’s law may be derived from the Biot Savart law and Bio Savart law may

be derived from the Ampere’s law. However, Ampere's law is more useful under certain symmetrical

conditions. To illustrate the theory now let us take few applications of Ampere’s circuital law.

Magnetic Field Created by a Long Current Carrying Wire
A long straight wire of radius R carries a steady current i that is uniformly distributed through the

cross-section of the wire.
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For finding the behaviour of magnetic field due to this wire, let us divide the

whole region into two parts. One is r R≥ and the another is r R< . Here, r is

the distance from the centre of the wire.

For r R≥ : Let us choose for our path of integration circle 1. From

symmetry B must be constant in magnitude and parallel to d l at every point

on this circle. Because the total current passing through the plane of the

circle is i. Ampere’s law gives

B l⋅ =∫ d iµ 0 net

or Bl i= µ0 [simplified form]

or B r i( )2 0π µ=

∴ B
i

r
=

µ
π
0

2
[for r R≥ ] …(iii)

For r R< : Here, the current i ′ passing through the plane of circle 2 is less than the total current i.

Because the current is uniform over the cross-section of the wire, the fraction of the current enclosed

by circle 2 must equal the ratio of the area πr 2 enclosed by circle 2 to the cross-sectional area πR 2 of

the wire.

i

i

r

R

′
=

π
π

2

2
⇒ i

r

R
i′ =











2

2

Then, the following procedure same as for circle 1, we apply Ampere’s law to circle 2.

B l⋅ =∫ d iµ 0 net

Bl i= ′µ 0 [simplified form]

∴ B r
r

R
i( )2 0

2

2
π µ=











∴ B
i

R
r= 





µ
π

0

22
[For r R< ] …(iv)

This result is similar in the form to the expression for the electric field inside a uniformly charged

sphere. The magnitude of the magnetic field versus r for this configuration is plotted in figure. Note

that inside the wire B → 0 as r → 0. Note also that Eqs. (iii) and (iv) give the same value of the

magnetic field at r R= , demonstrating that the magnetic field is continuous at the surface of the wire.
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Magnetic Field of a Solenoid
A solenoid is a long wire wound in the form of a helix. With this configuration, a reasonably uniform

magnetic field can be produced in the space surrounded by the turns of wire, which we shall call the

interior of the solenoid, when the solenoid carries a current. When the turns are closely spaced, each

can be approximated as a circular loop, and the net magnetic field is the vector sum of the fields

resulting from all the turns (as done in Art. 26.9). If the turns are closely spaced and the solenoid is of

infinite length, the magnetic field lines are as shown in Fig. 26.53.

One end of the solenoid behaves like the north pole ( ) and the opposite end behaves like the south

pole ( ). As the length of the solenoid increases, the interior field becomes more uniform and the

exterior field becomes weaker. An ideal solenoid is approached when the turns are closely spaced and

the length is much greater than the radius of the turns.

In this case, the external field is zero, and the interior field is uniform over a great volume.

We can use Ampere’s law to obtain an expression for the interior magnetic field in an ideal solenoid.

Fig. 26.54 shows a longitudinal cross-section of part of such a solenoid carrying a current i. Because

the solenoid is ideal, B in the interior space is uniform and parallel to the axis, and B in the exterior

space is zero.

Consider the rectangular path of length l and width w as shown in figure. We can apply Ampere’s law

to this path by evaluating the line integral B l⋅ d over each side of the rectangle.
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( )B l⋅ =∫ d side 3 0 as B =0

( )B l⋅ =∫ d side 2 and 4 0 as B l⊥ d or B =0 along these paths

( )B l⋅ =∫ d Blside1 as B is uniform and parallel to d l

The integral over the closed rectangular path is therefore,

B l⋅ =∫ d Bl

The right side of Ampere’s law involves the total current passing through the area bounded by the

path of integration.

In this case,

inet = (number of turns inside the area) (current through each turn)

= ( ) ( )nl i (n = number of turns per unit length)

Using Ampere’s law, B l⋅ =∫ d iµ 0 net

or Bl nli= ( ) ( )µ 0 or B ni= µ0 …(v)

This result is same as obtained in Art. 26.9. Eq. (v) is valid only for points near the centre (that is far

from the ends) of a very long solenoid. The field near each end is half the value given by Eq. (v).

V Example 26.17 A closed curve encircles several conductors. The line integral

B l⋅∫ d around this curve is 3.83 -× −10 7 T m.

(a) What is the net current in the conductors?

(b) If you were to integrate around the curve in the opposite directions, what would

be the value of the line integral?

Solution (a) B l⋅ =∫ d iµ 0 net

∴ i
d

net

3.83
0.3A=

⋅
= ×

×
=∫ −

−

B l

µ π0

7

7

10

4 10

(b) In opposite direction, line integral will be negative.

V Example 26.18 An infinitely long hollow conducting cylinder with inner
radius R/2 and outer radius R carries a uniform current density along its
length. The magnitude of the magnetic field,| |B as a function of the radial
distance r from the axis is best represented by (JEE 2012)
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Solution

r = distance of a point from centre

For r R≤ /2 Using Ampere’s circuital law,

B l⋅ =∫ d iµ 0 net

or Bl I= µ 0 ( )
in

or B r I( ) ( )2 0π µ=
in

or B
I

r
=

µ
π
0

2

in …(i)

Since, I
in

= 0

∴ B = 0

For
R

r R
2

≤ ≤ I r
R

in

= − 

















π π σ2
2

2

Here, σ = current per unit area

Substituting in Eq. (i), we have

B

r
R

r
=

−










µ
π

π π σ
0

2
2

2

4

= −










µ σ0 2
2

2 4r
r

R

At r
R=
2

, B = 0

At r R= , B
R

=
3

8

0µ σ

For r R≥ I I I
in Total

= = (say)

Therefore, substituting in Eq. (i), we have

B
I

r
=

µ
π
0

2
. or B

r
∝ 1

∴ The correct graph is (d).
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V Example 26.19 A device called a toroid (figure) is often used to create an
almost uniform magnetic field in some enclosed area. The device consists of a
conducting wire wrapped around a ring (a torus) made of a non-conducting
material. For a toroid having N closely spaced turns of wire, calculate the
magnetic field in the region occupied by the torus, a distance r from the centre.

Solution To calculate this field, we must evaluate B l⋅∫ d over the circle of radius r. By

symmetry we see that the magnitude of the field is constant on this circle and tangent to it.

So, B l⋅ = =∫ d Bl B r( )2π

Furthermore, the circular closed path surrounds N loops of wire, each of which carries a current

i. Therefore, right side of Eq. (i) is µ 0Ni in this case.

∴ B l⋅ =∫ d iµ 0 net

or B r Ni( )2 0π µ=

or B
Ni

r
=

µ
π
0

2

This result shows that B
r

∝ 1
and hence is non-uniform in the region occupied by torus. However,

if r is very large compared with the cross-sectional radius of the torus, then the field is

approximately uniform inside the torus. In that case,

N

r
n

2π
= = number of turns per unit length of torus

∴ B ni= µ 0

Chapter 26 Magnetics � 369

i

i

r

B

Fig. 26.56

×

×

×

×

× ×

×

×

×

Fig. 26.57



For an ideal toroid, in which turns are closely spaced, the external magnetic field is zero. This is

because the net current passing through any circular path lying outside the toroid is zero.

Therefore, from Ampere’s law we find that B = 0, in the regions exterior to the torus.

1. Figure given in the question is a cross-sectional view of a coaxial cable. The centre conductor is

surrounded by a rubber layer, which is surrounded by an outer conductor, which is surrounded

by another rubber layer. The current in the inner conductor is 1.0 A out of the page, and the

current in the outer conductor is 3.0 A into the page. Determine the magnitude and direction of

the magnetic field at points a and b .

2. Figure shows, in cross-section, several conductors that carry currents through the plane of the

figure. The currents have the magnitudes I I1 2= =4.0 A 6.0 A, , and I3 = 2.0 A, in the directions

shown. Four paths labelled a to d, are shown. What is the line integral B l⋅∫ d for each path?

Each integral involves going around the path in the counter-clockwise direction.

3. A current I flows along the length of an infinitely long, straight, thin-walled pipe. Then, (JEE 1993)

(a) the magnetic field at all points inside the pipe is the same, but not zero

(b) the magnetic field at any point inside the pipe is zero

(c) the magnetic field is zero only on the axis of the pipe

(d) the magnetic field is different  at different points inside the pipe
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26.10 Force Between Parallel Current Carrying Wires
Consider two long wires 1 and 2 kept parallel to each other at a distance r and carrying currents i1  and 
i2  respectively in the same direction.

Magnetic field on wire 2 due to current in wire 1 is, B
i

r
= ⋅

µ
π
0 1

2
        [in ⊗ direction]

Magnetic force on a small element dl of wire 2 due to this magnetic field is

d i dF l B= ×2 ( )     

Magnitude of this force is      dF i dl B= °2 90[( ) ( ) sin ] 

                         = 





i dl
i

r2
0 1

2
( )

µ
π

 = ⋅ ⋅
µ

π
0 1 2

2

i i

r
dl   

Direction of this force is along d l B×  or towards the wire 1.

The force per unit length of wire 2 due to wire 1 is

dF

dl

i i

r
=

µ
π
0 1 2

2

The same force acts on wire 1 due to wire 2. The wires attract each other if currents in the wires are
flowing in the same direction and they repel each other if the currents are in opposite directions.

V Exam ple 26.20 Two long paral lel wires are sepa rated by a distance of
2.50 cm. The force per unit length that each wire exerts on the other is 
4.00 × −10 5 N m/  , and the wires repel each other. The current in one wire is 

0.600 A. 

(a) What is the current in the second wire?

(b) Are the two currents in the same direction or in opposite directions?

Solu tion (a) 
F

l

i i

r
= 





µ
π
0 1 2

2

∴ 4 10
2 10

10

5
7

2

2
× =

×
×

−
−

−

( ) (0.6)

2.5

i

∴ i2 = 8.33 A         

(b) Wires repel each other if currents are in opposite directions.
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V Exam ple 26.21 Consider three long straight paral lel wires as shown in figure. 
Find the force expe ri enced by a 25 cm length of wire C.

Solu tion Repul sion by wire D , [towards right]

F
i i l

r
1

0 1 2

2
=

µ
π

          

= × ×
×

−

−
( ) ( )2 10 30 10

3 10

7

2
(0.25)

= × −5 10 4 N        

Repulsion by wire G, [towards left]

F2

7

2

2 10 20 10

5 10
= × ×

×

−

−
( ) ( )

(0.25) 

= × −2 10 4 N      

∴         F F Fnet = −1 2                             

= × −3 10 4 N      [towards right]

26.11 Magnetic Poles and Bar Magnets
In electricity, the isolated charge q is the simplest structure that can exist. If two such charges of
opposite sign are placed near each other, they form an electric dipole characterized by an electric
dipole moment p. In magnetism isolated magnetic ‘poles’ which would correspond to isolated
electric charges do not exist. The simplest magnetic structure is the magnetic dipole, characterized
by a magnetic dipole moment M. A current loop, a bar magnet and a solenoid of finite length are
examples of magnetic dipoles.

When a magnetic dipole is placed in an external magnetic field B, a magnetic torque τ acts on it,
which is given by

τ = ×M B

Alternatively, we can measure B due to the dipole at a point along its axis a (large) distance r from its
centre by the expression,

B
M

r
= ⋅

µ
π
0

34

2
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A bar magnet might be viewed as two poles (North and South) separated by some distance. However,
all attempts to isolate these poles fail. If a magnet is broken, the fragments prove to be dipoles and not
isolated poles. If we break up a magnet into the electrons and nuclei that make up its atoms, it will be
found that even these elementary particles are magnetic dipoles.

Each current carrying loop is just like a magnetic dipole, whose magnetic dipole moment is given by

  M A= ni

Here, n is the number of turns in the loop, i is the current and A represents the area vector of the
current loop.

The behaviour of a current loop can be described by the following hypothetical model:

(i) There are two magnetic charges; positive magnetic charge and negative magnetic charge. We
call the positive magnetic charge a north pole and the negative magnetic charge as the south pole. 
Every pole has a pole strength m. The unit of pole strength is A-m.

(ii) A magnetic charge placed in a magnetic field experiences a force,

F B= m

The force on positive magnetic charge is along the field and a force on a negative magnetic charge 
is opposite to the field.

(iii) A magnetic dipole is formed when a negative magnetic charge −m and a positive magnetic
charge +m are placed at a small separation d. The magnetic dipole moment is

M md=
The direction of M is from −m to +m.

Geometrical Length and Magnetic Length
In case of a bar magnet, the poles appear at points which are
slightly inside the two ends. The distance between the locations of
the assumed poles is called the magnetic length of the magnet.
The distance between the ends is called the geometrical length.

The magnetic length of a bar magnet is written as 2l. If m be the
pole strength and 2l the magnetic length of a bar magnet, then its
magnetic moment is

M ml= 2
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� Current carrying loop, solenoid etc. are just like magnetic dipoles, whose dipole moment M is equal to NiA. 

Direction of M is from south pole (S) to north pole (N ).

� The behaviour of a magnetic dipole (may be a bar magnet also) is similar to the behaviour of an electric

dipole.

The only difference is that the electric dipole moment p is replaced by magnetic dipole moment M and the

constant 
1

4 0πε
 is replaced by 

µ
π
0

4
.

� Table given below makes a comparison between an electric dipole and a magnetic dipole.

Table 26.2

S.No.
Physical quality to be

compared
Electric dipole Magnetic dipole

1. Dipole moment p q l= ( )2 M m l= ( )2

2. Direction of dipole moment From negative charge to the 
positive charge

From south to north pole

3. Net force in uniform field 0 0

4. Net torque in uniform field τ = ×p E τ = ×M B

5. Field at far away point on the
axis

1

4

2

0
3πε

⋅ p

r
             ( )along p

µ
π
0

34

2⋅ M

r
( )along M

6. Field at far away point on 
 perpendicular bisector

1

4 0
3πε

⋅ p

r
    (opposite to p)

µ
π
0

34
⋅ M

r
     (opposite to M )

7. Potential energy U pEθ θ= − ⋅ = −p E cos U MBθ θ= − ⋅ = −M B cos

8. Work done in rotating the
dipole

W pEθ θ θ θ
1 2 1 2− = −(cos cos ) W MBθ θ θ θ

1 2 1 2− = −(cos cos )

 Note  In the above ta ble, θ is the an gle be tween field ( E or B) and di pole mo ment ( p or M ).

V Exam ple 26.22 Calcu late the magnetic induc tion (or magnetic field) at a
point 1 Å away from a proton, measured along its axis of spin. The magnetic
moment of the proton is 1.4 × −10 26 2A m- .

Solu tion On the axis of a magnetic dipole, magnetic induc tion is given by

B
M

r
= ⋅

µ
π
0

34

2

Substituting the values, we get

 B = ×− −

−
(10 ) (2) (1.4  10 )7 26

( )10 10 3

= × −2.8 T10 3       

= 2.8 mT            Ans.

374 � Elec tric ity and Mag ne tism

Extra Points to Remember



V Exam ple 26.23 A bar magnet of magnetic moment 2.0 A-m2  is free to rotate
about a verti cal axis through its centre. The magnet is released from rest from
the east-west posi tion. Find the kinetic energy of the magnet as it takes the
north-south posi tion. The hori zon tal compo nent of the earth’s magnetic field is 
B T= 25 µ . Earth’s magnetic field is from south to north.

Solu tion Gain in kinetic energy = loss in poten tial energy

Thus,

KE = −U Ui f        

As,    U MB= − cos θ

∴                               KE = − 





− − °MB MBcos ( cos )
π
2

0  

= MB    

Substituting the values, we have

   KE J= × −( . ) ( )2 0 25 10 6

= 50 µJ     Ans.

26.12 Earth’s Magnetism
Our earth behaves as it has a powerful magnet within it. The value of magnetic field on the surface of

earth is a few tenths of a gauss ( )1 10 4G T= − . The earth’s south magnetic pole is located near the north 

geographic pole and the earth’s north magnetic pole is located near the south geographic pole. In fact,
the configuration of the earth’s magnetic field is very much like the one that would be achieved by
burying a gigantic bar magnet deep in the interior of the earth.

The axis of earth’s magnet makes an angle of 11.5° with the earth’s rotational axis.
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Theories Regarding the Origin of Earth’s Magnetism
First Theory : Gilbert for the first time in 1600, gave the idea that there is a powerful magnet within
the earth at its centre. Later on this theory was denied because the temperature in the interior of the
earth is so high that it is impossible to retain its magnetism.

Second Theory : The second theory was put forward by Grover in 1849. He put the view that the
earth magnetism is due to electric currents flowing near the outer surface of the earth. Hot air, rising
from the region near equator, goes towards north and south hemispheres and become electrified.
These currents magnetise the ferromagnetic material near the outer surface of the earth.

Third Theory : There are many conducting materials including iron and nickel in the molten state
within the central core of the earth. Conventional currents are generated in this semifluid core due to
earth’s rotation about its axis. Due to these currents, magnetism is generated within the earth.

Till date not a single theory can explain all events regarding earth’s magnetism.

Elements of Earth’s Magnetism
There are three elements of earth’s magnetism.

(i) Angle of Declination ( )α  At any point (say P) on earth’s surface the longitude determines the
north-south direction. The vertical plane in the direction of longitude or the vertical plane
passing through the line joining the geographical north and south poles is called the
‘geographical meridian’. At point P, there also exists the magnetic field B. A vertical plane in
the direction of B is called ‘magnetic meridian’.

At any place the acute angle between the magnetic meridian and the geographical meridian is
called ‘angle of declination ‘α’.

(ii) Angle of Dip ( )θ  ‘The angle of dip ( )θ  at a place is the angle between the direction of earth’s
magnetic field and the horizontal at that place.’

Angle of dip at some place can be measured from a magnetic needle free to rotate in a vertical
plane about a horizontal axis passing through centre of gravity of the needle. At earth’s magnetic
poles the magnetic field of earth is vertical, i.e. angle of dip is 90°, the freely suspended magnetic 
needle is vertical there. At magnetic equator field is horizontal, or angle of dip is 0°. The needle
is horizontal. In northern hemisphere, the north pole of the magnetic needle inclines downwards,
whereas in the southern hemisphere the south pole of the needle inclines downwards.

(iii) Horizontal Component of Earth’s Magnetic Field Let Be  be the net magnetic field at some
point. H and V be the horizontal and vertical components of Be . Let θ is the angle of dip at the
same place, then we can see that
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H Be= cos θ …(i)

and V Be= sin θ …(ii)

Squaring and adding Eqs. (i) and (ii), we get

B H Ve = +2 2

Further, dividing Eq. (ii) by Eq. (i), we get

θ = 





−tan 1 V

H

By knowing H and θ at some place we can find Be  and V at that place.

Neutral Points
When a magnet is placed at some point on earth’s surface, there are points where horizontal
component of earth’s magnetic field is just equal and opposite to the field due to the magnet. Such
points are called neutral points. If a magnetic compass is placed at a neutral point, no force acts on it
and it may set in any direction.

Suppose a small bar magnet is placed such that north pole of the magnet is towards the magnetic south 
pole of the earth then neutral points are obtained both sides on the axis of the magnet. If distance of
each neutral point from the middle point of a magnet be r, and the magnitude of the magnetic moment
of the magnet be M, then

µ
π
0

34

2
⋅ =

M

r
H

When north pole of bar magnet is towards the magnetic north pole of the earth, the neutral points are
obtained on perpendicular bisectors of the magnet. Let r be the distance of neutral points from centre,
then

µ
π
0

34
⋅ =

M

r
H

V Exam ple 26.24 In the magnetic merid ian of a certain place, the hori zon tal
compo nent of earth’s magnetic field is 0.26 G and the dip angle is 60°. Find 

(a) vertical component of earth’s magnetic field.

(b) the net magnetic field at this place.

Solu tion Given,  H = 0.26 G and  θ = °60

(a) tan θ = V

H

∴ V H= = °tan ( ) tanθ 0.26 60

= 045. G                          Ans.

(b) H Be= cos θ

∴ B
H

e = =
°cos cosθ

0.26

60

= 0.52 G           Ans.
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V Exam ple 26.25 A magnetic needle suspended in a verti cal plane at 30° from
the magnetic merid ian makes an angle of 45° with the hori zon tal. Find the true
angle of dip.

Solu tion In a verti cal plane at 30° from the magnetic merid ian, the hori zon tal compo nent is

H H′ = °cos 30

While vertical component is still V. Therefore, apparent dip will be given by

tan
cos

θ′ =
′

=
°

V

H

V

H 30
                            

But,
V

H
= tan θ                                         (where, θ = true angle of dip)

∴ tan
tan

cos
θ θ′ =

°30
                           

∴ θ θ= ′ °−tan [tan cos ]1 30             

= ° °−tan [(tan ) (cos )]1 45 30

≈ °41                                     Ans.

26.13 Vibration Magnetometer
Vibration magnetometer is an instrument which is used for the
following two purposes:

 (i) To find magnetic moment of a bar magnet.

(ii) To compare magnetic fields of two magnets.

The construction of a vibration magnetometer is as shown in
figure.The magnet shown in figure is free to rotate in a horizontal
plane. The magnet stays parallel to the horizontal component of
earth’s magnetic field. If the magnet is now displaced through an
angle θ, a restoring torque of magnitude MH sin θ acts on it and the
magnet starts oscillating. From the theory of simple harmonic
motion, we can find the time period of oscillations of the magnet.

Restoring torque in displaced position is

τ θ= − MH sin …(i)

378 � Elec tric ity and Mag ne tism

Magnetic meridian

30°

H cos 30°

OH

V

Fig. 26.67

S1 S2

S N

Magnetic
meridian

Plane
mirror

Torsion head

Screw

Glass tube

Fig. 26.68



Here, M = Magnetic moment of the magnet                      

and    H = Horizontal component of earth’s magnetic field.

Negative sign shows the restoring nature of torque. Now since, τ α= I  and sin θ θ≈  for small angular
displacement.

Thus, Eq. (i) can be written as

I MHα θ= −
Since, α is proportional to −θ. Therefore, motion is simple harmonic in nature, time period of which
will be given by

                T
I

MH
= 


 


=2 2π

θ
α

π

∴ T
I

MH
= 2π  …(ii)

In the expression of T, I is the moment of inertia of the magnet about its axis of vibration.

(i) Measurement of Magnetic Moment : By finding time period T of vibrations of the given
magnet, we can calculate magnetic moment M by the relation,

M
I

T H
=

4 2

2

π

(ii) Comparison of Two Magnetic Fields : Suppose we wish to compare the magnetic fields B1

and B2  at some point P due to two magnets. For this, vibration magnetometer is so placed that the 
centre of its magnet lies on P. Now, one of the given magnets is placed at some known distance
from P in the magnetic meridian, such that point P lies on its axial line and its north pole points
north. In this position, the field B1  at P produced by the magnet will be in the direction of H.
Hence, the magnet suspended in the magnetometer will vibrate in the resultant magnetic field 
( )H B+ 1 . Its period of vibration is noted, say it is T1 , then

   T
I

M H B1
1

2=
+

π
( )

Now, the first magnet is replaced  by the second magnet and the second magnet is placed in the
same position and again the time period is noted. If the field produced at P due to this magnet be 
B2  and the new time period be T2 , then

      T
I

M H B2
2

2=
+

π
( )

Finally, the time period of the magnetometer under the influence of the earth’s magnetic field
alone is determined. Let it be T, then

  T
I

MH
= 2π

Solving above three equations for T T, 1  and T2 , we can show that

  
B

B

T T T

T T T

1

2

2
1
2

2
2

2
2
2

1
2

=
−
−

( )

( )
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V Exam ple 26.26 A short bar magnet is placed with its north pole point ing
north. The neutral point is 10 cm away from the centre of the magnet. If 
H G= 0.4 , calcu late the magnetic moment of the magnet.

Solu tion When north pole of the magnet points towards magnetic north, null point is obtained
on perpen dic u lar bisec tor of the magnet. Simul ta neously, magnetic field due to the bar magnet
should be equal to the hori zon tal compo nent of earth’s magnetic field H.

Thus,       H
M

r
= ⋅

µ
π
0

34
 or M

Hr=
/

3

0 4( )µ π

Substituting the values, we have

M = × ×− −

−
( . ) ( )04 10 10 10

10

4 2 3

7
 = 04. A-m2 Ans.

V Exam ple 26.27 A magnetic needle performs 20 oscil la tions per minute in a
hori zon tal plane. If the angle of dip be 30°, then how many oscil la tions per
minute will this needle perform in verti cal north-south plane and in verti cal
east-west plane?

Solu tion In hori zon tal plane, the magnetic needle oscil lates in hori zon tal compo nent H.

∴ T
I

MH
= 2π

In the vertical north-south plane (magnetic meridian), the needle oscillates in the total earth’s
magnetic field Be , and in vertical east-west plane (plane perpendicular to the magnetic meridian)
it oscillates only in earth’s vertical component V. If its time period be T1  and T2 , then

T
I

MBe
1 2= π   and  T

I

MV
2 2= π

From above equations, we can find

 
T

T

H

Be

1
2

2
=   or  

n

n

B

H
e1

2

2
=

Similarly, 
n

n

V

H
2
2

2
=                                   

Further, 
B

H
e = = ° =sec secθ 30

2

3
      

and   
V

H
= = ° =tan tanθ 30

1

3
     

∴           n n
B

H
e

1
2 2 220

2

3
= 





= 





( ) ( )     

or    n1 = 21.5 oscillations/min    Ans.

and         n n
V

H
2
2 2 220

1

3
= 





= 





( ) ( )       

∴        n2 = 15.2 oscillations/min    Ans.
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26.14 Magnetic Induction and Magnetic Materials
We know that the electric lines of force change when a dielectric is placed between the parallel plates
of a capacitor. Experiments show that magnetic lines also get modified due to the presence of certain
materials in the magnetic field.

Few substances such as O2 , air, platinum, aluminium etc., show a very small increase in the magnetic
flux passing through them, when placed in a magnetic field. Such substances are called
paramagnetic substances. Few other substances such as H , H O, Cu, Zn2 2 , Sb etc. show a very small 
decrease in flux and are said to be diamagnetic. There are other substances like Fe, Co etc. through
which the flux increases to a larger value and are known as ferromagnetic substances.

Magnetisation of Matter
A material body is consisting of large number of atoms and thus large number of electrons. Each
electron produces orbital and spin magnetic moments and can be assumed as magnetic dipoles. In the
absence of any external magnetic field, the dipoles of individual atoms are randomly oriented and the
magnetic moments thus, cancel.
When we apply an external magnetic field to a substance, two processes may occur.

(i) All atoms which have non-zero magnetic moment are aligned along the magnetic field.

(ii) If the atom has a zero magnetic moment, the applied magnetic field distorts the electron orbit and 
thus, induces magnetic moment in opposite directions.

In diatomic substances, the individual atoms do not have a magnetic moment by its own. When an
external field is applied, the second process occurs. The induced magnetic moment is thus set up in
the direction opposite to B. In this case, the magnetic flux density in the interior of the body will be
less than that of the external field B.

In paramagnetic substances, the constituent atoms have intrinsic magnetic moments. When an
external magnetic field is applied, both of the above processes occur and the resultant magnetic
moment is always in the direction of magnetic field B as the first effect predominates over the second.

26.15 Some Important Terms Used in Magnetism
Magnetic Induction ( )B

When a piece of any substance is placed in an
external magnetic field, the substance becomes
magnetised. If an iron bar is placed in a uniform
magnetic field, the magnetised bar produces its
own magnetic field in the same direction as those
of the original field inside the bar, but in opposite
direction outside the bar. This results in a
concentration of the lines of force within the bar.
The magnetic flux density within the bar is
increased whereas it becomes weak at certain
places outside the bar.

“The number of magnetic lines of induction inside a magnetic substance crossing unit area normal to
their direction is called the magnitude of magnetic induction, or magnetic flux density inside the
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substance. It is denoted by B. The SI unit of B is tesla (T) or weber/metre 2  (Wb/m 2). The CGS unit is
gauss (G).

1 Wb/m = 1T = 10 G2 4

Intensity of Magnetisation ( )I
“Intensity of magnetisation ( )I  is defined as the magnetic moment per unit volume of the magnetised
substance.” This basically represents the extent to which the substance is magnetised. Thus,

I
M

V
=

The SI unit of I is ampere/metre (A/m).

Magnetic Intensity or Magnetic Field Strength ( )H
When a substance is placed in an external magnetic field, the actual magnetic field inside the
substance is the sum of the external field and the field due to its magnetisation.

The capability of the magnetising field to magnetise the substance is expressed by means of a vector 
H, called the ‘magnetic intensity’ of the field. It is defined through the vector relation,

H
B

I= −
µ 0

The SI unit of H is same as that of I, i.e. ampere/metre (A/m). The CGS unit is oersted.

Magnetic Permeability ( )µ
“It is defined as the ratio of the magnetic induction B inside the magnetised substance to the magnetic
intensity H of the magnetising field, i.e.

µ =
B

H

It is basically a measure of conduction of magnetic lines of force through it. The SI unit of magnetic
permeability is weber/ampere-metre (Wb/A-m).

Relative Magnetic Permeability ( )µr
It is the ratio of the magnetic permeability µ of the substance to the permeability of free space.

Thus,  µ
µ

µr =
0

µ r  is a pure ratio, hence, dimensionless. For vacuum its value is 1.

µ r  can also be defined as the ratio of the magnetic field B in the substance when placed in magnetic
field B0 . Thus,

µ r

B

B
=

0

For paramagnetic substance, µ r >1,

For diamagnetic substance, µ r <1 and

For ferromagnetic substance, µ r > >1.
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Magnetic Susceptibility ( )χm
We know that both diamagnetic and paramagnetic substances develop a magnetic moment depending 
on the applied field. Magnetic susceptibility is a measure of how easily a substance is magnetised in a
magnetising field. For paramagnetic and diamagnetic substances, I, H and χ m are related by the
equation,

I H= χ m  

or  χ m

I

H
=             

Thus, the magnetic susceptibility χ m may be defined as the ratio of the intensity of magnetisation to
the magnetic intensity of the magnetising field.

Since, I and H have the same units, χ m is unitless. It is a pure number.

By doing simple calculation, we can prove that µ r  and χ m are related by

µ χr m= +1

For paramagnetic substances χ m is slightly positive. For diamagnetic substances, it is slightly
negative and for ferromagnetic substances, χ m is positive and very large.

26.16 Properties of Magnetic Materials
As discussed earlier, all substances (whether solid, liquid or gaseous) may be classified into three
categories in terms of their magnetic properties. (i) paramagnetic, (ii) diamagnetic and
(iii) ferromagnetic.

Paramagnetic Substances
Examples of such substances are platinum, aluminium, chromium, manganese, CuSO4  solution etc.
They have the following properties:

(i) The substances when placed in a magnetic field, acquire a feeble magnetisation in the same sense 
as the applied field. Thus, the magnetic inductance inside the substance is slightly greater than
outside to it.

(ii) In a uniform magnetic field, these substances rotate until their longest axes are parallel to the
field.

(iii) These substances are attracted towards regions of stronger magnetic field when placed in a
non-uniform magnetic field.

Figure shows a strong electromagnet in which one of the pole pieces is sharply pointed while the
other is flat. Magnetic field is much stronger near the pointed pole than near the flat pole. If a
small piece of paramagnetic material is suspended in this region, a force can be observed in the
direction of arrow.
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(iv) If a paramagnetic liquid is filled in a narrow U-tube and one limb is placed in between the pole
pieces of an electromagnet such that the level of the liquid is in line with the field, then the liquid
will rise in the limb as the field is switched on.

(v) For paramagnetic substances, the relative permeability µ r  is slightly greater than one.

(vi) At a given temperature the magnetic susceptibility χ m does not change with the magnetising
field. However, it varies inversely as the absolute temperature. As temperature increases, χ m

decreases. At some higher temperature, χ m becomes negative and the substance becomes
diamagnetic.

Diamagnetic Substances
Examples of such substances are bismuth, antimony, gold, quartz, water, alcohol etc. They have the
following properties:

(i) These substances when placed in a magnetic field, acquire
feeble magnetisation in a direction opposite to that of the
applied field. Thus, the lines of induction inside the
substance is smaller than that outside to it.

(ii) In a uniform field, these substances rotate until their longest 
axes are normal to the field.

(iii) In a non-uniform field, these substances move from
stronger to weaker parts of the field.

(iv) If a diamagnetic liquid is filled in a narrow U-tube and one limb is placed in between the pole of
an electromagnet, the level of liquid depresses when the field is switched on.

(v) The relative permeability µ r  is slightly less than 1.

(vi) The susceptibility χ m of such substances is always negative. It is constant and does not vary with
field or the temperature.

Ferromagnetic Substances
Examples of such substances are iron, nickel, steel, cobalt and their alloys. These substances
resemble to a higher degree with paramagnetic substances as regard their behaviour. They have the
following additional properties:

(i) These substances are strongly magnetised by even a weak magnetic field.

(ii) The relative permeability is very large and is of the order of hundreds and thousands.

(iii) The susceptibility is positive and very large.
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(iv) Susceptibility remains constant for very small values of H, increases for larger values of H and
then decreases for very large values of H.

(v) Susceptibility decreases steadily with the rise of temperature. Above a certain temperature
known as Curie Temperature, the ferromagnetic substances become paramagnetic. It is
1000°C for iron, 770°C for steel, 360°C for nickel and 1150°C for cobalt.

26.17 Explanation of Paramagnetism, Diamagnetism
  and Ferromagnetism

There are three properties of atoms that give rise to magnetic dipole moment.

1. The electrons moving around the nucleus in the orbits act as small current loops and contribute
magnetic moments.

2. The spinning electron has an intrinsic magnetic dipole moment.

3. The nucleus contribute to magnetic moment due to the motion of charge within the nucleus. The

magnitude of nuclear moments is about 10 3−  times that of electronic moments or the spin
magnetic moments, as the later two are of the same order. Still most of the magnetic moment of an
atom is produced by electron spin, the net contribution of the orbital revolution is very small. This
is because most of the electrons pair off in such a way that they produce equal and opposite orbital
magnetic moment and they cancel out. Although, the electrons also try to pair up with their
opposite spins but in case of spin motion of an electron it is not always possible to form equal and
opposite pairs.

Paramagnetism
The property of paramagnetism is found in those substances whose atoms or
molecules have an excess of electrons spinning in the same direction.

Hence, atoms of paramagnetic substances have a permanent magnetic
moment and behave like tiny bar magnets. In the absence of external
magnetic field, the atomic magnets are randomly oriented and net magnetic
moment is thus, zero.

When paramagnetic substance is placed in an external magnetic field, then each atomic magnet
experiences a torque which tends to turn the magnet in the direction of the field. The atomic magnets
are thus, aligned in the direction of the field. Thus, the whole substance is magnetised in the direction
of the external magnetic field.

As the temperature of substance is increased, the thermal agitation disturbs the magnetic alignment of 
the atoms. Thus, we can say that paramagnetism is temperature dependent.
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Curie’s law  
According to Curie’s law, magnetic susceptibility of a paramagnetic substance is inversely
proportional to absolute temperature T.

χ m T
∝

1

The exact law is beyond the scope of our course.

Diamagnetism
The property of diamagnetism is generally found in those substances whose atoms (or molecules)
have even number of electrons which form pairs. “The net magnetic moment of an atom of a
diamagnetic substance is thus zero.” When a diamagnetic substance is placed in an external magnetic
field, the spin motion of electrons is so modified that the electrons which produce the magnetic
moments in the direction of external field slow down while the electrons which produce magnetic
moments in opposite direction get accelerated. Thus, a net magnetic moment is induced in the
opposite directions of applied magnetic field. Hence, the substance is magnetised opposite to the
external field.

 Note That diamagnetism is temperature independent.

Ferromagnetism
Iron like elements and their alloys are known as ferromagnetic substances. The susceptibility of these
substances is in several thousands. Like paramagnetic substances, atoms of ferromagnetic substances
have a permanent magnetic moment and behave like tiny magnets. But in ferromagnetic substances
the atoms form innumerable small effective regions called ‘domains’.

The size of the domain vary from about 10 6 3− cm  to 10 2 3− cm . Each domain has 1017  to 1021  atoms
whose magnetic moments are aligned in the same direction. In an unmagnetised ferromagnetic
specimen, the domains are oriented randomly, so that their resultant magnetic moment is zero.
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When the specimen is placed in a magnetic field, the resultant magnetisation may increase in two
different ways.

(a) The domains which are oriented favourably with respect to the field increase in size. Whereas
those oriented opposite to the external field are reduced.

(b) The domains rotate towards the field direction.

 Note That if the external field is weak, specimen gets magnetised by the first method and if the field is strong
they get magnetised by the second method.

Hysteresis : Retentivity and Coercivity
The distinguishing characteristics of a ferromagnetic material is not that it can be strongly magnetised 
but that the intensity of magnetisation I is not directly proportional to the magnetising field H. If a
gradually increasing magnetic field H is applied to an unmagnetised piece of iron, its magnetisation
increases non-linearly until it reaches a maximum.

If I is plotted against H, a curve like OA is obtained. This curve is known as magnetisation curve. At
this stage all the dipoles are aligned and I has reached to a maximum or saturated value. If the
magnetic field H is now decreased, the I does not return along magnetisation curve but follows path
AB. At H I= 0,  does not come to its zero value but its value is still near the saturated value. The value
of I at this point (i.e. OB) is known as remanence, remanent magnetisation or retentivity. The
value of I at this point is known as residual induction. On applying a reverse field the value of I finally
becomes zero. The abscissa OC represents the reversed magnetic field needed to demagnetise the
specimen. This is known as coercivity of the material.

If the reverse field is further increased, a reverse magnetisation is set up which quickly reaches the
saturation value. This is shown as CD. If H is now taken back from its negative saturation value to its
original positive saturation value, a similar curve DEFA will be traced. The whole graph ABCDEFA
thus, forms a closed loop, usually known as hysteresis loop. The whole process described above and
the property of the iron characterized by it are called hysteresis. The energy lost per unit volume of a
substance in a complete cycle is equal to the area. Thus, we can conclude the following three points
from the above discussion:

(i) The retentivity of a substance is a measure of the magnetisation remaining in the substance when
the magnetising field is removed.

(ii) The coercivity of a substance is a measure of the reverse magnetising field required to destroy the 
residual magnetism of the substance.
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(iii) The energy loss per unit volume of a substance in a complete cycle of magnetisation is equal to
the area of the hysteresis loop.

Demagnetisation 
It is clear from the hysteresis loop that the intensity of magnetisation I does 
not reduce to zero on removing the magnetising field H. Further, I is zero
when the magnetising field H is equal to the coercive field.

At these points the magnetic induction is not zero, and the specimen is not
demagnetised. To demagnetise a substance, it is subjected to several
cycles is magnetisation, each time with decreasing magnetising field and
finally the field is reduced to zero. In this way, the size of the hysteresis
curve goes on decreasing and the area finally reduces to zero.

Demagnetisation is obtained by placing the specimen in an alternating
field of continuously diminishing amplitude. It is also obtained by heating. 
Ferromagnetic materials become practically non-magnetic at sufficiently high temperatures.

Magnetic Properties of Soft Iron and Steel
A comparison of the magnetic properties of ferromagnetic substances can be made by the comparison 
of the shapes and sizes of their hysteresis loops.

Following three conclusions can be drawn from their hysteresis loops:

(i) Retentivity of soft iron is more than the retentivity of steel.

(ii) Coercivity of soft iron is less than the coercivity of steel.

(iii) Area of hysteresis loop (i.e. hysteresis loss) in soft iron is smaller than that in steel.

Choice of Magnetic Materials
The choice of a magnetic material for different uses is decided from the hysteresis curve of a
specimen of the material.

(i) Permanent Magnets The materials for a permanent magnet should have

(a) high retentivity (so that the magnet is strong) and

(b) high coercivity (so that the magnetising is not wiped out by stray magnetic fields). As the
material in this case is never put to cyclic changes of magnetisation, hence, hysteresis is
immaterial. From the point of view of these facts steel is more suitable for the construction of
permanent magnets than soft iron.

Modern permanent magnets are made of ‘cobalt-steel’, alloys ‘ticonal’.

(ii) Electromagnets The materials for the construction of electromagnets should have

(a) high initial permeability

(b) low hysteresis loss

From the view point of these facts, soft iron is an ideal material for this purpose.

(iii) Transformer Cores and Telephone Diaphragms As the magnetic material used in these
cases is subjected to cyclic changes. Thus, the essential requirements for the selection of the
material are

(a) high initial permeability

(b) low hysteresis loss to prevent the breakdown
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Electromagnet
As we know that a current carrying solenoid behaves like a bar magnet. If we place a soft iron rod in
the solenoid, the magnetism of the solenoid increases hundreds of times and the solenoid is called an
‘electromagnet’. It is a temporary magnet.

An electromagnet is made by winding closely a number of turns of insulated copper wire over a
soft iron straight rod or a horse shoe rod. On passing current through this solenoid, a magnetic
field is produced in the space within the solenoid.

Applications of Electromagnets
(i) Electromagnets are used in electric bell, transformer, telephone diaphragms etc.

(ii) In medical field, they are used in extracting bullets from the human body.

(iii) Large electromagnets are used in cranes for lifting and transferring big machines and parts.

26.18 Moving Coil Galvanometer
The moving coil galvanometer is a device used to measure an electric current.

Principle
Action of a moving coil galvanometer is based upon the principle that when a current carrying coil is
placed in a magnetic field, it experiences a torque whose magnitude depends on the magnitude of
current.
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Construction
The main parts of a moving coil galvanometer are shown in figure. The galvanometer consists of a
coil, with many turns free to rotate about a fixed vertical axis in a uniform radial magnetic field. There 
is a cylindrical soft iron core, which not only makes the field radial but also increases the strength of
magnetic field.

Theory
The current to be measured is passed through the galvanometer. As the coil is in the magnetic field (of 
constant magnitude) it experiences a torque given by 

τ θ= MB sin

           = ( ) sinNiA B θ ...(i)

As shown in the figure, the pole pieces are made cylindrical, the magnetic field
always remains parallel to the plane of the coil. Or angle between B and M always

remains 90o . Therefore, Eq. (i) can be written as

            τ = NiAB                                                       (as sin sinθ = =90 1o )

Here, N = total number of turns of the coil

            i = current passing through the coil

          A = area of cross-section of the coil and 

          B = magnitude of radial magnetic field.

This torque rotates the coil. The spring S shown in figure provides a counter torque kφ that balances
the above torque NiAB. In equilibrium, 

k NiABφ = ...(ii)

Here, k is the torsional constant of the spring. With rotation of coil a small light mirror M  (attached
with phosphor bronze wire W ) also rotates and equilibrium deflection φ  can be measured by a lamp
and scale arrangement.

The above Eq. (ii) can be written as 

i
k

NAB
= 





φ ...(iii)

Hence, the current i is proportional to the deflection φ .

Galvanometer Constant

The constant 
k

NAB
 in Eq. (iii) is called galvanometer constant.

Hence, 

Galvanometer constant =
k

NAB
...(iv)

This constant may be found by passing a known current through the coil. Measuring the deflection φ
and putting these values in Eq. (iii), we can find galvanometer constant.
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Sensitivity of Galvanometer
Deflection per unit current ( )φ i  is called sensitivity of galvanometer. From Eq. (iii), we can see
that φ i NAB k= . Hence, 

Sensitivity = =
φ
i

NAB

k
...(v)

The sensitivity of a galvanometer can be increased by 

(i) increasing the number of turns in the coil N  or

(ii) increasing the magnitude of magnetic field.

V Exam ple 26.28 A rect an gu lar coil of area 5.0 × −10 4 2m  and 60 turns is

pivoted about one of its verti cal sides. The coil is in a radial hori zon tal
magnetic field of  9 10 3× − T. What is the torsional constant of the spring

connected to the coil if a current of 0 20. mA produces an angu lar deflec tion of  
18o ?

Solu tion From the equa tion, 

i
k

NAB
= 





φ

We find that torsional constant of the spring is given by

k
NABi=

φ
      

Substituting the values in SI units, we have

k = × × ×− − −( )( . )( )( . )60 50 10 9 10 02 10

18

4 3 3

= × −3 10 9 N-m/degree                           Ans.

1. A coil of a mov ing coil gal va nom e ter twists through 90o when a cur rent of one microampere is

passed through it. If the area of the coil is 10 4 2− m  and it has 100 turns, cal cu late the mag netic

field of the mag net of the gal va nom e ter. Given, k = −10 8 N -m /degree.

2. A gal va nom e ter coil 5 2cm cm×  with 200 turns is sus pended ver ti cally in a field of 5 10 2× − T.

The sus pen sion fi bre needs a torque of 0.125 N -m× −10 7  to twist it through one ra dian.

Cal cu late the strength of the cur rent re quired to be main tained in the coil if we re quire a

de flec tion of 6°.
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Final Touch Points
1. Some times, a non-conducting charged body is ro tated with some an gu lar speed. In this case, the

ra tio of mag netic mo ment and an gu lar mo men tum is con stant which is equal to q m/2 , where q is the
charge and m the mass of the body.

e.g. In case of a ring of mass m, radius R and charge q distributed on its circumference.

Angular momentum,  L I mR= =ω ω( ) ( )2  …(i)

  Magnetic moment, M iA qf R= = ( ) ( )π 2  

Here, f = frequency = ω
π2

∴  M q R q
R= 





=( ) ( )
ω
π

π ω
2 2

2
2

…(ii)

From Eqs. (i) and (ii), we get

M

L

q

m
=

2
      

Although this expression is derived for simple case of a ring, it holds good for other bodies also. For
example, for a disc or a sphere.

2. De ter mi na tion of e/m of an Elec tron (Thomson Method) JJ Thomson in 1897, de vised an
ex per i ment for the de ter mi na tion of e/m (spe cific charge) of the elec tron by us ing elec tric and
mag netic fields in mu tu ally per pen dic u lar directions.

The discharge is maintained by the application of high PD between the cathode C and anode A of a

discharge tube containing air at a very low pressure (~ –10 2 mm of Hg). The electrons so produced

are allowed to pass through slits A1 and A2 also kept at the potential of A. The beam then passes along 

the axis of the tube and produces a spot of light at O on the fluorescent screen S. The electric field E is 

applied between two horizontal plates P and Q. The magnetic field B is applied in the direction

perpendicular to the paper plane by passing the current through coils, in the region within the dotted
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circle. It is clear from Fleming’s left hand rule, that F due to E is in upward direction, while due to B in

downward direction.

Hence, fields E and B can be adjusted so that the electrons suffer no deflection and strike at point O
on the screen. In this case,

or eE evB=  or v E B= / …(i)

Now, electric field is switched off, the electrons thus, describe the circular arc and fall at O′ on the
screen. In this case, the force F Bev=  bends the electron beam in a circular arc, such that it is
balanced by the centripetal force mv R2 / .

∴ Bev mv R= 2 /

or        v B m= Re / …(ii)

Combining Eqs. (i) and (ii), we get

e m E RB/ /= 2 …(iii)

As E and B are known. To find R, consider arc EF of the circular path in the magnetic field region.
From the geometry, we get

OO GO EF R′ =/ /          

or     R EF GO OO= × ′/ …(iv)

Practically, EF is replaced by the width of the magnetic flux region and G is taken at the middle of the
region. Thomson’s value for e/m was 1.7 ×1011 C/kg, which is in excellent agreement with the modern
value of 175890 1011.   ×  C/kg.

 3. Cyclotron In 1932, Lawrence developed a machine named cyclotron, for the acceleration of
charged particles, such as protons or deuterons. These particles (ions) are caused to move in
circular orbits by magnetic field and are accelerated by the electric field.

In its simplest form, it consists of two flat semicircular metal boxes, called dees because of their
shape. These hollow chambers have their diametric edges parallel and slightly separated from each
other. An alternating potential (with frequency of the order of megacycles per second) is applied
between the dees. The dees are placed between the poles of a strong electromagnet which provides
a magnetic field perpendicular to the plane of the dees.

Suppose that at any particular instant the alternating potential is in the direction which makes D1

positive and D2 negative. A positive ion of mass m, charge q starting from the source S (of positive
ion) will be attracted by the dee D2. Let its velocity while entering in dee D2 is v. Due to magnetic field
B, it will move in a circular path of radius r inside the dee D2, where

r
mv

Bq
=

or v
Bqr

m
=
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In the interior of the dee, the speed of the ion remains constant. After it has traversed half a cycle, the
ion comes to the edge of D2. If in the meantime, the potential difference between D1 and D2 has
changed direction so that D2 is now positive and D1 negative, the positive ion will receive an additional 
acceleration, while going across the gap between the dees and  speed of ion will increase. Then, it
travels in a circular path of larger radius inside D1 under the influence of magnetic field (because
r v∝ ). After traversing a half cycle in D1, it will reach the edge of D1 and receive an additional
acceleration between the gaps because in the meantime the direction of potential difference
between the dees has changed. The ion will continue travelling in a semicircle of increasing radii, the
direction of potential difference changes every time the ion goes from D1 to D2 and from D2 to D1. The
time taken by the charged particle to traverse the semicircular path in the dee is given by

t r v
m

Bq
= =π π

/ …(i)

This relation indicates that time t is independent of the velocity of the particle and of the radius. For
any given value of m q/ , it is determined by the magnetic field intensity. By adjusting the magnetic
field intensity the time can be made the same as that required to change the potentials. On the other
hand, the oscillator frequency (of alternating potential) can also be adjusted to the nature of a given
ion and to the strength of the magnetic field. The frequency of the oscillations required to keep the ion
in phase is given by the relation

f
T t

Bq

m
= = =1 1

2 2π
…(ii)

If the oscillation frequency is adjusted to keep the charged ion always in phase, each time the ion
crosses the gap it receives an additional energy and at the same time it describes a flat spiral of
increasing radius. Eventually, the ion reaches the periphery of the dee, where it can be brought out of
the chamber by means of a deflecting plate charged to a high negative potential. This attractive force
draws the ion out of its spiral path and thus can be used easily. If R is the radius of the dee, kinetic
energy of the ion emerging from the cyclotron is thus given by

K mv m BqR m= =1

2

1

2
2 2( / )

                   K B R q m= 2 2 2 2/                                           …(iii)

This relation indicates that the maximum energy attained by the ion is limited by the radius R,
magnetic field B or the frequency of the alternating potential f. It is independent of the alternating
voltage. It can be explained by the fact that when the voltage is low, the ion makes a large number of
turns before reaching the periphery, but when the voltage is high the number of turns is small. The
total energy remains same in both the cases provided B and R are unchanged.

 Note The cyclotron is used to bombard nuclei with energetic particles and study the resulting nuclear
reactions. It is also used in hospitals to produce radioactive substances which can be used in diagnosis
and treatment.

Cyclotron is suitable only for accelerating heavy particles like proton, deuteron, α-particle etc. Electrons
cannot be accelerated by the cyclotron because the mass of the electron is small and a small increase in
energy of the electron makes the electrons move with a very high speed.

The uncharged particles (e.g., neutrons) cannot be accelerated by cyclotron.
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TYPED PROBLEMS

Type 1. Based on deviation of charged particle in uniform magnetic field when θ = °90 or path is
uniform circular

Concept

Suppose a charged particle ( , )q m enters a uniform magnetic field B at right angles with
speed v as shown in figure. The magnetic field extends upto a length x. The path of the
particle is a circle of radius r, where

r
mv

Bq
=

The speed of the particle in magnetic field does not change. But, it gets deviated in the
magnetic field. The deviation θ can be found in two ways

(i) After time t, deviation will be

θ ω= = 





t
Bq

m
t as ω =





Bq

m

(ii) In terms of the length of the magnetic field (i.e. when the
particle leaves the magnetic field) the deviation will be

θ = 





sin–1 x

r

But, since, sin |θ >1, this relation can be used only when x r< .

For x r≥ , the deviation will be 180° as shown in figure.

V Example 1 The region between x = 0 and x L= is filled with uniform steady

magnetic field −B0
$ .k A particle of mass m, positive charge q and velocity v0

$i

travels along x-axis and enters the region of the magnetic field. [JEE 1999]
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Neglect the gravity throughout the question.

(a) Find the value of L if the particle emerges from the region of magnetic field with its

final velocity at an angle 30° to its initial velocity.

(b) Find the final velocity of the particle and the time spent by it in the magnetic field, if

the magnetic field now extends upto 2.1 L.

Solution (a) θ = °30

sinθ = L

R

Here, R
mv

B q
= 0

0

∴ sin30
0

0

° = L

mv

B q

or
1

2

0

0

= B qL

mv

∴ L
mv

B q
= 0

02

(b) In part (a)

sin 30° = L

R
or

1

2
= L

R

or L R= /2

Now, when L L′ = 2.1

or
2.1

2
R ⇒ L R′ >

Therefore, deviation of the particle is θ = 180° as shown in figure.

∴ v if v= − 0
$

and t T
m

B q
AB = =/2

0

π

Type 2. To find coordinates and velocity of particle at any time t in circular path

V Example 2 A particle of specific charge α enters a uniform magnetic field

B k= – $B0 with velocity v i= v0
$ from the origin. Find the time dependence of

velocity and position of the particle.
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HOW TO PROCEED In such type of problems first of all see the angle between v and B.
Because only this angle decides the path of the particle. Here, the angle is 90°.
Therefore, the path is a circle. If it is a circle, see the plane of the circle (perpendicular
to the magnetic field). Here, the plane is xy. Then, see the sense of the rotation.

Here, it will be anti-clockwise as shown in figure, because at origin the magnetic
force is along positive y-direction (which can be seen from Fleming's left hand rule).
Find the deviation and radius of the particle.

θ ω α= =t B t0 and r
v

B
= 0

0α

Now, according to the figure, find v( )t and r ( )t .

Solution Velocity of the particle at any time t is

v i j( ) $ $t v vx y= + = +v v0 0cos $ sin $θ θi j

or v i j( ) cos ( ) $ sin ( ) $t v B t v B t= +0 0 0 0α α Ans.

Position of particle at time t is

r i j( ) $ $t x y= + = +r r rsin $ ( – cos )$θ θi j

Substituting the values of r and θ, we have

r i j( ) [sin ( )$ { – cos ( )}$ ]t
v

B
B t B t= +0

0
0 01

α
α α Ans.

Type 3. To find coordinates and velocity of particle at any time t in helical path

V Example 3 A particle of specific charge α is projected from origin with velocity

v i k= v v0 0
$ – $ in a uniform magnetic field B k= – $B0 . Find time dependence of

velocity and position of the particle.

HOW TO PROCEED Here, the angle between v and B is

θ = ⋅ =
⋅

= 





cos

| || |
cos cos– – –1 1 0 0

0 0

1

2

1

2

v B

v B

B v

v B

or θ = °45

Hence, the path is a helix. The axis of the helix is along z-axis (parallel to B ) and

plane of the circle of helix is xy (perpendicular to B ). So, in xy-plane, the velocity

components and x and y-coordinates are same as that of the above problem. The only

change is along z-axis. Velocity component in this direction will remain unchanged

while the z-coordinate of particle at time t would be v tz .

Solution Velocity of particle at time t is

v i j k( ) $ $ $t v v vx y z= + +

= +v B t v B t v0 0 0 0 0cos ( )$ sin ( )$ – $α αi j k Ans.

vx and vy can be found in the similar manner as done in Example 2.

The position of the particle at time t would be

r ( ) $ $ $t x y z= + +i j k

Here, z v t v tz= = – 0

Chapter 26 Magnetics � 397



and x and y are same as in Example 2.

Hence, r ( ) [sin ( )$ { – cos ( )}$] – $t
v

B
B t B t v t= +0

0
0 0 01

α
α αi j k Ans.

Type 4. To find the time spent in magnetic field, deviation etc. if a charged particle enters from the e
outside in uniform magnetic field (which extends upto large distance from point of entering)

V Example 4 A charged particle ( , )q m enters a uniform magnetic field B at angle

α as shown in figure with speed v0 . Find

(a) the angle β at which it leaves the magnetic field.

(b) time spent by the particle in magnetic field and

(c) the distance AC.

Solution (a) Here, velocity of the particle is in the plane of paper while the

magnetic field is perpendicular to the paper inwards,. i.e. angle between v and

B is 90°. So, the path is a circle. The radius of the circle is r
mv

Bq
= 0

O is the centre of the circle. In ∆AOC,

∠ = ∠OCD OAD

or 90 90° = °– –β α
∴ β α= Ans.

(b) ∠ = ∠ =COD DOA α (as ∠ = ∠ = °OCD OAD 90 – α)

∴ ∠ =AOC 2α

or length APC r
mv

Bq
= =( ) .2

2 0α α

∴ t
APC

v

m

Bq
APC = =

0

2 α
Ans.

Alternate method

t
T

APC = 



2

2
π

α( ) = 





⋅α
π

T

= 











α
π

π2 m

Bq
= 2αm

Bq
Ans.

(c) Distance, AC AD= 2 ( ) = 2 ( sin )r α

= 2 0mv

Bq
sin α Ans.
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A
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×

β
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A
v0

( , )q m

B
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V Example 5 A particle of mass m = × −1.6 10 27 kg and charge q = × −1.6 10 19C

enters a region of uniform magnetic field of strength 1 T along the direction

shown in figure. The speed of the particle is 107m/s. (JEE 1984)

(a) The magnetic field is directed along the inward normal to the plane of the paper. The

particle leaves the region of the field at the point F. Find the distance EF and the

angle θ.

(b) If the direction of the field is along the outward normal to the plane of the paper, find

the time spent by the particle in the region of the magnetic field after entering it at E.

Solution Inside a magnetic field, speed of charged particle does not change. Further, velocity

is perpendicular to magnetic field in both the cases hence path of the particle in the magnetic

field will be circular. Centre of circle can be obtained by drawing perpendiculars to velocity

(or tangent to the circular path) at E and F. Radius and angular speed of circular path would be

r
mv

Bq
= and ω = Bq

m

(a) Refer figure (i)

∠ = ° −CFG 90 θ and ∠ = ° − ° = °CEG 90 45 45

Since, CF CE=
∴ ∠ = ∠CFG CEG

or 90 45° − = °θ or θ = °45

Further, FG GE r= = °cos 45

∴ EF FG r
mv

Bq
= = ° = °

2 2 45
2 45

cos
cos

=
× 





×
=

−

−

2 10 10
1

2

1 10

27 7

19

( ) ( )

( ) ( )

1.6

1.6
0.14 m
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θ

E

F

45°

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

C

r

r

G

E

F

v

v

45°

45°

45°

× × × ×

× × × ×

× × × ×

× × ×

× × × ×

× × × ×

(i)

C

F

90°

45°

(ii)

45°

E

θ



Note That in this case particle completes 1 4/ th of circle in the magnetic field because the angle rotated is 90°.

(b) Refer figure (ii) In this case, particle will complete
3

4
th of circle in the magnetic field.

Hence, the time spent in the magnetic field :

t = 3

4
(time period of circular motion)

= 





3

4

2πm

Bq
= 3

2

πm

Bq

= ×
×

−

−
( ) ( )

( ) ( ) ( )

3 10

2 1 10

27

19

π 1.6

1.6

= × −4.712 10 8 s Ans.

Note From the above examples, we can see that particle never completes circular path if it enters from outside in

uniform magnetic field at right angles (as in Examples 1, 4 and 5). Circle is completed if magnetic field

extends all around (Example-2). Following figures explain these points more clearly. In all figures, particle is

positively charged.

In figure (a) Centre of circular path is lying on the boundary line of magnetic field. Deviation of the

particle is 180° and time spent in magnetic field t
T=
2

.

In figure (b) Centre of circular path lies outside the magnetic field. Deviation of the particle is less than

180° and time spent in magnetic field t
T<
2

.

In figure (c) Centre of circular path lies inside the magnetic field. Deviation of the particle is more than

180° and time spent in magnetic field t
T>
2

.

Type 5. Based on the concept of helical path

Concept

Following points are worthnoting in case of a helical path.

(i) The plane of the circle of the helix is perpendicular to the magnetic field.

(ii) The axis of the helix is parallel to magnetic field.
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× × × × × × × ×

× × × × × × × ×

× × × × × × × ×

× × × × × × × ×

× × × × × × × ×

× × × × × × × ×

× × × × × × × ×

× × × × × × × ×

× × × × × × × ×

× × × × × × × ×

v

v

v

v

v

v

C

C

C

v

v

vv

(a)

(b)

(c)



(iii) The particle while moving in helical path in magnetic field
touches the line passing through the starting point
parallel to the magnetic field after every pitch.

For example, a charged particle is projected from origin in
a magnetic field (along x-direction) at angle θ from the
x-axis as shown. As the velocity vector v makes an angle θ
with B,its path is a helix. The plane of the circle of the helix
is yz (perpendicular to magnetic field) and axis of the helix
is parallel to x-axis. The particle while moving in helical
path touches the x-axis after every pitch, i.e. it will touch the x-axis at a distance

x np= where, n = …0 1 2, ,

V Example 6 An electron gun G emits electrons of energy 2 keV travelling in the

positive x-direction. The electrons are required to hit the spot S where GS = 0.1 m,

and the line GS makes an angle of 60° with the x-axis as shown in figure. A uniform

magnetic field B parallel to GS exists in the region outside the electron gun.

Find the minimum value of B needed to make the electrons hit S. (JEE 1993)

Solution Kinetic energy of electron,

K =
1

2

2mv = 2 keV

∴ Speed of electron, v
K

m
= 2

v = × × ×
×

−

−
2 2 10

10

16

31

1.6

9.1
m/s

= ×2.65 107 m/s

Since, the velocity ( )v of the electron makes an angle of θ = 60° with the magnetic field B, the

path will be a helix. So, the particle will hit S if

GS = np

Here, n = 1, 2, 3 ..............

p = pitch of helix = 2π θm

qB
v cos

But for B to be minimum, n = 1

Hence, GS p
m

qB
v= = 2π θcos

B B
mv

q GS
= =min

cos

( )

2π θ
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B

v

G

60°
X

S

60°

B

v

S

G

x
θ

O

B

v

y



Substituting the values, we have

Bmin

( )( )( )

( ) (
=

× × 





×

−

−

2 10 10
1

2

10

31 7

19

π 9.1 2.65

1.6 0.1)

or Bmin = × −4.73 10 3 T Ans.

Type 6. Based on calculation of magnetic field due to current carrying wires

V Example 7 A wire shaped to a regular hexagon of side 2 cm carries a current of

2 A. Find the magnetic field at the centre of the hexagon.

Solution Q θ = °30

BC

OC
= tan θ ( )BC = 1 cm

∴ 1
30

1

3r
= ° =tan

∴ r = 3 cm

Net magnetic field at O is 6 times the magnetic field

due to one side.

∴ B
i

r
= +





6
4

0µ
π

θ θ(sin sin )

=
×

+





6 10 2

3 10

1

2

1

2

7

2

( ) ( )–

–

= ×6.9 10 5– T Ans.

V Example 8 Find the magnetic field B at the point P in figure.

Solution Magnetic field at P due to SM and OQ is zero. Due to QR and RS are equal and

outwards. Due to MN and NO are equal and inwards.
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2a

a

aa
P

I

θ

r
i

θ

O

A BC

O
PQ

I

R S

N M



Due to QR and RS,

B
I

a
1

02
4 2

0 45= ° + °





µ
π

(sin sin )

= µ
π

0

4 2

I

a
[outwards]

Due to MN and NO,

B
I

a
2

02
4

45= 0° + °





µ
π

(sin sin )

= µ
π

0

2 2

I

a
[inwards]

∴ B B B
I

a
net = − =2 1

0

4 2

µ
π

[inwards]

V Example 9 A long insulated copper wire is closely wound as a spiral of N turns.

The spiral has inner radius a and outer radius b. The spiral lies in the xy-plane

and a steady current I flows through the wire. The z-component of the magnetic

field at the centre of the spiral is (JEE 2011)

(a)
µ 0

2

NI

b a

b

a( )
ln

−






(b)
µ 0

2

NI

b a

b a

b a( )
ln

−
+
−









(c)
µ 0

2

NI

b

b

a
ln







(d)
µ 0

2

NI

b

b a

b a
ln

+
−









Solution (a) If we take a small strip of dr at distance r from centre, then number of turns in

this strip would be

dN
N

b a
dr=

−








Magnetic field due to this element at the centre of the coil will be

dB
dN I

r
= µ0

2

( ) =
−

µ0

2

NI

b a

dr

r( )

∴ B dB
r a

r b
=

=

=

∫ =
−







µ0

2

NI

b a

b

a( )
ln

∴ Correct answer is (a).
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V Example 10 An infinitely long conductor PQR is bent to form a right angle as

shown in figure. A current I flows through PQR. The magnetic field due to this

current at the point M is H1. Now, another infinitely long straight conductor QS

is connected at Q, so that current is I/2 in QR as well as in QS, the current in PQ

remaining unchanged. The magnetic field at M is now H2 . The ratio H H1 2/ is

given by (JEE 2000)

(a) 1/2 (b) 1 (c) 2/3 (d) 2

Solution H1 = Magnetic field at M due to PQ + Magnetic field at M due to QR

But magnetic field at M due to QR = 0

∴ Magnetic field at M due to PQ (or due to current I in PQ)

= H1

Now, H 2 = Magnetic field at M due to PQ (current I)

+ magnetic field at M due to QS (current I/2) + magnetic field at M due to QR

= + +H
H

1
1

2
0 = 3

2
1H

H

H

1

2

2

3
=

Note Magnetic field at any point lying on the current carrying straight conductor is zero.

Type 7. Based on the magnetic force on current carrying wire

V Example 11 A long horizontal wire AB, which is free to move in a vertical plane

and carries a steady current of 20 A, is in equilibrium at a height of 0.01 m over

another parallel long wire CD which is fixed in a horizontal plane and carries a

steady current of 30 A, as shown in figure. Show that when AB is slightly

depressed, it executes simple harmonic motion. Find the period of oscillations.
(JEE 1994)

Solution Let m be the mass per unit length of wire AB. At a height x above the wire CD,

magnetic force per unit length on wire AB will be given by

F
i i

x
m = µ

π
0 1 2

2
(upwards) …(i)

Weight per unit length of wire AB is

F mgg = (downwards)
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90°
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−∞
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Here, m = mass per unit length of wire AB

At x d= , wire is in equilibrium, i.e.

F Fm g=

or
µ
π
0 1 2

2

i i

d
mg=

or
µ
π
0 1 2

22

i i

d

mg

d
= …(ii)

When AB is depressed, x decreases therefore, Fm will increase, while Fg remains the same.

Change in magnetic force will become the net restoring force, Let AB is displaced by dx
downwards.

Differentiating Eq. (i) w.r.t. x, we get

dF
i i

x
dxm = − µ

π
0 1 2

22
. …(iii)

i.e. restoring force, F dF dxm= ∝ −
Hence, the motion of wire is simple harmonic.

From Eqs. (ii) and (iii), we can write

dF
mg

d
dxm = − 





⋅ [ ]Q x d=

∴ Acceleration of wire, a = –
g

d
dx







.

Hence, period of oscillation

T
dx

a
= =2 2π π| |

| |

displacement

acceleration

or T
d

g
= =2 2π π 0.01

9.8

or T = 0.2 s Ans.

V Example 12 A straight segment OC (of length L) of a

circuit carrying a current I is placed along the x-axis .

Two infinitely long straight wires A and B, each

extending from z = − ∞ to + ∞, are fixed at y a= − and

y a= + respectively, as shown in the figure. If the

wires A and B each carry a current I into the plane of

the paper, obtain the expression for the force acting on

the segment OC. What will be the force on OC if the

current in the wire B is reversed? (JEE 1992)
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Fm

Fg

BA i1 = 20 A

DC

x d= = 0.01 m

O

B

A

z

y

x
CI



Solution (a) Let us assume a segment of wire OC at a point P, a distance x from the centre of

length dx as shown in figure.

Magnetic field at P due to current in wires A and B will be in the directions perpendicular to

AP and BP respectively as shown.

| |B = µ
π
0

2

I

AP

Therefore, net magnetic force at P will be along negative y-axis as shown below

Bnet = 2| |cosB θ

= 











2
2

0µ
π

I

AP

x

AP

B
Ix

AP
net = 





µ
π
0

2( )

B
Ix

a x
net =

+
µ
π
0

2 2
.
( )

Therefore, force on this element will be

dF I
Ix

a x
dx=

+








µ
π
0

2 2
[in negative z-direction]

∴ Total force on the wire will be

F dF
I xdx

x ax

x L L
= =

+=

=

∫ ∫
µ

π
0

2

0 2 20

= +









µ
π

0
2 2 2

22

I L a

a
ln [in negative z-axis]

Hence, F k= − +









µ
π

0
2 2 2

22

I L a

a
ln $

(b) When direction of current in B is reversed net magnetic field is along the current. Hence, force
is zero.
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V Example 13 Two long straight parallel wires are 2 m apart,

perpendicular to the plane of the paper. The wire A carries a

current of 9.6 A, directed into the plane of the paper. The wire B

carries a current such that the magnetic field of induction at the

point P, at a distance of 10 11/ m from the wire B, is zero.

Find (JEE 1997)

(a) the magnitude and direction of the current in B.

(b) the magnitude of the magnetic field of induction at the point S.

(c) the force per unit length on the wire B.

Solution (a) Direction of current at B should be perpendicular to paper

outwards. Let current in this wire be iB. Then,

µ
π

µ
π

0 0

2
2

10

11

2 10 11

i iA B

+





=
( / )

or
i

i

B

A

= 10

32

or i iB A= × = × =10

32

10

32
39.6 A

(b) Since, AS BS AB2 2 2+ =
∴ ∠ = °ASB 90

At S : B1 = Magnetic field due to iA

= µ
π
0

2

iA

1.6
= × −( ) )2 10 7 (9.6

1.6

= × −12 10 7 T

B2 = Magnetic field due to iB

= µ
π
0

2

iB

1.2

= × −( ) ( )2 10 37

1.2

= × −5 10 7 T

Since, B1 and B2 are mutually perpendicular. Net magnetic field at S would be

B B B= +1
2

2
2

= × + ×− −( ) ( )12 10 5 107 2 7 2

= × −13 10 7 T

(c) Force per unit length on wire B :

F

l

i i

r

A B= µ
π
0

2
[Q r AB= =2 m]

= × ×−( ) ( )2 10 3

2

7 9.6

= × −2.88 10 6 N/m
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V Example 14 A current of 10 A flows around a closed path in a circuit which is

in the horizontal plane as shown in the figure. The circuit consists of eight

alternating arcs of radii r1 =0.08 m and r2 =0.12 m. Each subtends the same

angle at the centre. (JEE 2001)

(a) Find the magnetic field produced by this circuit at the centre.

(b) An infinitely long straight wire carrying a current of 10 A is passing through the centre

of the above circuit vertically with the direction of the current being into the plane of the

circuit. What is the force acting on the wire at the centre due to the current in the

circuit? What is the force acting on the arc AC and the straight segment CD due to the

current at the centre?

Solution (a) Given, i = 10 A, r1 8= 0.0 m and r2 2= 0.1 m. Straight portions, i.e. CD etc, will

produce zero magnetic field at the centre. Rest eight arcs will produce the magnetic field at the

centre in the same direction, i.e. perpendicular to the paper outwards or vertically upwards and

its magnitude is

B B B= +inner arcs outer arcs

= 







+ 







1

2 2

1

2 2

0

1

0

2

µ µi

r

i

r

= 





+







µ
π

π0 1 2

1 24
( )i

r r

r r

Substituting the values, we have

B = +
×

−( )( )( )( )

( )

10 10 8 2

8 2

7 3.14 0.0 0.1

0.0 0.1

B = × −6.54 10 5 T

(vertically upward or outward normal to the paper)

(b) Force on AC

Force on circular portions of the circuit, i.e. AC etc, due to the wire at the centre will be zero

because magnetic field due to the central wire at these arcs will be tangential (θ = °180 ).

Force on CD

Current in central wire is also i = 10 A. Magnetic field at distance x due to central wire

B
i

x
= µ

π
0

2
.

∴ Magnetic force on element dx due to this magnetic field

dF i
i

x
dx i

dx

x
= 





⋅ = 





( ) .
µ
π

µ
π

0 0 2

2 2
[ sin ]F ilB= °90
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r1

r2
C

D

A

i



Therefore, net force on CD is

F dF
i dx

x
i

x r

x r
= = = 



=

=

∫ ∫
1

2 0
2

0

0 08

0 12 2

2 2

3

2

µ
π

µ
π.

.
ln

Substituting the values, F = × −( ) ( ) ln ( . )2 10 10 1 57 2

or F = × −8.1 10 6 N (inwards)

Force on wire at the centre

Net magnetic field at the centre due to the circuit is in vertical direction and current in the

wire in centre is also in vertical direction. Therefore, net force on the wire at the centre will

be zero. ( θ = °180 ). Hence,

(i) Force acting on the wire at the centre is zero.

(ii) Force on arc AC = 0.

(iii) Force on segment CD is 8.1 × −10 6 N (inwards).

Type 8. Based on the magnetic force on a charged particle in electric and (or) magnetic field

V Example 15 Consider the motion of a positive point charge in a region where

there are simultaneous uniform electric and magnetic fields E j= E0
$ and B j= B0

$.

At time t = 0, this charge has velocity v in the xy-plane making an angle θ with the

x-axis. Which of the following option(s) is(are) correct for time t > 0? (JEE 2012)

(a) If θ = °0 , the charge moves in a circular path in the xz-plane.

(b) If θ = °0 , the charge undergoes helical motion with constant pitch along the y-axis

(c) If θ = °10 , the charge undergoes helical motion with its pitch increasing with time along

the y-axis.

(d) If θ = °90 , the charge undergoes linear but accelerated motion along the y-axis.

Solution Magnetic field will rotate the particle in a circular path (in xz-plane or

perpendicular to B). Electric field will exert a constant force on the particle in positive

y-direction. Therefore, resultant path is neither purely circular nor helical or the options

(a) and (b) both are wrong.

(c) v⊥ and Bwill rotate the particle in a circular path in xz- plane (or perpendicular to B ). Further,

v||and Ewill move the particle (with increasing speed) along positive y-axis (or along the axis of

above circular path). Therefore, the resultant path is helical with increasing pitch along the

y-axis (or along B and E ). Therefore, option (c) is correct.

(d)

Magnetic force is zero, as θ between B and v is zero. But, electric force will act in y-direction.
Therefore, motion is 1-D and uniformly accelerated (towards positive y-direction).

Therefore, option (d) is also correct.
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V Example 16 A particle of charge +q and mass m

moving under the influence of a uniform electric field E $i

and uniform magnetic field B $k follows a trajectory from

P to Q as shown in figure. The velocities at P and Q are

v $i and −2 $j . Which of the following statement(s) is/are

correct ? (JEE 1991)

(a) E
mv

qa
=











3

4

2

(b) Rate of work done by the electric field at P is
3

4

3mv

a











(c) Rate of work done by the electric field at P is zero

(d) Rate of work done by both the fields at Q is zero

Solution Magnetic force does not do work. From work-energy theorem :

WFe
= ∆KE

or ( ) ( ) [ ]qE a m v v2
1

2
4 2 2= −

or E
mv

qa
=











3

4

2

∴ Option (a) is correct.

At P, rate of work done by electric field

= ⋅F ve = °( ) ( ) cosqE v 0

=








q

mv

qa
v

3

4

2

=










3

4

3mv

a

Therefore, option (b) is also correct.

Rate of work done at Q :

of electric field = = ° =⋅F ve qE v( ) ( ) cos2 90 0 and of magnetic field is always zero.

Therefore, option (d) is also correct.

Note that F ie qE= $

V Example 17 A proton moving with a constant velocity passes through a region

of space without any change in its velocity. If E and B represent the electric and

magnetic fields, respectively. Then, this region of space may have (JEE 1985)

(a) E B= =0 0, (b) E B= ≠0 0,

(c) E B≠ =0 0, (d) E B≠ ≠0 0,

Solution If both E and B are zero, then Fe and Fm both are zero. Hence, velocity may remain

constant. Therefore, option (a) is correct.

If E = 0, B ≠ 0 but velocity is parallel or antiparallel to magnetic field, then also Fe and Fm both

are zero. Hence, option (b) is also correct.

If E ≠ 0, B ≠ 0 but F Fe m+ =0, then again velocity may remain constant or option (d) is also

correct.
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V Example 18 A wire loop carrying a current I is placed in the xy-plane as shown

in figure. (JEE 1991)

(a) If a particle with charge +Q and mass m is placed at the centre P and given a velocity v

along NP (see figure), find its instantaneous acceleration.

(b) If an external uniform magnetic induction field B i= B $ is applied, find the force and the

torque acting on the loop due to this field.

Solution (a) Magnetic field at P due to arc of circle,

Subtending an angle of 120° at centre would be

B1

1

3
= (field due to circle) = 





1

3 2

0µ I

a

= µ0

6

I

a
[outwards]

= 0.16µ0I

a
[ outwards]

or B1
0= 0.16µ I

a
$k

Magnetic field due to straight wire NM at P ,

B
I

r
2

0

4
60 60= ° + °µ

π
(sin sin )

Here, r a= °cos 60

∴ B
I

a
2

0

4 60
2 60=

°
°µ

π cos
( sin )

or B
I

a
2

0

2
60= °µ

π
tan

Chapter 26 Magnetics � 411

1
2
0
°

P

N

M v

y

xO

a

I

+Q

M

N

P

+Q

a

r
60°

60°

a

y

x

y

x

v

60°

I

1
2
0
°

P

N

M v

y

xO

a

I

+Q



= 0.27 µ0I

a
(inwards)

or B k2 = − 0.27 µ0I

a
$

∴ B B B knet

0.11= + = −1 2

µ0 I

a
$

Now, velocity of particle can be written as

v i j= ° + °v vcos $ sin $60 60

= +v v

2

3

2
$ $i j

Magnetic force,

F v Bm Q= ×( )

= −0.11 0.11µ µ0 0

2

3

2

IQv

a

IQv

a
$ $j i

∴ Instantaneous acceleration,

a
F

j i= = −m

m

IQv

am

0.11 µ0

2
3($ $)

(b) In uniform magnetic field, force on a current loop is zero. Further, magnetic dipole moment of
the loop will be

M k= ( ) $IA

Here, A is the area of the loop.

A a a a= − × ° °1

3

1

2
2 60 602( ) [ sin ] [ cos ]π

= − °πa a2 2

3 2
120sin

= 0.61 a2

∴ M k= ( ) $0.61 Ia2

Given, B i= B$

∴ τ = × =M B j( ) $0.61 Ia B2

V Example 19 Two long parallel wires carrying currents 2.5 A and I (ampere) in

the same direction (directed into the plane of the paper) are held at P and Q

respectively such that they are perpendicular to the plane of paper. The points P

and Q are located at a distance of 5 m and 2 m respectively from a collinear point

R (see figure). (JEE 1990)

(a) An electron moving with a velocity of 4 105× m/s along the positive x-direction

experiences a force of magnitude 3.2 × −10 20 N at the point R. Find the value of I.

(b) Find all the positions at which a third long parallel wire carrying a current of

magnitude 2.5 A may be placed, so that the magnetic induction at R is zero.
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Solution (a) Magnetic field at R due to both the wires P and Q will be downwards as shown

in figure.

Therefore, net field at R will be sum of these two.

B B BP Q= +

= +µ
π

µ
π

0 0

2 5 2 2

I I
P Q = +





µ
π
0

2 5 2

2.5 I

= +µ
π
0

4
1( )I = +−10 17 ( )I

Net force on the electron will be

F Bqvm = °sin 90

or ( ) ( ) ( )3.2 × = +− −10 10 120 7 I ( ) ( )1.6 × ×−10 4 1019 5

or I + =1 5

∴ I = 4 A

(b) Net field at R due to wires P and Q is

B I= +−10 17 ( ) T

= × −5 10 7 T

Magnetic field due to third wire carrying a current of 2.5 A should be 5 10 7× − T in upward

direction, so that net field at R becomes zero. Let distance of this wire from R be r. Then,

µ
π
0 7

2
5 10

2.5

r
= × −

or
( ) ( )2 10

5 10
7

7× = ×
−

−2.5
m

r

or r = 1 m

So, the third wire can be put at M or N as shown in figure.

If it is placed at M, then current in it should be outwards and if placed at N, then current be

inwards.

Type 9. Path of charged particle in both electric and magnetic fields

Concept

Here, normally two cases are popular. In the first case, E B↑↑ and particle velocity is
perpendicular to both of these fields. In the second case, E B⊥ and the particle is released
from rest. Let us now consider both the cases separately.
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V Example 20 When E B↑↑ and particle velocity is perpendicular to both of these

fields.

Solution Consider a particle of charge q and mass m released from the origin with velocity

v i= v0
$ into a region of uniform electric and magnetic fields parallel to y-axis, i.e. E j= E0

$ and

B j= B0
$. The electric field accelerates the particle in y-direction, i.e. y-component of velocity goes

on increasing with acceleration,

a
F

m

F

m

qE

m
y

y e= = = 0 …(i)

The magnetic field rotates the particle in a circle in xz-plane (perpendicular to magnetic field).

The resultant path of the particle is a helix with increasing pitch. The axis of the plane is

parallel to y-axis. Velocity of the particle at time t would be

v i j k( ) $ $ $t v v vx y z= + +

Here, v a t
qE

m
ty y= = 0

and v v vx z
2 2

0
2+ = =constant

θ ω= =t
Bq

m
t

v v v
Bqt

m
x = = 



0 0cos cosθ

and v v v
Bqt

m
z = = 



0 0sin sinθ

∴ v i j( ) cos $ $ sint v
Bqt

m

qE

m
t v

Bqt

m
= 





+ 





+ 



0

0
0 

$k

Similarly, position vector of particle at time t can be given by

r i j k( ) $ $ $t x y z= + +

Here, y a t
qE

m
ty= = 





1

2

1

2

2 0 2

x r
mv

Bq

Bqt

m
= = 











sin sinθ 0

and z r
mv

Bq

Bqt

m
= = 



























( – cos ) – cos1 10θ

∴ r i j( ) sin $ $t
mv

Bq

Bqt

m

qE

m
t

m= 











+ 





+0 0 21

2

v

Bq

Bqt

m

0 1




























– cos $k

Note (i) While moving in helical path the particle touches the y-axis after every T or after,

t nT= , where n = …0 1 2, ,

Here, T
m

Bq
= 2π

(ii) At t = 0, velocity is along positive x-axis and magnetic field is along y-axis. Therefore, magnetic force is

along positive z-axis and the particle rotates in xz-plane as shown in figure.
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V Example 21 When E B⊥ and the particle is released at rest from origin.

Solution Consider a particle of charge q and mass m emitted at origin with zero initial

velocity into a region of uniform electric and magnetic fields. The field E is acting along x-axis

and field B along y-axis, i.e.

E i= E0
$

and B j= B0
$

Electric field will provide the particle an acceleration (and therefore a velocity component) in

x-direction and the magnetic field will rotate the particle in xz-plane (perpendicular to B).

Hence, at any instant of time its velocity (and hence, position) will have only x and z

components. Let at time t its velocity be

v i k= +v vx z
$ $

Net force on it at this instant is

F F F= +e m = + ×q qE v B( )

= + + ×q E v v Bx z[ $ ( $ $ ) ( $)]0 0i i k j

or F i k= +q E v B qv Bz x( – ) $ $
0 0 0

∴ a
F

i k= = +
m

a ax z
$ $

where, a
q

m
E v Bx z= ( – )0 0 …(i)

and a
q

m
v Bz x= 0 …(ii)

Differentiating Eq. (i) w.r.t. time, we have

d v

dt

qB

m

dv

dt

x z
2

2
0= 





–

But,
dv

dt
a

qB

m
vz

z x= = 0

∴ d v

dt

qB

m
vx

x

2

2
0

2

= 





– …(iii)

Comparing this equation with the differential equation of SHM
d y

dt
y

2

2

2=








– ,ω we get

ω = qB

m

0

and the general solution of Eq. (iii) is

v A tx = + φsin ( )ω …(iv)

At time t = 0, vx = 0, hence, φ =0

Again,
dv

dt
A tx = ω ωcos (as φ =0)

From Eq. (i), a
qE

m
x = 0 at t = 0, as vz = 0 at t = 0

∴ A
qE

m
ω = 0 or A

qE

m
= 0

ω

Substituting ω = qB

m

0 , we get A
E

B
= 0

0
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Therefore, Eq. (iv) becomes

v
E

B
tx = 0

0

sin ω

where, ω = qB

m

0

Now substituting value of vx in Eq. (ii), we get

dv

dt

qE

m
tz = 0 sin ω

∴ dv
qE

m
t dtz

v tz

0

0

0∫ ∫= sin ω

or v
qE

m
tz = 0 1

ω
ω( – cos )

Substituting ω = qB

m

0 , we get

v
E

B
tz = 0

0

1( – cos )ω

On integrating equations for vx and vz and knowing that at t = 0, x = 0 and z = 0, we get

x
E

B
t= 0

0

1
ω

ω( – cos )

and z
E

B
t t= 0

0ω
ω ω( – sin )

These equations are the equations for a cycloid which is defined as the path generated by the

point on the circumference of a wheel rolling on a ground.

In the present case, the radius of the rolling wheel is
E

B

0

0ω
, the maximum displacement

along x-direction is
2 0

0

E

B ω
. The x-displacement becomes zero at t = 0 2, /π ω, 4π ω,/ etc.

Note Path of a charged particle in uniform electric and magnetic field will remain unchanged if

Fnet = 0

or F Fe m+ =0

or q qE v B+ × =( ) 0

or E v E= − ×( )

= ×( )E v
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V Example 22 A cyclotron’s oscillator frequency is 10 MHz. What should be the

operating magnetic field for accelerating protons? If the radius of its dees is

60 cm, what is the kinetic energy (in MeV) of the proton beam produced by the

accelerator?

( , , )e C m kg MeV Jp= × = × = ×− − −1.60 1.67 1.610 10 1 1019 27 13

Solution Magnetic field Cyclotron’s oscillator frequency should be same as the proton’s

revolution frequency (in circular path)

∴ f
Bq

m
=

2π

or B
mf

q
= 2π

Substituting the values in SI units, we have

B = × ×
×

−

−
( )( )( )( )2 22 7 10 10 10

10

27 6

19

1.67

1.6

= 067. T Ans.

Kinetic energy Let final velocity of proton just after leaving the cyclotron is v. Then, radius of

dee should be equal to

R
mv

Bq
= or v

BqR

m
=

∴ Kinetic energy of proton,

K mv m
BqR

m
= = 





1

2

1

2

2
2

= B q R

m

2 2 2

2

Substituting the values in SI units, we have

K = ×
× ×

−

−
( . ) ( . ) ( . )

.

067 16 10 060

2 167 10

2 19 2 2

27

= × −1.2 J10 12

= ×
×

−

−
1.2

1.6
MeV

10

10 10

12

19 6( ) ( )

= 7 5. MeV Ans.

V Example 23 A charged particle carrying charge q C= 1 µ moves in uniform

magnetic field with velocity v m/s1
610= at angle 45° with x-axis in the xy-plane

and experiences a force F1 5 2= mN along the negative z-axis. When the same

particle moves with velocity v m s2
610= / along the z-axis, it experiences a force

F2 in y-direction. Find

(a) the magnitude and direction of the magnetic field

(b) the magnitude of the force F2.

Miscellaneous Examples



Solution F2 is in y-direction when velocity is along z-axis. Therefore, magnetic field should be

along x-axis. So let,

B i= B0
$

(a) Given, v i j1

6 610

2

10

2
= +$ $

and F k1
35 2 10= × −– $

From the equation, F v B= ×q ( )

We have (– ) $ ( ) $ $ ( $)– –5 2 10 10
10

2

10

2

3 6
6 6

0× = +








 ×









k i j iB 

= – $
B0

2
k

∴ B0 3

2
5 2 10= × –

or B0
210= – T

Therefore, the magnetic field is

B i= ( $)–10 2 T Ans.

(b) F B qv2 0 2 90= °sin

As the angle between B and v in this case is 90°.

∴ F2
2 6 610 10 10= ( ) ( ) ( )– –

= 10 2– N Ans.

V Example 24 A wire PQ of mass 10 g is at rest on two parallel metal rails. The

separation between the rails is 4.9 cm. A magnetic field of 0.80 T is applied

perpendicular to the plane of the rails, directed downwards. The resistance of the

circuit is slowly decreased. When the resistance decreases to below 20 Ω, the wire

PQ begins to slide on the rails. Calculate the coefficient of friction between the

wire and the rails.

Solution Wire PQ begins to slide when magnetic force is just equal to the force of friction, i.e.

µ θmg ilB= sin ( )θ = °90

Here, i
E

R
= = =6

20
0.3 A

∴ µ = il B

mg
= ×

×
( ) ( ) ( )

( )

–

–

0.3 4.9 0.8

9.8

10

10 10

2

3 ( )

= 0.12 Ans.
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Example 25 What is the value of B that can be set up at the equator to permit a

proton of speed 107 m s/ to circulate around the earth?

[R m= ×6.4 106 , m kgp = ×1.67 10 27– ] .

Solution From the relation

r
mv

Bq
= ,

We have B
mv

qr
=

Substituting the values, we have

B = ×
× ×

( ) ( )

( ) ( )

–

–

1.67

1.6 6.4

10 10

10 10

27 7

19 6

= ×1.6 10 8– T Ans.

V Example 26 Deuteron in a cyclotron describes a circle of radius 32.0 cm. Just

before emerging from the D’s. The frequency of the applied alternating voltage is

10 MHz. Find

(a) the magnetic flux density (i.e. the magnetic field).

(b) the energy and speed of the deuteron upon emergence.

Solution (a) Frequency of the applied emf = Cyclotron frequency

or f
Bq

m
=

2π

∴ B
mf

q
= 2π

= × × ×
×

( ) ( ) ( ) ( )–

–

2 2 10 10 10

10

27 6

19

3.14 1.67

1.6

= 1.30 T Ans.

(b) The speed of deuteron on the emergence from the cyclotron,

v
R

T
fR= =2

2
π π

= × ×( ) ( ) ( ) ( )–2 10 10 32 106 23.14

= ×2.01 m/s107

∴ Energy of deuteron = 1

2

2mv

= × × × ×1

2
2 10 1027 7 2( ) ( )–1.67 2.01 J

= 4.22 MeV Ans.

Note 1 MeV = × −
1.6 10

13 J

V Example 27 In the Bohr model of the hydrogen atom, the electron circulates

around the nucleus in a path of radius 5 10 11× – m at a frequency of 6.8 × 1015 Hz.

(a) What value of magnetic field is set up at the centre of the orbit?

(b) What is the equivalent magnetic dipole moment?
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Solution (a) An electron moving around the nucleus is equivalent to a current,

i qf=
Magnetic field at the centre,

B
i

R

qf

R
= =µ µ0 0

2 2

Substituting the values, we have

B = × × ×

× ×

( ) ( ) ( )– –

–

4 10 10 10

2 10

7 19 15

11

π 1.6 6.8

5.1

= 13.4 T Ans.

(b) The current carrying circular loop is equivalent to a magnetic dipole with magnetic dipole
moment,

M NiA Nqf R= = ( )π 2

Substituting the values, we have

M = × × ×( ) ( ) ( ) ( ) ( )– –1 10 10 1019 15 11 21.6 6.8 3.14 5.1

= ×8.9 A -m10 24 2– Ans.

V Example 28 A flat dielectric disc of radius R carries an excess charge on its

surface. The surface charge density is σ. The disc rotates about an axis

perpendicular to its plane passing through the centre with angular velocity ω.
Find the torque on the disc if it is placed in a uniform magnetic field B directed

perpendicular to the rotation axis.

Solution Consider an annular ring of radius r and of thickness dr on this disc. Charge within

this ring,

dq rdr= ( ) ( )σ π2

As ring rotates with angular velocity ω, the equivalent current is

i dq= ( ) (frequency)

= 





( ) ( )σ π ω
π

2
2

rdr or i rdr= σω

Magnetic moment of this annular ring,

M iA rdr r= = ( ) ( )σω π 2 (along the axis of rotation)

Torque on this ring,

d MB r B drτ σωπ= ° =sin ( )90 3

∴ Total torque on the disc is τ τ= ∫ d
R

0
= ∫( )σωπB r dr

R 3

0

= σωπBR4

4
Ans.
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V Example 29 Three infinitely long thin wires, each carrying current i in the

same direction, are in the xy-plane of a gravity free space. The central wire is

along the y-axis while the other two are along x d= ± .

(i) Find the locus of the points for which the magnetic field B is zero.

(ii) If the central wire is displaced along the z-direction by a small amount and

released, show that it will execute simple harmonic motion. If the linear mass density of

the wires is λ , find the frequency of oscillation.

Solution (i) Magnetic field will be zero on the y-axis, i.e. x z= =0 .

Magnetic field cannot be zero in region I and region IV because in region I magnetic field will

be along positive z-direction due to all the three wires, while in region IV  magnetic field will be

along negative z-axis due to all the three wires. It can be zero only in region II and III.

Let magnetic field is zero on line z = 0 and x x= (shown as dotted). The magnetic field on this

line due to wires 1 and 2 will be along negative z-axis and due to wire 3 along positive z-axis.

Thus,

B B B1 2 3+ =

or
µ
π

µ
π

µ
π

0 0 0

2 2 2

i

d x

i

x

i

d x( ) ( – )+
+ =

or
1 1 1

d x x d x+
+ =

–

This equation gives x
d= ±
3

Hence, there will be two lines x
d=
3

and x
d= –
3

(z = 0)

where, magnetic field is zero. Ans.
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(ii) In this part, we change our coordinate axes system, just for better understanding.

There are three wires 1, 2 and 3 as shown in figure. If we displace the wire 2 towards the z-axis,
then force of attraction per unit length between wires (1 and 2) and (2 and 3) will be given by

F
i

r
= µ

π
0

2

2

The components of F along x-axis will be cancelled out. Net resultant force will be towards

negative z-axis (or mean position) and will be given by

F F
i

r

z

r
net = =









2 2
2

0
2

cosθ µ
π

F
i

z d
znet =

+
µ
π
0

2

2 2( )
. ( )r z d2 2 2= +

If z d<< , then

z d d2 2 2+ ≈

and F
i

d
znet =









 ⋅–

µ
π
0

2

2

Negative sign implies that Fnet is restoring in nature.

Therefore, F znet ∝ –

i.e. the wire will oscillate simple harmonically.

Let a be the acceleration of wire in this position and λ the mass per unit length of wire, then

F a
i

d
znet = =









λ µ

π
– 0

2

2

or a
i

d
z=









–

µ
πλ

0
2

2
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∴ Frequency of oscillation,

f = 1

2π
acceleration

displacement

= =1

2

1

2

0

π π
µ
πλ

a

z

i

d

or f
i

d
=

2

0

π
µ
πλ

Ans.

V Example 30 Uniform electric and magnetic fields with strength E and B are

directed along the y-axis. A particle with specific charge q/m leaves the origin in

the direction of x-axis with an initial velocity v0 . Find

(a) the y-coordinate of the particle when it crosses the y-axis for nth time.

(b) the angle α between the particle’s velocity vector and the y-axis at that moment.

Solution (a) As discussed in Type-9 path of the particle is a helix of increasing pitch. The

axis of the helix is parallel to y-axis (parallel to E) and plane of circle of the helix is xz
(perpendicular to B ). The particle will cross the y-axis after time,

t nT= = 





=n
m

Bq

mn

Bq

2 2π π

The y-coordinate of particle at this instant is

y a ty= 1

2

2

where, a
F

m

qE

m
y

y= =

∴ y
qE

m

mn

Bq
= 











1

2

2
2π

= 2 2 2

2

n mE

qB

π
Ans.

(b) At this moment y-component of its velocity is

v a t
qE

m

mn

Bq
n

E

B
y y= = 











= 





2
2

π π

The angle α between particle’s velocity vector and the y-axis at this

moment is

α =








tan–1 v

v

xz

y

Here, v v v vxz x z= + =2 2
0

or α
π

= 





tan–1 0

2

Bv

nE
Ans.

V Example 31 A current is passing through a cylindrical conductor with a hole

(or cavity) inside it. Show that the magnetic field inside the hole is uniform and

find its magnitude and direction.
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Solution Let us find the magnetic field at point P inside the cavity at a distance r1 from O and

r2 from C.

J = current per unit area

R = radius of cylinder

a = radius of cavity

i1 = whole current from cylinder = J R( )π 2

i2 = current from hole = J a( )π 2

At point P magnetic field due to i1 is B1 (perpendicular to OP) and is B2 due to i2 (perpendicular

to CP) in the directions shown. Although B1 and B2 are actually at P, but for better

understanding they are drawn at O and C respectively. Let Bx be the x-component of resultant

of B1 and B2 and By its y-component. Then,

B B Bx = 1 2sin – sinα β

= 





⋅





µ
π

α µ
π

β0 1
2 1

0 2
2 2

2 2

i

R
r

i

a
rsin – sin

= ⋅




















µ
π

π α µ
π

π β0
2

2 1
0

2

2 2
2 2

J R

R
r

J a

a
rsin –

.
sin

= µ α β0
1 2

2

J
r r( sin – sin ) = 0

Because in ∆OPC
r r

h1 2

sin sinβ α
= = or r r1 2 0sin – sinα β =

Now, B B By = +– ( cos cos )1 2α β

= +– ( cos cos )
µ α β0

1 2
2

J
r r

From ∆OPC, we can see that

r r b1 2cos cosα β+ = or B
Jb

y = =–
µ0

2
constant

Thus, we can see that net magnetic field at point P is along negative y-direction and constant in

magnitude. Proved

Note (i) That ∠ OPC is not necessarily 90°. At some point it may be 90°.

(ii) At point C magnetic field due to i2 is zero (i e. . B2 0= ) while that due to i1 is
µ
π
0 1

22

i

R
b in negative

y-direction. Substituting i J R1
2= ( )π , we get

B B
Jb= =2

0

2

µ
(along negative y-direction)

This agrees with the result derived above.
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V Example 32 A particle of charge q and mass m is projected from the origin with

velocity v i= v0
$ in a non-uniform magnetic field B k= – $B x0 . Here, v0 and B0 are

positive constants of proper dimensions. Find the maximum positive x-coordinate

of the particle during its motion.

Solution Magnetic field is along negative z-direction. So in the coordinate axes shown in

figure, it is perpendicular to paper inwards. ( )⊗ Magnetic force on the particle at origin is along

positive y-direction. So, it will rotate in xy-plane as shown. The path is not a perfect circle as

the magnetic field is non-uniform. Speed of the particle in magnetic field remains constant.

Magnetic force is always perpendicular to velocity. Let at point P x y( , ), its velocity vector

makes an angle θ with positive x-axis. Then, magnetic force Fm will be at angle θ with positive

y-direction. So,

a
F

m
y

m= 





cosθ

∴
dv

dt

B x qv

m

y = ( ) ( cos )0 0 θ
[F Bqvm = °0 90sin ]

∴
dv

dx

dx

dt

B qx

m
v

y





 ⋅ 





= 





0
0( cos )θ

Here,
dx

dt
v vx= = 0 cosθ

∴
dv

dx

B q

m
x

y = 





0

∴ dv
B q

m
xdxy

v x

0

0

0

0∫ ∫= 





max

∴ v
B q

m

x
0

0
2

2
= 













max

∴ x
mv

B q
max = 2 0

0

Ans.

Note At maximum x-displacement velocity is along positive y-direction.
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LEVEL 1

Assertion and Reason
Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : Path of a charged particle in uniform magnetic field cannot be a parabola.

Reason : For parabolic path acceleration should be constant.

2. Assertion : A beam of protons is moving towards east in vertically upward magnetic field.
Then, this beam will deflect towards south.

Reason : A constant magnetic force will act on the proton beam.

3. Assertion : Current in wire-1 is in the direction as shown in figure. The bottom wire is fixed.
To keep the upper wire stationary, current in it should be in opposite direction.

Reason : Under the above condition, equilibrium of upper wire is stable.

4. Assertion : A current carrying loop is placed in uniform magnetic field as shown in figure.
Torque in the loop in this case is zero.

Reason : Magnetic moment vector of the loop is perpendicular to paper inwards.

5. Assertion : Force on current carrying loop shown in figure in
magnetic field, B = ( )B x0

$k is along positive x-axis. Here, B0 is a positive
constant.

Reason : A torque will also act on the loop.

6. Assertion : An electron and a proton are accelerated by same

potential difference and then enter in uniform transverse magnetic

field. The radii of the two will be different.

Reason : Charges on them are different.

Exercises

I

B

I

y

x

1

2



7. Assertion : A charged particle moves along positive y-axis with constant velocity in uniform

electric and magnetic fields. If magnetic field is acting along positive x-axis, then electric field

should act along positive z-axis.

Reason : To keep the charged particle undeviated the relation E B v= × must hold good.

8. Assertion : Power of a magnetic force on a charged particle is always zero.

Reason : Power of electric force on charged particle cannot be zero.

9. Assertion : If a charged particle enters from outside at right angles in uniform magnetic

field. The maximum time spent in magnetic field may be
πm

Bq
.

Reason : It can complete only semi-circle in the magnetic field.

10. Assertion : A charged particle enters in a magnetic field B i= B0
$ with velocity v i j= +v v0 0

$ $,

then minimum speed of charged particle may be v0.

Reason : A variable acceleration will act on the charged particle.

11. Assertion : A charged particle is moving in a circle with constant speed in uniform magnetic

field. If we increase the speed of particle to twice, its acceleration will become four times.

Reason : In circular path of radius R with constant speed v, acceleration is given by
v

R

2

.

Objective Questions

1. The universal property among all substances is

(a) diamagnetism (b) paramagnetism

(c) ferromagnetism (d) non-magnetism

2. A charged particle moves in a circular path in a uniform magnetic field. If its speed is reduced,

then its time period will

(a) increase (b) decrease

(c) remain same (d) None of these

3. A straight wire of diameter 0.5 mm carrying a current 2 A is replaced by another wire of
diameter 1 mm carrying the same current. The strength of magnetic field at a distance 2 m
away from the centre is

(a) half of the previous value (b) twice of the previous value

(c) unchanged (d) quarter of its previous value

4. The path of a charged particle moving in a uniform steady magnetic field cannot be a

(a) straight line (b) circle

(c) parabola (d) None of these

5. The SI unit of magnetic permeability is

(a) Wbm A− −2 1 (b) Wbm A−1

(c) Wbm A− −1 1 (d) Wbm A−1

6. Identify the correct statement about the magnetic field lines.

(a) These start from the N -pole and terminate on the S-pole

(b) These lines always form closed loops

(c) Both (a) and (b) are correct

(d) Both (a) and (b) are wrong
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7. Identify the correct statement related to the direction of magnetic moment of a planar loop.

(a) It is always perpendicular to the plane of the loop

(b) It depends on the direction of current

(c) It is obtained by right hand screw rule

(d) All of the above

8. A non-planar closed loop of arbitrary shape carrying a current I is placed in uniform magnetic
field. The force acting on the loop

(a) is zero only for one orientation of loop in magnetic field

(b) is zero for two symmetrically located positions of loop in magnetic field

(c) is zero for all orientations

(d) is never zero

9. The magnetic dipole moment of current loop is independent of

(a) number of turns

(b) area of loop

(c) current in the loop

(d) magnetic field in which it is lying

10. The acceleration of an electron at a certain moment in a magnetic field B i j= +2 3$ $ + 4 $k is

a i j k= + −x$ $ $ . The value of x is

(a) 0.5 (b) 1

(c) 2.5 (d) 1.5

11. Match the following and select the correct alternatives given below

(p) unit of magnetic induction B (q) dimensions of B

(r) unit of permeability ( )µ0 (s) dimensions of µ0

(t) dimensions of magnetic moment (u) [ ]MLT A− −2 2

(v) [ ]ML T A0 2 1− −

(x) Newton/amp-metre

(y) Newton/amp2

(z) [ ]M L T A0 2 0

(a) p-y, q-v, r-x, s-z, t-u (b) p-x, q-r, r-y, s-z, t-v

(c) p-x, q-v,. r-y, s-u, t-z (d) p-y, q-z, r-x, s-u, t-v

12. A closed loop carrying a current I lies in the xz-plane. The loop will experience a force if it is

placed in a region occupied by uniform magnetic field along

(a) x-axis (b) y-axis

(c) z-axis (d) None of these

13. A stream of protons and α-particles of equal momenta enter a uniform magnetic field

perpendicularly. The radii of their orbits are in the ratio

(a) 1 : 1 (b) 1 : 2

(c) 2 : 1 (d) 4 : 1

14. A loop of magnetic moment M is placed in the orientation of unstable equilibrium position in a

uniform magnetic field B. The external work done in rotating it through an angle θ is

(a) − −MB ( cos )1 θ (b) − MB cos θ
(c) MB cos θ (d) MB ( cos )1 − θ
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15. A current of 50 A is passed through a straight wire of length 6 cm, then the magnetic induction

at a point 5 cm from the either end of the wire is ( )1 10 4gauss T= −

(a) 2.5 gauss (b) 1.25 gauss

(c) 1.5 gauss (d) 3.0 gauss

16. The magnetic field due to a current carrying circular loop of radius 3 m at a point on the axis at

a distance of 4 m from the centre is 54 µT. What will be its value at the centre of the loop?

(a) 250 µT (b) 150 µT

(c) 125 µT (d) 75 µT

17. A conductor ab of arbitrary shape carries current I flowing from b to a. The length vector ab is
oriented from a to b. The force Fexperienced by this conductor in a uniform magnetic field B is

(a) F ab B= − ×I( ) (b) F B ab= ×I( )

(c) F ba B= ×I( ) (d) All of these

18. When an electron is accelerated through a potential difference V , it experiences a force F

through a uniform transverse magnetic field. If the potential difference is increased to 2 V, the

force experienced  by the electron in the same magnetic field is

(a) 2F (b) 2 2F

(c) 2F (d) 4F

19. Two long straight wires, each carrying a current I in opposite directions are separated by a

distance R. The magnetic induction at a point mid-way between the wires is

(a) zero (b)
µ
π

0I

R

(c)
2 0µ
π

I

R
(d)

µ
π
0

4

I

R

20. The magnetic field at a distance x on the axis of a circular coil of radius R is
1

8
th of that at the

centre. The value of x is

(a)
R

3
(b)

2

3

R

(c) R 3 (d) R 2

21. Electric field and magnetic field in a region of space is given by E j= E0
$ and B j= B0

$. A particle
of specific charge α is released from origin with velocity v i= v0

$. Then, path of particle

(a) is a circle

(b) is a helix with uniform pitch

(c) is a helix with non-uniform pitch

(d) is cycloid

Note E0, B0 and v0 are constant values.

22. An electron having kinetic energy K is moving in a circular orbit of radius R perpendicular to a
uniform magnetic induction. If kinetic energy is doubled and magnetic induction tripled, the
radius will become

(a)
2

3

R
(b)

2

3
R

(c)
2

3
R (d)

2

3
R
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23. Four long straight wires are located at the corners of a square ABCD. All the wires carry equal
currents. Current in the wires A Band are inwards and in C Dand are outwards. The
magnetic field at the centre O is along

(a) AD (b) CB

(c) AB (d) CD

24. A charged particle of mass m and charge q is accelerated through a potential difference of
V volts. It enters a region of uniform magnetic field B which is directed perpendicular to the
direction of motion of the particle. The particle will move on a circular path of radius

(a)
Vm

qB2 2
(b)

2
2

Vm

qB
(c)

2 1Vm

q B







(d)
Vm

q B

1





25. The straight wire AB carries a current I. The ends of the wire subtend angles θ θ1 2and at the
point P as shown in figure. The magnetic field at the point P is

(a)
µ
π

θ θ0
1 2

4

I

a
(sin sin )− (b)

µ
π

θ θ0
1 2

4

I

a
(sin sin )+

(c)
µ
π

θ θ0
1 2

4

I

a
(cos cos )− (d)

µ
π

θ θ0
1 2

4

I

a
(cos cos )+

26. The figure shows three identical current carrying square loops A B C, and . Identify the correct
statement related to magnetic field Bat the centreO of the square loop. Current in each wire
is I.

(a) B is zero in all cases (b) B is zero only in case of C

(c) B is non-zero in all cases (d) B is non-zero only in case of B
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27. The figure shows a long straight wire carrying a current I1 along the axis of a
circular ring carrying a current I2. Identify the correct statement.

(a) Straight wire attracts the ring

(b) Straight wire attracts a small element of the ring

(c) Straight wire does not attract any small element of the ring

(d) None of the above

28. The figure shows a wire frame in xy-plane carrying a current I. The
magnetic field at the point O is

(a)
µ0

8

1 1I

a b
−





$k

(b)
µ0

8

1 1I

b a
−





$k

(c)
µ0

4

1 1I

a b
−





$k

(d)
µ0

4

1 1I

b a
−





$k

29. An electron moving in a circular orbit of radius R with frequency f. The magnetic field at the
centre of the orbit is

(a)
µ

π
0

2

ef

R
(b)

µ0

2

ef

R

(c)
µef

R

2

2
(d) zero

30. A square loop of side a carries a current I. The magnetic field at the centre of the loop is

(a)
2 20µ

π
I

a
(b)

µ
π
0 2I

a

(c)
4 20µ

π
I

a
(d)

µ
π

0I

a

31. The figure shows the cross-section of two long coaxial tubes carrying equal

currents I in opposite directions. If B B1 2and are magnetic fields at points 1

and 2 as shown in figure, then

(a) B B1 20 0≠ =; (b) B B1 20 0= =;

(c) B B1 20 0≠ ≠; (d) B B1 20 0= ≠,

32. The figure shows a point P on the axis of a circular loop carrying current I. The correct direction
of magnetic field vector at P due to d l is represented by

(a) 1 (b) 2

(c) 3 (d) 4
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33. In figure, the curved part represents arc of a circle of radius x. If it carries a current I, then the
magnetic field at the point O is

(a)
µ

π
0

2

I

x

φ
(b)

µ
π
0

4

I

x

φ
(c)

µ0

2

I

x

φ
(d)

µ0

4

I

x

φ

34. A cylindrical long wire of radius R carries a current I uniformly distributed over the
cross-sectional area of the wire. The magnetic field at a distance x from the surface inside the
wire is

(a)
µ

π
0

2

I

R x( )−
(b)

µ
π
0

2

I

x
(c)

µ
π

0

2

I

R x( )+
(d) None of these

35. A circular loop carrying a current I is placed in the xy-plane as shown in figure. A uniform
magnetic field B is oriented along the positive z-axis. The loop tends to

(a) expand (b) contract (c) rotate about x-axis (d) rotate about y-axis

Subjective Questions

Note You can take approximations in the answers.

1. An electron has velocity v i j= × + ×( ) $ ( ) $2.0 m/ s 3.0 m/ s10 106 6 . Magnetic field present in the

region is B i j= −( ) $ ( ) $0.030 T 0.15 T .

(a) Find the force on electron.

(b) Repeat your calculation for a proton having the same velocity.

2. An electron moves through a uniform magnetic field given by B i j= +B Bx x
$ ( )$3 . At a particular

instant, the electron has the velocity v i j= +( $ $)2.0 4.0 m/ s and the magnetic force acting on it is
( $6.4 N× −10 19 ) k. Find Bx .

3. A particle with charge 7.80 Cµ is moving with velocity v j= − ×( ) $3.80 m/ s103 . The magnetic

force on the particle is measured to be F i k= + × − ×− −( ) $ ( ) $7.60 N 5.20 N10 103 3 .

(a) Calculate the components of the magnetic field you can find from this information.

(b) Are the components of the magnetic field that are not determined by the measurement of the

force? Explain.

(c) Calculate the scalar product B F⋅ . What is the angle between B and F ?
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4. Each of the lettered points at the corners of the cube in figure represents a positive charge q
moving with a velocity of magnitude v in the direction indicated. The region in the figure is in a
uniform magnetic field B, parallel to the x-axis and directed toward the right. Find the
magnitude and direction of the force on each charge.

5. An electron in the beam of a TV picture tube is accelerated by a potential difference of 2.00 kV.
Then, it passes through region of transverse magnetic field, where it moves in a circular arc
with radius 0.180 m. What is the magnitude of the field?

6. A deuteron (the nucleus of an isotope of hydrogen) has a mass of 3.34 kg× 10 27– and a charge of

+e. The deuteron travels in a circular path with a radius of 6.96 mm in a magnetic field with
magnitude 2.50 T.

(a) Find the  speed of the deuteron.

(b) Find the time required for it to make half of a revolution.

(c) Through what potential difference would the deuteron have to be accelerated to acquire this

speed?

7. A neutral particle is at rest in a uniform magnetic field B. At time t = 0, it decays into two
charged particles, each of mass m.

(a) If the charge of one of the particles is +q, what is the charge of the other?

(b) The two particles move off in separate paths, both of them lie in the plane perpendicular to B. At a

later time, the particles collide. Express the time from decay until collision in terms ofm B, and q.

8. An electron at point A in figure has a speed v0
610= ×1.41 m/ s. Find

(a) the magnitude and direction of the magnetic field that will cause the electron to follow the

semicircular path from A to B,

(b) the time required for the electron to move from A to B.

9. A proton of charge e and mass m enters a uniform magnetic field B i= B $ with an initial velocity
v i j= +v vx y

$ $. Find an expression in unit vector notation for its velocity at time t.

10. A proton moves at a constant velocity of 50 m/ s along the x-axis, in uniform electric and
magnetic fields. The magnetic field is B j= ( )$2.0 mT . What is the electric field?
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11. A particle having mass m and charge q is released from the origin in a region in which electric
field and magnetic field are given by

B j= − B0
$ and E k= E0

$

Find the y- component of the velocity and the speed of the particle as a function of its
z-coordinate.

12. Protons move rectilinearly in the region of space where there are uniform mutually
perpendicular electric and magnetic fields E and B. The trajectory of protons lies in the plane
xz as shown in the figure and forms an angle θ with x-axis. Find the pitch of the helical
trajectory along which the protons will move after the electric field is switched off.

13. A wire of 62.0 cm length and 13.0 g mass is suspended by a pair of flexible leads in a uniform
magnetic field of magnitude 0.440 T in figure. What are the magnitude and direction of the

current required to remove the tension in the supporting leads? Take g = 10 m/s2.

14. A thin, 50.0 cm long metal bar with mass 750 g rests on, but is not attached to, two metallic
supports in a 0.450 T magnetic field as shown in figure. A battery and a resistance R = 25.0 Ω
in series are connected to the supports.

(a) What is the largest voltage the battery can have without breaking the circuit at the supports?

(b) The battery voltage has this maximum value calculated. Decreasing the resistance to2.0 Ω , find

the initial acceleration of the bar.

15. In figure, the cube is 40.0 cm on each edge. Four straight segments of
wire ab bc cd, , and da form a closed loop that carries a current I = 5.00 A,
in the direction shown. A uniform magnetic field of magnitude
B = 0.020 T is in the positive y-direction. Determine the magnitude and
direction of the magnetic force on each segment.
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16. Find the ratio of magnetic dipole moment and magnetic field at the centre of a disc. Radius of
disc is R and it is rotating at constant angular speed ω about its axis. The disc is insulating and
uniformly charged.

17. A magnetic dipole with a dipole moment of magnitude 0.020 J/T is released from rest in a
uniform magnetic field of magnitude 52 mT. The rotation of the dipole due to the magnetic
force on it is unimpeded. When the dipole rotates through the orientations where its dipole
moment  is aligned with the magnetic field, its kinetic energy is 0.80 mJ.

(a) What is the initial angle between the dipole moment and the magnetic field?

(b) What is the angle when the dipole is next (momentarily) at rest?

18. In the Bohr model of the hydrogen atom, in the lowest energy state the electron revolves round

the proton at a speed of 2.2 m/ s× 106 in a circular orbit of radius 5.3 10 m× −11 .

(a) What is the orbital period of the electron?

(b) If the orbiting electron is considered to be a current loop, what is the current I?

(c) What is the magnetic moment of the atom due to the motion of the electron?

19. A conductor carries a constant current I along the closed path abcdefgha involving 8 of the
12 edges each of length l. Find the magnetic dipole moment of the closed path.

20. Given figure shows a coil bent with all edges of length 1 m and carrying a current of 1 A. There
exists in space a uniform magnetic field of 2 T in positive y-direction. Find the torque on
the loop.

21. A very long wire carrying a current I = 5.0 A is bent at right angles. Find the magnetic
induction at a point lying on a perpendicular normal to the plane of the wire drawn through the
point of bending at a distance l = 35 cm from it.

22. A current I = 2 A flows in a circuit having the shape of isosceles trapezium. The ratio of the
bases of the trapezium is 2. Find the magnetic induction B at symmetric point O in the plane of
the trapezium. The length of the smaller base of the trapezium is 100 mm and the distance
r = 50 mm.
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23. Two long mutually perpendicular conductors carrying currents I1 and I2 lie in one plane. Find
the locus of points at which the magnetic induction is zero.

24. A wire carrying current i has the configuration as shown in figure. Two
semi-infinite straight sections, both tangent to the same circle, are
connected by a circular arc of central angle θ, along the circumference of
the circle, with all sections lying in the same plane. What mustθbe for B
to be zero at the centre of the circle?

25. Two long parallel transmission lines 40.0 cm apart carry 25.0 A and 75.0 A currents. Find all
locations where the net magnetic field of the two wires is zero if these currents are in

(a) the same direction (b) the opposite direction

26. A closely wound coil has a radius of 6.00 cm and carries a current of 2.50 A . How many turns
must it have if, at a point on the coil axis 6.00 cm from the centre of the coil, the magnetic field

is 6.39 T× −10 4 ?

27. A circular loop of radius R carries current I2 in a clockwise direction as shown in figure. The

centre of the loop is a distance D above a long, straight wire. What are the magnitude and

direction of the current I1 in the wire if the magnetic field at the centre of loop is zero?

28. A closely wound, circular coil with radius 2.40 cm has 800 turns.

(a) What must the current in the coil be if the magnetic field at the centre of the coil is 0.0580 T?

(b) At what distance x from the centre of the coil, on the axis of the coil, is the magnetic field half its

value at the centre?

29. Four very long, current carrying wires in the same plane intersect to form a square 40.0 cm on
each side as shown in figure. Find the magnitude and direction of the current I so that the
magnetic field at the centre of square is zero. Wires are insulated from each other.
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30. A circular loop of radius R is bent along a diameter and given a shape as shown in figure. One of
the semicircles (KNM) lies in the xz-plane and the other one (KLM) in the yz-plane with their
centres at origin. Current I is flowing through each of the semicircles as shown in figure.

(a) A particle of charge q is released at the origin with a velocity v i= −v0
$. Find the instantaneous

force F on the particle. Assume that space is gravity free.

(b) If an external uniform magnetic field B0
$j is applied, determine the force F1 and F2 on the

semicircles KLM and KNM due to the field and the net force F on the loop.

31. A regular polygon of n sides is formed by bending a wire of total length 2πr which carries a
current i.

(a) Find the magnetic field B at the centre of the polygon.

(b) By letting n → ∞, deduce the expression for the magnetic field at the centre of a circular coil.

32. A long cylindrical conductor of radius a has two cylindrical cavities of diameter a through its
entire length as shown in cross-section in figure. A current I is directed out of the page and is
uniform throughout the cross-section of the conductor. Find the magnitude and direction of the
magnetic field in terms of µ 0 , ,I r and a.

(a) at point P1 and (b) at point P2

33. Two infinite plates shown in cross-section in figure carry λ amperes of current out of the page
per unit width of plate. Find the magnetic field at points P and Q.

34. For the situation shown in figure, find the force experienced by side MN of the rectangular

loop. Also, find the torque on the loop.
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35. In a region of space, a uniform magnetic field B is along positive x-axis. Electrons are emitted
from the origin with speed v at different angles. Show that the paraxial electrons are refocused

on the x-axis at a distance
2πmv

Be
. Here, m is the mass of electron and e the charge on it.

36. A particle of mass m and charge q is projected into a region having a perpendicular magnetic
field B. Find the angle of deviation of the particle as it comes out of the magnetic field if the
width of the region is

(a)
2mv

Bq
(b)

mv

Bq
(c)

mv

Bq2

37. In a certain region, uniform electric field E k= – $E0 and magnetic field B k= B0
$ are present. At

time t = 0, a particle of mass m and charge q is given a velocity v j k= +v v0 0
$ $ . Find the minimum

speed of the particle and the time when it happens so.

38. A particle of mass m and charge q is lying at the origin in a uniform magnetic field B directed
along x-axis. At time t = 0, it is given a velocity v0 at an angle θ with the y-axis in the xy-plane.
Find the coordinates of the particle after one revolution.

39. Find the magnetic moment of the current carrying loop OABCO shown in figure.

Given that, i = 4.0 A, OA = 20 cm and AB = 10 cm.

40. A rectangular loop consists of N = 100 closed wrapped turns and has dimensions
( )0.4 m 0.3 m× . The loop is hinged along the y-axis and its plane makes an angle θ = °30 with
the x-axis. What is the magnitude of the torque exerted on the loop by a uniform magnetic field
B = 0.8 T directed along the x-axis when current is i =1.2 A in the direction shown. What is the
expected direction of rotation of the loop?
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41. Four long, parallel conductors carry equal currents of 5.0 A. The direction of the currents is
into the page at points A and B and out of the page at C and D. Calculate the magnitude and
direction of the magnetic field at point P, located at the centre of the square.

42. A long cylindrical conductor of radius R carries a current i as shown in figure. The current
density J is a function of radius according to, J br= , where b is a constant. Find an expression
for the magnetic field B

(a) at a distance r R1 < and

(b) at a distance r R2 > , measured from the axis.

LEVEL 2

Single Correct Option
1. A uniform current carrying ring of mass m and radius R is connected by a massless string as

shown. A uniform magnetic field B0 exists in the region to keep the ring in horizontal position,
then the current in the ring is

(a)
mg

RBπ 0

(b)
mg

RB0

(c)
mg

RB3 0π
(d)

mg

R Bπ 2
0

2. A wire of mass 100 g is carrying a current of 2 A towards increasing x in the form of

y x m x m= − ≤ ≤ +2 2 2( ). This wire is placed in a magnetic field B k= − 0.02 $ tesla. The

acceleration of the wire (in m/ s2) is

(a) − 1.6 $j (b) − 3.2 $j (c) 1.6 $j (d) zero

3. A conductor of length l is placed perpendicular to a horizontal uniform magnetic field B.
Suddenly, a certain amount of charge is passed through it, when it is found to jump to a height
h. The amount of charge that passes through the conductor is

(a)
m gh

Bl
(b)

m gh

Bl2

(c)
m gh

Bl

2
(d) None of these
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4. A solid conducting sphere of radius R and total charge q rotates about its diametric axis with
constant angular speed ω. The magnetic moment of the sphere is

(a)
1

3

2qR ω (b)
2

3

2qR ω (c)
1

5

2qR ω (d)
2

5

2qR ω

5. A charged particle moving along positive x-direction with a velocity v enters a region where

there is a uniform magnetic field B k= − B $ , from x = 0 to x d= . The particle gets deflected at an

angle θ from its initial path. The specific charge of the particle is

(a)
Bd

v cosθ
(b)

v

Bd

tan θ

(c)
B

vd

sin θ
(d)

v

Bd

sin θ

6. A current carrying rod AB is placed perpendicular to an infinitely long current carrying wire as
shown in figure. The point at which the conductor should be hinged so that it will not rotate
( )AC CB=

(a) A (b) somewhere between B Cand

(c) C (d) somewhere between A Cand

7. The segment AB of wire carrying current I1 is placed perpendicular to a long
straight wire carrying current I2 as shown in figure. The magnitude of force
experienced by the straight wire AB is

(a)
µ

π
0 1 2

2
3

I I
ln (b)

µ
π

0 1 2

2
2

I I
ln

(c)
2

2

0 1 2µ
π
I I

(d)
µ

π
0 1 2

2

I I

8. A straight long conductor carries current along the positive x-axis. Identify the correct
statement related to the four points A a a( , , )0 , B a a( , , )0 , C a a( , , )− 0 and D a a( , , )0 − .

(a) The magnitude of magnetic field at all points is same

(b) Fields at A Band are mutually perpendicular

(c) Fields at A Cand are antiparallel

(d) All of the above

9. The figure shows two coaxial circular loops1 2and , which forms same solid angleθat pointO. If
B B1 2and are the magnetic fields produced at the pointO due to loop 1 and 2 respectively, then

(a)
B

B

1

2

1= (b)
B

B

1

2

2= (c)
B

B

1

2

8= (d)
B

B

1

2

4=
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10. In the figure shown, a charge q moving with a velocity v along the x-axis enter into a region of

uniform magnetic field. The minimum value of v so that the charge q is able to enter the region

x b>

(a)
qBb

m
(b)

qBa

m

(c)
qB b a

m

( )−
(d)

qB b a

m

( )+
2

11. An insulating rod of length l carries a charge q uniformly distributed on it. The rod is pivoted at
one of its ends and is rotated at a frequency f about a fixed perpendicular axis. The magnetic
moment of the rod is

(a)
πqfl2

12
(b)

πqfl2

2

(c)
πqfl2

6
(d)

πqfl2

3

12. A wire carrying a current of 3 A is bent in the form of a parabola y x2 4= − as shown in figure,

where x yand are in metre. The wire is placed in a uniform magnetic field B k= 5 $ tesla. The

force acting on the wire is

(a) 60 $i N (b) − 60$i N

(c) 30 $i N (d) −30 $i N

13. An equilateral triangle frame PQR of mass M and side a is kept under

the influence of magnetic force due to inward perpendicular magnetic

field B and gravitational field as shown in the figure. The magnitude

and direction of current in the frame so that the frame remains at

rest, is

(a) I
Mg

aB
= 2

; anti-clockwise (b) I
Mg

aB
= 2

; clockwise

(c) I
Mg

aB
= ; anti-clockwise (d) I

Mg

aB
= ; clockwise
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14. A tightly wound long solenoid has n turns per unit length, radius r and carries a current i. A
particle having charge q and mass m is projected from a point on the axis in the direction
perpendicular to the axis. The maximum speed for which particle does not strike the solenoid
will be

(a)
µ0

2

qrni

m
(b)

µ0qrni

m

(c)
2

3

0µ qrni

m
(d) None of these

15. If the acceleration and velocity of a charged particle moving in a constant magnetic region is
given by a = +a a1 2

$ $i k, v = +b b1 2
$ $i k. [a1, a b b2 1 2, and are constants], then choose the wrong

statement.

(a) Magnetic field may be along y-axis

(b) a b a b1 1 2 2 0+ =
(c) Magnetic field is along x-axis

(d) Kinetic energy of particle is always constant

16. A simple pendulum with a charged bob is oscillating as shown in the figure. Time period of
oscillation is T and angular amplitude is θ. If a uniform magnetic field perpendicular to the
plane of oscillation is switched on, then

(a) T will decrease but θ will remain constant (b) T will remain constant but θ will decrease

(c) Both T and θ will remain the same (d) Both T and θ will decrease

17. Magnetic field in a region is given by B = B x0
$k. Two loops each of side a is placed in this

magnetic region in the xy-plane with one of its sides on x-axis. If F1 is the force on loop 1 and F2

be the force on loop 2, then

(a) F F1 2 0= = (b) F F1 2>
(c) F F2 1> (d) F F1 2 0= ≠

18. Consider a coaxial cable which consists of an inner wire of radius a surrounded by an outer shell
of inner and outer radii b cand , respectively. The inner wire carries a current I and outer shell
carries an equal and opposite current. The magnetic field at a distance x from the axis where
b x c< < is

(a)
µ
π
0

2 2

2 22

I c b

x c a

( )

( )

−
−

(b)
µ
π
0

2 2

2 22

I c x

x c a

( )

( )

−
−

(c)
µ
π
0

2 2

2 22

I c x

x c b

( )

( )

−
−

(d) zero
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19. A particle of mass 1 10 26× − kg and charge + × −1.6 10 19 C travelling with a velocity of

1.28 m/ s× 106 along positive direction of x-axis enters a region in which a uniform electric field

E and a uniform magnetic field B are present such that

Ez = − 102.4 kV/ m and By = × −8 10 2 2Wb/ m

The particle enters this region at origin at time t = 0. Then,

(a) net force acts on the particle along the +ve z-direction

(b) net force acts on the particle along –ve z-direction

(c) net force acting on particle is zero

(d) net force acts in xz-plane

20. A wire lying along y-axis from y = 0 to y = 1 m carries a current of 2 mA in the negative

y-direction. The wire lies in a non-uniform magnetic field given by B i= ( ) $0.3 T/ m y

+ ( ) $0.4 Tm yj. The magnetic force on the entire wire is

(a) − × −3 10 4 $j N (b) 6 10 3× − $k N

(c) − × −3 10 4 $k N (d) 3 10 4× − $k N

21. A particle having a charge of 20 µC and mass 20 µg moves along a circle of
radius 5 cm under the action of a magnetic field B = 0.1 tesla. When the
particle is at P, uniform transverse electric field is switched on and it is
found that the particle continues along the tangent with a uniform
velocity. Find the electric field

(a) 2 V/m (b) 0.5 V/m

(c) 5 V/m (d) 1.5 V/m

22. Two circular coils A Band of radius
5

2
cm and 5 cm carry currents 5 A and 5 2 A,

respectively. The plane of B is perpendicular to plane of A and their centres coincide.
Magnetic field at the centre is

(a) 0 (b) 4 2 10 5π × − T (c) 4 10 5π × − T (d) 2 2 10 5π × − T

23. A charged particle with specific charge s moves undeflected through a region of space
containing mutually perpendicular and uniform electric and magnetic fields E Band . When
the electric field is switched off, the particle will move in a circular path of radius

(a)
E

Bs
(b)

Es

B
(c)

Es

B2
(d)

E

B s2

24. Two long parallel conductors are carrying currents in the same direction as shown in the

figure. The upper conductor ( )A carrying a current of 100 A is held firmly in position. The lower

conductor ( )B carries a current of 50 A and free to move up and down. The linear mass density

of the lower conductor is 0.01 kg/m.

(a) Conductor B will be in equilibrium if the  distance between the conductors is 0.1 m

(b) Equilibrium of conductor B is unstable

(c) Both (a) and (b) are wrong

(d) Both (a) and (b) are correct
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25. Equal currents are flowing in three infinitely long wires along positive x y, and z-directions.
The magnetic field at a point ( , , )0 0 − a would be (i = current in each wire)

(a)
µ
π
0

2

i

a
($ $)j i− (b)

µ
π
0

2

i

a
($ $)i j−

(c)
µ
π
0

2

i

a
($ $)i j+ (d)

µ
π
0

2

i

a
( $ $)− −i j

26. In the figure, the force on the wire ABC in the given uniform magnetic field will be ( )B = 2 tesla

(a) 4 3 2( )+ π N (b) 20 N

(c) 30 N (d) 40 N

27. A uniformly charged ring of radius R is rotated about its axis with constant linear speed v of
each of its particles. The ratio of electric field to magnetic field at a point P on the axis of the
ring distant x R= from centre of ring is (c is speed of light)

(a)
c

v

2

(b)
v

c

2

(c)
v

c
(d)

c

v

More than One Correct Options

1. Two circular coils of radii 5 cm and 10 cm carry currents of 2 A. The coils have 50 and 100 turns
respectively and are placed in such a way that their planes as well as their centres coincide.
Magnitude of magnetic field at the common centre of coils is

(a) 8 10 4π × − T if currents in the coils are in same sense

(b) 4 10 4π × − T if currents in the coils are in opposite sense

(c) zero if currents in the coils are in opposite sense

(d) 8 10 4π × − T if currents in the coils are in opposite sense

2. A charged particle enters into a gravity free space occupied by an electric field Eand magnetic
field B and it comes out without any change in velocity. Then, the possible cases may be

(a) E B= ≠0 0and (b) E B≠ =0 0and

(c) E B≠ ≠0 0and (d) E B= =0 0,
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3. A charged particle of unit mass and unit charge moves with velocity v i= +( $ $)8 6j m/s in a
magnetic  field of B = 2 $k T. Choose the correct alternative (s).

(a) The path of the particle may be x y2 2+ − − =4 21 0x

(b) The path of the particle may be x y2 2+ =25

(c) The path of the particle may be y z2 2+ =25

(d) The time period of the particle will be 3.14 s

4. When a current carrying coil is placed in a uniform magnetic field with its magnetic moment
anti-parallel to the field, then

(a) torque on it is maximum

(b) torque on it is zero

(c) potential energy is maximum

(d) dipole is in unstable equilibrium

5. If a long cylindrical conductor carries a steady current parallel to its length, then

(a) the electric field along the axis is zero

(b) the magnetic field along the axis is zero

(c) the magnetic field outside the conductor is zero

(d) the electric field outside the conductor is zero

6. An infinitely long straight wire is carrying a current I1. Adjacent to it there is another
equilateral triangular wire having current I2. Choose the wrong options.

(a) Net force on loop is leftwards (b) Net force on loop is rightwards

(c) Net force on loop is upwards (d) Net force on loop is downwards

7. A charged particle is moving along positive y-axis in uniform electric and magnetic fields

E k= E0
$

and B i= B0
$

Here, E0 and B0 are positive constants. Choose the correct options.

(a) particle may be deflected towards positive z-axis

(b) particle may be deflected towards negative z-axis

(c) particle may pass undeflected

(d) kinetic energy of particle may remain constant

8. A charged particle revolves in circular path in uniform magnetic field after accelerating by a
potential difference of V volts. Choose the correct options if V is doubled.

(a) kinetic energy of particle will become two times

(b) radius in circular path will become two times

(c) radius in circular path will become 2 times

(d) angular velocity will remain unchanged
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9. abcd is  a square. There is a current I in wire efg as shown.

Choose the correct options.

(a) Net magnetic field at a is inwards

(b) Net magnetic field at b is zero

(c) Net magnetic field at c is outwards

(d) Net magnetic field at d is inwards

10. There are two wires ab cdand in a vertical plane as shown in figure. Direction of current in

wire ab is rightwards. Choose the correct options.

(a) If wire ab is fixed, then wire cd can be kept in equilibrium by the current in cd in leftward

direction

(b) Equilibrium of wire cd will be stable equilibrium

(c) If wire cd is fixed, then wire ab can be kept in equilibrium by flowing current in cd in rightward

direction

(d) Equilibrium of wire ab will be stable equilibrium

Match the Columns

1. An electron is moving towards positive x-direction. Match the following two columns for

deflection of electron just after the fields are switched on. (E0 and B0 are positive constants)

Column I Column II

(a) If magnetic field B = B0
$j is switched on (p) Negative y-axis

(b) If magnetic field B = B0
$k is switched on (q) Positive y-axis

(c) If magnetic field B = B0
$i and electric

field E = E0
$j is switched on

(r) Negative z-axis

(d) If electric field E = E0
$k is switched on (s) Positive z-axis

2. Four charged particles, ( , )−q m , ( , )−3 4q m , ( , )+q m and( , )+ 2q m enter in uniform magnetic field

(in inward direction) with same kinetic energy as shown in figure. Inside the magnetic field

their paths are shown. Match the following two columns.

Column I Column II

(a) Particle ( , )−q m (p) w

(b) Particle ( , )−3 4q m (q) x

(c) Particle ( , )+q m (r) y

(d) Particle ( , )+ 2q m (s) z
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3. In Column I, a current carrying loop and a uniform magnetic field are shown. Match this with
Column II.

Column I Column II

(a) (p) Force = 0

(b) (q) Maximum torque

(c) (r) Minimum potential

energy

(d) (s) Positive potential

energy

4. Equal currents are flowing in two infinitely long wires lying along
x yand -axes in the directions shown in figure. Match the
following two columns.

Column I Column II

(a) Magnetic field at ( , )a a (p) along positive y-axis

(b) Magnetic field at ( , )− −a a (q) along positive z-axis

(c) Magnetic field at ( , )a a− (r) along negative z-axis

(d) Magnetic field at ( , )−a a (s) zero

5. Equal currents are flowing in four infinitely long wires. Distance between two wires is same
and directions of currents are shown in figure. Match the following two columns.

Column I Column II

(a) Force on wire-1 (p) inwards

(b) Force on wire-2 (q) leftwards

(c) Force on wire-3 (r) rightwards

(d) Force on wire-4 (s) zero
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6. A square loop of uniform conducting wire is as shown in figure. A current I (in ampere) enters
the loop from one end and exits the loop from opposite end as shown in figure.

The length of one side of square loop is l metre. The wire has uniform cross-section area and

uniform linear mass density.

Column I Column II

(a) B = B0
$i in tesla (p) magnitude of net force on loop is 2 0B Il

newton

(b) B = B0
$j in tesla (q) magnitude of net force on loop is zero

(c) B = +B0 ($ $)i j in tesla (r) magnitude of force on loop is 2 0B Il

(d) B k= B0
$ in tesla (s) magnitude of net force on loop is B Il0

newton

Subjective Questions

1. An equilateral triangular frame with side a carrying a current I is placed at a distance a from
an infinitely long straight wire carrying a current I as shown in the figure. One side of the
frame is parallel to the wire. The whole system lies in the xy-plane. Find the magnetic force F
acting on the frame.

2. Find an expression for the magnetic dipole moment and magnetic field induction at the centre
of a Bohr’s hypothetical hydrogen atom in the n th orbit of the electron in terms of universal
constants.

3. A square loop of side 6 cm carries a current of 30 A. Calculate the magnitude of magnetic field

B at a point P lying on the axis of the loop and a distance 7 cm from centre of the loop.

4. A positively charged particle of charge 1 C and mass 40 g, is revolving along a circle of radius
40 cm with velocity 5 m/ s in a uniform magnetic field with centre at origin O in xy-plane. At
t = 0, the particle was at ( , )0 00.4 m, and velocity was directed along positive x-direction.
Another particle having charge 1 C and mass 10 g moving uniformly parallel to z-direction

with velocity
40

π
m/ s collides with revolving particle at t = 0 and gets stuck with it. Neglecting

gravitational force and colombians force, calculate x y z, and -coordinates of the combined

particle at t = π
40

sec.

448 � Electricity and Magnetism

I/2 I/2

I/2

I/2
I

y

x

I

I

I

I

1

2

3

x

y

a



5. A proton beam passes without deviation through a region of space where there are uniform

transverse mutually perpendicular electric and magnetic fields with E = 120
kV

m
and

B = 50 mT. Then, the beam strikes a grounded target. Find the force imparted by the beam on
the target if the beam current is equal to I = 0.80 mA.

6. A positively charged particle having charge q is accelerated by a

potential difference V. This particle moving along the x-axis enters a

region where an electric field E exists. The direction of the electric

field is along positive y-axis. The electric field exists in the region

bounded by the lines x = 0 and x a= . Beyond the line x a= (i.e. in the

region x a≥ ) there exists a magnetic field of strength B, directed

along the positive y-axis. Find

(a) at which point does the particle meet the line x a=
(b) the pitch of the helix formed after the particle enters the region x a≥ . Mass of the particle is m.

7. A charged particle having charge 10 6− C and mass of 10 10− kg is fired from the middle of the

plate making an angle 30° with plane of the plate. Length of the plate is 0.17 m and it is

separated by 0.1 m. Electric field E = −10 3 N/C is present between the plates. Just outside the

plates magnetic field is present. Find the velocity of projection of charged particle and

magnitude of the magnetic field perpendicular to the plane of the figure, if it has to graze the

plate at C and A parallel to the surface of the plate. (Neglect gravity)

8. A uniform constant magnetic field B is directed at an angle of 45° to the x-axis in xy-plane.
PQRS is a rigid square wire frame carrying a steady current I0, with its centre at the origin O.
At time t = 0, the frame is at rest in the position shown in the figure with its sides parallel to x
and y-axis. Each side of the frame has mass M and length L.

(a) What is the magnitude of torque τ acting on the frame due to the magnetic field?

(b) Find the angle by which the frame rotates under the action of this torque in a short interval of

time ∆t, and the axis about which the rotation occurs (∆t is so short that any variation in the

torque during this interval may be neglected). Given : The moment of inertia of the frame

about an axis through its centre perpendicular to its plane is
4

3

2ML .

Chapter 26 Magnetics � 449

x

y

E B

O

q

m x a=

E

C

A

30°

X

Y

R

Q

I0
S

P

O



9. A ring of radius R having uniformly distributed charge Q is mounted on a rod suspended by two
identical strings. The tension in strings in equilibrium is T0. Now, a vertical magnetic field is
switched on and ring is rotated at constant angular velocity ω. Find the maximum value of ω
with which the ring can be rotated if the strings can withstand a maximum tension of

3

2

0T
.

10. Figure shows a cross-section of a long ribbon of widthω that is carrying a uniformly distributed
total current i into the page. Calculate the magnitude and direction of the magnetic field B at a
point P in the plane of the ribbon at a distance d from its edge.

11. A particle of mass m having a charge q enters into a circular region of radius R with velocity v
directed towards the centre. The strength of magnetic field is B. Find the deviation in the path
of the particle.

12. A thin, uniform rod with negligible mass and length 0.2 m is attached to the floor by a
frictionless hinge at point P. A horizontal spring with force constant k = 4.80 N/ m connects the
other end of the rod with a vertical wall. The rod is in a uniform magnetic field B = 0.340 T
directed into the plane of the figure. There is current I = 6.50 A in the rod, in the direction
shown.
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(a) Calculate the torque due to the magnetic force on the rod, for an axis at P. Is it correct to take the

total magnetic force to act at the centre of gravity of the rod when calculating the torque?

(b) When the rod is in equilibrium and makes an angle of 53.0° with the floor, is the spring stretched

or compressed?

(c) How much energy is stored in the spring when the rod is in equilibrium?

13. A rectangular loop PQRS made from a uniform wire has length a, width b and mass m. It is free

to rotate about the arm PQ, which remains hinged along a horizontal line taken as the y-axis

(see figure). Take the vertically upward direction as the z-axis. A uniform magnetic field

B ( )B= +3 4 0
$ $i k exists in the region. The loop is held in the xy-plane and a current I is passed

through it. The loop is now released and is found to stay in the horizontal position in

equilibrium.

(a) What is the direction of the current I in PQ?

(b) Find the magnetic force on the arm RS.

(c) Find the expression for I in terms of B0 , a, b and m.
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Answers

Introductory Exercise 26.1

1. [LT ]
–1 2. ( , ), ( , )F v F B 3. No 4. (–

$
–

$
–

$
)0.16 0.32 0.64 Ni j k

5. Positive 6. 9.47 10 m s
6× / 7. 2.56 10 N

–14×

Introductory Exercise 26.2
1. D B, 2. False 3. False 4. Yes, No 5. Along positive z-direction

6. (a) electron (b) electron 7. 0.0167 cm, 0.7 cm

Introductory Exercise 26.3
1. 2 0B il 2. No

3. (a) (0.023 N)
$
k (b) (0.02 N)

$
j (c) zero (d) (– 0.0098 N)

$
j (e) (– 0.013 N) (– 0.026 N)

$ $
j k+

4. 32 N upwards

Introductory Exercise 26.4

1.
qR

2

4

ω
2. (a) τ = − + × −

(–9.6 7.2 8.0 N m
$ $ $

)i j k 10
4 - (b) U = − × −

( )6.0 J10
4

4. –2.42 J

Introductory Exercise 26.5

1. (a) 28.3 Tµ into the page (b) 24.7 Tµ into the page 2.
µ

π
0

4

i

x
into the page

3. 58.0 Tµ into the page 4. 26.2 µT into the page 5.
µ 0

12

1 1i

a b
–







out of the page

Introductory Exercise 26.6
1. 200 µT toward the top of the page, 133 µT toward the bottom of the page

2. (a) zero (b) − ×5.0 10 T m
–6 - (c) 2.5 10 T m

–6× - (d) 5.0 10 T m
–6× -

3. (b) the magnetic field at any point inside the pipe is zero

Introductory Exercise 26.7
1. 90 T 2. 1.3 A× −

10
7

Exercises

LEVEL 1

Assertion and Reason

1. (c) 2. (c) 3. (b) 4. (d) 5. (c) 6. (b) 7. (a) 8. (c) 9. (a) 10. (d)

11. (d)

Objective Questions

1. (a) 2. (c) 3. (c) 4. (c) 5. (c) 6. (b) 7. (d) 8. (c) 9. (d) 10. (a)

11. (c) 12. (d) 13. (c) 14. (a) 15. (c) 16. (a) 17. (d) 18. (c) 19. (c) 20. (c)



21. (c) 22. (b) 23. (d) 24. (c) 25. (a) 26. (b) 27. (c) 28. (a) 29. (b) 30. (a)

31. (a) 32. (a) 33. (b) 34. (d) 35. (a)

Subjective Questions

1. (a) (6.24 10 N)
–14× $

k (b) − ×(6.24 10 N)
– 14 $

k 2. B x = – 2.0 T

3. (a) B Bx z= = −(–0.175)T, ( 0.256)T (b) Yes, B y (c) zero, 90°

4. (a) −qvB
$
k (b) + qvB

$
j (c) zero (d)

−qvB

2

$
j (e) −





+qvB

2
(
$ $
j k) 5. 8.38 10 T

–4×

6. (a) 8.35 10 m s
5× / (b) 2.62 10 s

–8× (c) 7.26 kV 7. (a) –q (b)
πm

Bq

8. (a) 1.6 10 T
–4× into the page (b) 1.11 10 s

–7×

9. v i j k= + −v v t v tx y y

$
cos

$
sin

$
,ω ω Here ω = Be

m
10. E k= −( / )

$
0.1 V m

11. v v
qE z

m
y = =0

2 0, 12.
2

2

π θmE

qB

tan
13. 0.47 A from left to right

14. (a) 817.5 V (b) 112.8 m s
2

/ 15. Fab = 0,F i,bc = (– 0.04 N)
$

F k F i kcd da= = +(– 0.04 N) 0.04 0.04 N
$
, (

$ $
)

16.
π
µ
R

3

02
17. (a) 76.7° (b) 76.7° 18. (a) 1.5 10 s

–16× (b) 1.1 mA (c) 9.3 10 A m
–24 2× -

19. M j= 2
2

Il
$

20. zero 21. 2.0 Tµ 22. 2 10 T
6× − 23. y

I

I
x=







1

2

24. 2 rad

25. (a) Between the wires, 30.0 cm from wire carrying 75.0 A

(b) 20.0 cm from wire carrying 25.0 A and 60.0 cm from wire carrying 75.0 A

26. 69 27. I
D

R
I1 2= 





π
, towards right 28. (a) 2.77 A (b) 0.0184 m

29. 2.0 A toward bottom of page 30. (a)
−µ 0 0

4

qv I

R

$
k (b) F F i F i1 2 0 02 4= = =B IR B IR

$
,

$

31. (a)

µ π π

π

0

2

2
2

in
n n

r

sin tan












(b)
µ 0

2

i

r

32. (a)
µ
π
0

2 2

2 2

2

4

I

r

r a

r a

−
−









 to the left (b)

µ
π
0

2 2

2 2

2

4

I

r

r a

r a

+
+









 towards the top of the page

33. B BP Q= =0 0, µ λ 34.
µ

π
0 1 2

2

I I L

a
, zero 36. (a) π (b) π (c)

π
6

37 v0,
mv

qE

0

0

38.
2

0 0
0π θm v

Bq

sin
, ,







 39. (0.04 0.07 A m

2$
–

$
)j k -

40. 9.98 N-m, clockwise as seen looking down from above.

41. 20.0 µT toward the bottom of the square 42. (a)
µ 0 1

2

3

b r
(b)

µ 0

3

23

b R

r

LEVEL 2

Objective Questions

1.(a) 2.(c) 3.(c) 4.(c) 5.(d) 6.(d) 7.(b) 8.(d) 9.(b) 10.(c)

11.(d) 12.(a) 13.(b) 14.(a) 15.(c) 16.(c) 17.(d) 18.(c) 19.(c) 20.(d)

21.(b) 22.(c) 23.(d) 24.(d) 25.(a) 26.(b) 27.(a)
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More than One Correct Options

1.(a,c) 2.(a,c,d) 3.(a,b,d) 4.(b,c,d) 5.(b,d) 6.(a,b,c,d) 7.(a,b,c,d) 8.(a,c,d) 9.(a,c,d) 10.(a,b,c)

Match the Columns
1. (a) → r (b) → q (c) → p (d) → r

2. (a) → r (b) → s (c) → q (d) → p

3. (a) → p,s (b) → p,q (c) → p,r (d) → p,s

4. (a) → q (b) → r (c) → s (d) → s

5. (a) → q (b) → r (c) → q (d) → r

6. (a) → s (b) → s (c) → q (d) → p

Subjective Questions

1. F i= −
+





















µ
π
0

2
1

2

1

3

2 3

2

I
ln (

$
) 2. M

neh

m
B

m e

h n
= =

4 8

0

2 7

0

3 5 5π
µ π

ε
,

3. 2.7 10 T
–4× 4. (0.2 m, 0.2 m, 0.2 m)

5. 2 10 N
5× − 6. (a) y

Ea

V
=

2

4
(b) p

Ea

B

m

qV
= π 2

7. 2.0 m/s, 3.46 mT 8. (a) I L B0

2
(b)

3

4

0 2I B

M
t( )∆

9. ωmax = DT

BQR

0

2
10. B

i d

d
=

+







µ
π ω

ω
0

2
ln (upwards)

11. 2
1

tan
− 





BqR

mv

12. (a) 0.0442 N-m, clockwise, yes (b) stretched (c) 7.8 10 J
–3×

13. (a) P to Q (b) IbB0 (3 4 )
$ $
k i− (c)

mg

bB6 0
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27.1 Introduction
Almost every modern device has electric circuits at its heart. We learned in the chapter of current

electricity that an electromagnetic force (emf) is required for a current to flow in a circuit. But for

most of the electric devices used in industry the source of emf is not a battery but an electrical

generating station. In these stations other forms of energy are converted into electric energy. For

example, in a hydroelectric plant gravitational potential energy is converted into electric energy.

Similarly, in a nuclear plant nuclear energy is converted into electric energy.

But how this conversion is done? Or what is the physics behind this? The branch of physics, known as

electromagnetic induction gives the answer to all these queries. If the magnetic flux ( )φ
B

through a

circuit changes, an emf and a current are induced in the circuit. Electromagnetic induction was

discovered in 1830. The central principle of electromagnetic induction is Faraday’s law. This law

relates induced emf to change in magnetic flux in any loop, including a closed circuit. We will also

discuss Lenz’s law, which helps us to predict the directions of induced emf and current.

27.2 Magnetic Field Lines and Magnetic Flux
Let us first discuss the concept of magnetic field lines and magnetic flux. We can represent any

magnetic field by magnetic field lines. Unlike the electric lines of force, it is wrong to call them

magnetic lines of force, because they do not point in the direction of the force on a charge. The force

on a moving charged particle is always perpendicular to the magnetic field (or magnetic field lines) at

the particle’s position.

The idea of magnetic field lines is same as for the electric field lines as discussed in the chapter of

electrostatics. The magnetic field at any point is tangential to the field line at that point. Where the

field lines are close, the magnitude of field is large, where the field lines are far apart, the field

magnitude is small. Also, because the direction of Bat each point is unique, field lines never intersect.

Unlike the electric field lines, magnetic lines form a closed loop.

Magnetic Flux
The flux associated with a magnetic field is defined in a similar manner to that used to define electric

flux. Consider an element of area dS on an arbitrary shaped surface as shown in figure. If the

magnetic field at this element is B, the magnetic flux through the element is

d d BdSBφ = ⋅ =B S cosθ
Here, dS is a vector that is perpendicular to the surface and has a magnitude equal to the area dS andθ is

the angle between B and dS at that element. In general, d Bφ varies from element to element. The total

magnetic flux through the surface is the sum of the contributions from the individual area elements.

∴ φ = = ⋅∫∫B BdS dcosθ B S
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Note down the following points regarding the magnetic flux :

(i) Magnetic flux is a scalar quantity (dot product of two vector quantities is a scalar quantity)

(ii) The SI unit of magnetic flux is tesla-metre 2 ( )1 2T-m . This unit is called weber (1Wb).

1 1 12Wb T-m N-m/A= =

Thus, unit of magnetic field is also weber/m 2 (1Wb/m 2).

or 1 1 2T Wb/m=

(iii) In the special case in which B is uniform over a plane surface with total area S,

φ =B BS cosθ

If B is perpendicular to the surface, then cosθ =1and

φ =B BS

Gauss’s Law for Magnetism
In Gauss’s law, the total electric flux through a closed surface is proportional to the total electric

charge enclosed by the surface. For example, if a closed surface encloses an electric dipole, the total

electric flux is zero because the total charge is zero.

By analogy, if there were such as thing as a single magnetic charge (magnetic monopole), the total

magnetic flux through a closed surface would be proportional to the total magnetic charge enclosed.

But as no magnetic monopole has ever been observed, we conclude that the total magnetic flux

through a closed surface is zero.

B S⋅ =∫ d 0

Unlike electric field lines that begin and end on electric charges, magnetic field lines never have end

points. Such a point would otherwise indicate the existence of a monopole. For a closed surface, the

vector area element dS always points out of the surface. However, for an open surface we choose one

of the possible sides of the surface to be the positive and use that choice consistently.

27.3 Faraday’s Law
This law states that, “the induced emf in a closed loop equals the negative of the time rate of change of

magnetic flux through the loop.”

e
d

dt

B=
φ

–
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If a circuit is a coil consisting of N loops all of the same area and ifφB is the flux through one loop, an

emf is induced in every loop, thus the total induced emf in the coil is given by the expression,

e N
d

dt

B=
φ

–

The negative sign in the above equations is of important physical significance, which we will discuss

in article. 27.4.

Note down the following points regarding the Faraday’s law:

(i) As we have seen, induced emf is produced only when there is a change in magnetic flux passing

through a loop. The flux passing through the loop is given by

φ =BS cosθ
This, flux can be changed in several ways:

(a) The magnitude of B can change with time. In the problems if magnetic field is given a

function of time, it implies that the magnetic field is changing. Thus,

B B t= ( )

(b) The current producing the magnetic field can change with time. For this, the current can be

given as a function of time. Hence,

i i t= ( )

(c) The area of the loop inside the magnetic field can change with time.This can be done by

pulling a loop inside (or outside) a magnetic field.

(d) The angle θ between B and the normal to the loop (or s) can change with time.

This can be done by rotating a loop in a magnetic field.

(e) Any combination of the above can occur.

(ii) When the magnetic flux passing through a loop is changed, an induced emf and hence, an

induced current is produced in the circuit. If R is the resistance of the circuit, then induced

current is given by

i
e

R R

d

dt

B= =
φ





1 –
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Current starts flowing in the circuit, means flow of charge takes place. Charge flown in the

circuit in time dt will be given by

dq idt
R

d B= = φ
1

(– )

Thus, for a time interval ∆t we can write the average values as,

e
t

B=
φ

–
∆
∆

, i
R t

B=
φ





1 –∆
∆

and ∆ ∆q
R

B= φ
1

(– )

From these equations, we can see that e and i are inversely proportional to ∆t while ∆q is

independent of ∆t. It depends on the magnitude of change in flux, not the time taken in it. This

can be explained by the following example.

V Example 27.1 A square loop ACDE of area 20 2cm and

resistance 5 Ω is rotated in a magnetic field B = 2T through
180°, (a) in 0.01 s and (b) in 0.02 s

Find the magnitudes of average values of e, i and ∆q in both

the cases.

Solution Let us take the area vector S perpendicular to plane of loop

inwards. So initially, S B↑↑ and when it is rotated by 180°, S B↑↓ .

Hence, initial flux passing through the loop,

φ = ° = × = ×i BS cos ( ) ( ) ( )– –0 2 20 10 1 104 34.0 Wb

Flux passing through the loop when it is rotated by 180°,

φ = ° = × = ×f BS cos ( ) ( ) (– ) –– –180 2 20 10 1 104 34.0 Wb

Therefore, change in flux,

∆φ = φ φ = ×B f i– – –8.0 Wb10 3

(a) Given, ∆t = 0.01s, R = 5 Ω

∴ | | –
–

e
t

B=
φ

= × =
∆
∆

8.0

0.01
0.8 V

10 3

i
e

R
= = =| | 0.8

0.16 A
5

and ∆ ∆q i t= = × = ×0.16 0.01 1.6 C10 3–

(b) ∆t = 0.02s

∴ | | –
–

e
t

B=
φ

= × =
∆
∆

8.0

0.02
0.4 V

10 3

i
e

R
= = =| | 0.4

0.08 A
5

and ∆ ∆q i t= = ( ) ( )0.08 0.02

= ×1.6 C10 3–

Note Time interval ∆t in part (b) is two times the time interval in part (a), so e and i are half while ∆q is same.
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V Example 27.2 A coil consists of 200 turns of wire having a total resistance of
2.0 Ω. Each turn is a square of side 18 cm, and a uniform magnetic field
directed perpendicular to the plane of the coil is turned on. If the field changes
linearly from 0 to 0.5 T in 0.80 s, what is the magnitude of induced emf and
current in the coil while the field is changing?

Solution From the Faraday’s law,

Induced emf, | | ( )e
N

t
NS

B

t
= φ=∆

∆
∆
∆

= × −−( ) ( ) ( )200 18 10 02 2 0.5

0.8

= 4.05 V Ans.

Induced current, i
e

R
= = ≈| | 4.05

2.0 A
2

Ans.

V Example 27.3 The magnetic flux passing through a metal ring varies with

time t as : φ = −B at bt T m3 3 2 2( ) - with a s= −2.00 3 and b s= −6.00 2 . The

resistance of the ring is 3.0 Ω. Determine the maximum current induced in the
ring during the interval from t = 0 to t s= 2.0 .

Solution Given, φ = −B at bt3 3 2( )

∴ | | –e
d

dt
at btB=

φ
= 9 62

∴ Induced current, i
e

R

at bt
at bt= = − = −| | 9 6

3
3 2

2
2

For current to be maximum,

di

dt
= 0

∴ 6 2 0at b− =

or t
b

a
=

3

i.e.  at t
b

a
=

3
, current is maximum. This maximum current is

i a
b

a
b

b

a
max = 











3
3

2
3

2

–

= − =b

a

b

a

b

a

2 2 2

3

2

3 3

Substituting the given values of a and b, we have

i max 6.0 A= =( )

( )

6

3 2

2

Ans.
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27.4 Lenz’s Law
The negative sign in Faraday's equations of electromagnetic induction describes the direction in

which the induced emf drives current around a circuit. However, that direction is most easily

determined with the help of Lenz’s law. This law states that:

“The direction of any magnetic induction effect is such as to oppose the cause of the effect.”

For different types of problems, Lenz’s law has been further subdivided into following concepts.

1. Attraction and repulsion concept If magnetic flux is changed by bringing a magnet and a loop

(or solenoid etc.) closer to each other then direction of induced current is so produced, that the

magnetic field produced by it always repels the two. Similarly, if they are moved away from each

other then they are attracted towards each other. Following two examples will illustrate this.

V Example 27.4 A bar magnet is freely falling along the axis of a circular loop
as shown in figure. State whether its acceleration a is equal to, greater than or
less than the acceleration due to gravity g.

Solution a g< . Because according to Lenz’s law, whatever may be the direction of induced

current, it will oppose the cause.

Here, the cause is, the free fall of magnet and so the induced current will oppose it and the
acceleration of magnet will be less than the acceleration due to gravity g. This can also be
explained in a different manner. When the magnet falls downwards with its north pole
downwards.

The magnetic field lines passing through the coil in the downward direction increase. Since, the
induced current opposes this, the upper side of the coil will become north pole, so that field lines
of coil’s magnetic field are upwards. Now, like poles repel each other. Hence, a g< .

V Example 27.5 A bar magnet is brought near a
solenoid as shown in figure. Will the solenoid attract
or repel the magnet?
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Solution When the magnet is brought near the solenoid, according to Lenz’s law, both repel

each other. On the other hand, if the magnet is moved away from the solenoid, it attracts the

magnet. When the magnet is brought near the solenoid, the nearer side becomes the same pole

and when it is moved away it becomes the opposite pole as shown in figure.

It can also be explained by increasing or decreasing field lines as discussed in example 27.4.

2. Cross or dot magnetic field increasing or decreasing concept

If cross magnetic field passing through a loop increases then induced current will produce dot

magnetic field. Similarly, if dot magnetic field passing through a loop decreases then dot

magnetic field is produced by the induced current. Let us take some examples in support of it.

V Example 27.6 A circular loop is placed in magnetic field B t= 2 . Find the
direction of induced current produced in the loop.

Solution B t= 2 , means ⊗ magnetic field (or we can also say cross magnetic flux) passing

through the loop is increasing. So, induced current will produce dot magnetic field. To

produce magnetic field, induced current from our side should be anti-clockwise.

V Example 27.7 A rectangular loop is placed to the left of large current carrying
straight wire as shown in figure. Current varies with time as I t= 2 . Find
direction of induced current I in in the square loop.

Solution Current I will produce magnetic field passing through the loop. Current I is

increasing, so dot magnetic field will also increase. Therefore, induced current should produce

cross magnetic field. For producing cross magnetic field in the loop, induced current from our

side should be clockwise.

3. Situations where flux passing through the loop is always zero or change in flux is zero.
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V Example 27.8 A current carrying straight wire passes inside a triangular loop
as shown in Fig. 27.12. The current in the wire is perpendicular to paper
inwards. Find the direction of the induced current in the loop if current in the
wire is increased.

Solution Magnetic field lines round the current carrying wire are as shown in Fig.27.13.

Since, the lines are tangential to the loop ( )θ = °90 the flux passing through the loop is always

zero, whether the current is increased or decreased. Hence, change in flux is also zero. Therefore,

induced current in the loop will be zero.

.

V Example 27.9 A rectangular loop is placed adjacent to a current carrying
straight wire as shown in figure. If the loop is rotated about an axis passing
through one of its sides, find the direction of induced current in the loop.

Solution Magnetic field lines around the straight wire are circular. So, same magnetic lines

will pass through loop under all conditions.

∆φ =0

⇒ emf = 0

⇒ i = 0

4. Attraction or repulsion between two loops facing each other if current in one loop is

changed
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V Example 27.10 Two loops are facing each other as shown in
Fig. 27.15. State whether the loops will attract each other or
repel each other if current I1 is increased.

Solution If current I1 is increased then induced current in loop-2 (say I 2 )

will be in opposite direction. Now, two wires having currents in opposite

directions repel each other. So, the loops will repel each other.

1. Figure shows a conducting loop placed near a long straight wire carrying a current i as shown. If

the current increases continuously, find the direction of the induced current in the loop.

2. A metallic loop is placed in a non-uniform steady magnetic field. Will an emf be induced in the

loop?

3. Write the dimensions of
d

dt

Bφ
.

4. A triangular loop is placed in a dot magnetic field as shown in figure. Find the direction of

induced current in the loop if magnetic field is increasing.

5. Two circular loops lie side by side in the same plane. One is connected to a source that supplies

an increasing current, the other is a simple closed ring. Is the induced current in the ring is in the

same direction as that in the loop connected to the source or opposite? What if the current in the

first loop is decreasing?

6. A wire in the form of a circular loop of radius 10 cm lies in a plane normal to a magnetic field of

100 T. If this wire is pulled to take a square shape in the same plane in 0.1 s, find the average

induced emf in the loop.

7. A closed coil consists of 500 turns has area4 cm2 and a resistance of50 Ω. The coil is kept with

its plane perpendicular to a uniform magnetic field of 0.2 Wb/m2. Calculate the amount of

charge flowing through the coil if it is rotated through 180°.

8. The magnetic field in a certain region is given by B i k= − ×( $ $ ) –4.0 1.8 T10 3 . How much flux

passes through a 5.0 cm2 area loop in this region if the loop lies flat on the xy -plane?
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27.5 Motional Electromotive Force
Till now, we have considered the cases in which an emf is induced in a stationary circuit placed in a

magnetic field, when the field changes with time. In this section, we describe what is called motional

emf, which is the emf induced in a conductor moving through a constant magnetic field.

The straight conductor of length l shown in figure is moving through a uniform magnetic field

directed into the page. For simplicity we assume that the conductor is moving in a direction

perpendicular to the field with constant velocity under the influence of some external agent. The

electrons in the conductor experience a force

F v Bm e= ×– ( )

Under the influence of this force, the electrons move to the lower end of the conductor and

accumulate there, leaving a net positive charge at the upper end. As a result of this charge separation,

an electric field is produced inside the conductor. The charges accumulate at both ends untill the

downward magnetic force evB is balanced by the upward electric force eE. At this point, electrons

stop moving. The condition for equilibrium requires that,

eE evB= or E vB=
The electric field produced in the conductor (once the electrons stop moving and E is constant) is

related to the potential difference across the ends of the conductor according to the relationship,

∆V El Blv= =
∆V Blv=

where the upper end is at a higher electric potential than the lower end. Thus,

“a potential difference is maintained between the ends of a straight conductor as long as the

conductor continues to move through the uniform magnetic field.”

Now, suppose the moving rod slides along a stationary U-shaped

conductor forming a complete circuit. We call this a motional

electromagnetic force denoted by e, we can write

e Bvl=
If R is the resistance of the circuit, then current in the circuit is

i
e

R

Bvl

R
= =

V Va b> . Therefore, direction of current in the loop is anti-clockwise as shown in figure.

Chapter 27 Electromagnetic Induction � 465

++
++

– –
– –

–l

F
e

F
m

v

Fig. 27.18

v

a

b

x

x

x

x

x

xx

x

x

Fig. 27.19



� The direction of motional emf or current can be given by right

hand rule.

Stretch your right hand.

The stretched fingers point in the direction of magnetic field.

Thumb is along the velocity of conductor. The upper side of

the palm is at higher potential and lower side on lower

potential. If the circuit is closed, the induced current within the

conductor is along perpendicular to palm upwards.

�

In the Fig. 27.20, we can replace the moving rod ab by a battery of emf Bvl with the positive terminal at a

and the negative terminal at b. The resistance r of the rod ab may be treated as the internal resistance of

the battery. Hence, the current in the circuit is

i
e

R r
=

+
or i

Bvl

R r
=

+

� Induction and energy transfers In the Fig. 27.21, if you move the conductor ab with a constant velocity

v, the current in the circuit is

i
Bvl

R
= ( )r = 0

A magnetic force F ilB
B l v

R
m = =

2 2

acts on the conductor in opposite direction of velocity. So, to move the

conductor with a constant velocity v an equal and opposite force F has to be applied in the conductor.
Thus,

F F
B l v

R
m= =

2 2

The rate at which work is done by the applied force is

P Fv
B l v

R
applied

= =
2 2 2
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and the rate at which energy is dissipated in the circuit is

P i R
Bvl

R
R

B l v

R
dissipated

= = 





=2
2 2 2 2

This is just equal to the rate at which work is done by the applied force.

� Motional emf is not a different kind of induced emf, it is exactly the induced emf described by Faraday’s

law, in the case in which there is a conductor moving in a magnetic field. Equation, e
d

dt
B= φ

– is best

applied to problems in which there is a changing flux through a closed loop while e Bvl= is applied to

problems in which a conductor moves through a magnetic field. Note that, if a conductor is moving in a

magnetic field but circuit is not closed, then only PD will be asked between two points of the conductor. If

the circuit is closed, then current will be asked in the circuit. Now, let us see how these two are similar.

Refer figure (a) A loop abcd enters a uniform magnetic field B at constant speed v.

Using Faraday’s equation,

| | –
( )

e
d

dt

d BS

dt
B= φ = = = =d Blx

dt
Bl

dx

dt
Blv

( )

For the direction of current, we can use Lenz’s law. As the loop enters the field, ⊗ magnetic field passing

through the loop increases, hence, induced current should produce magnetic field or current in the loop

is anti-clockwise. From the theory of motional emf, e Bvl= and using right hand rule also, current in the

circuit is anti-clockwise. Thus, we see that e
d

dt
B= φ

– and e Bvl= give the same result. In the similar

manner, we can show that current in the loop in figure (b) is zero and in figure (c) it is clockwise.

� We can generalize the concept of motional emf for a conductor with any shape moving in any magnetic

field uniform or not. For an element dl of conductor the contribution de to the emf is the magnitude dl

multiplied by the component of v B× parallel to dl, that is

de d= × ⋅( )v B l

For any two points a and b the motional emf in the direction from b to a is,

e d
b

a
= × ⋅∫ ( )v B l
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In general, we can say that motional emf in wire acb in a uniform magnetic field is the motional emf in an

imaginary straight wire ab. Thus,

e e ab v Bacb ab= = ⊥( ) ( ) ( )length of

Here, v ⊥ is the component of velocity perpendicular to both B and ab.

From right hand rule we can see that b is at higher potential and a at lower potential.

Hence, V V V ab v Bba b a= =– ( ) ( cos ) ( )θ

� Motional emf induced in a rotating bar : A conducting rod of length l rotates with a constant angular

speed ω about a pivot at one end. A uniform magnetic field B is directed perpendicular to the plane of

rotation as shown in figure. Consider a segment of rod of lengthdr at a distance r from O. This segment has

a velocity,

v r= ω

The induced emf in this segment is de Bvdr B r dr= = ( )ω
Summing the emfs induced across all segments, which are in series, gives the total emf across the rod.

∴ e de Br dr
B ll l

= = =∫ ∫0

2

0 2
ω ω

∴ e
B l= ω 2

2

From right hand rule we can see that P is at higher potential than O. Thus,

V V
B l

P O– = ω 2

2

� Note that in the problems of electromagnetic induction whenever you see a conductor moving in a

magnetic field use the motional approach. It is easier than the other approach. But, if the conductor (or

loop) is stationary, you have no choice. Use e
d

dt
B= φ

– .

� Now onwards, the following integrations will be used very frequently.

If
dx

a bx
c dt

tx

–
= ∫∫ 00

then, x
a

b
e bct= ( – )–1

and if
dx

a bx
c dt

x

x t

–0 0∫ ∫=

then, x
a

b

a

b
x e bct= 





– – –
0

Here a b, and c are positive constants.
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Note In an electrical circuit, a moving or rotating wire may be assumed as a battery of emf Bvl or
B lω 2

2
and

then it can be solved with the help of Kirchhoff’s laws. The following example will illustrate this concept.

V Example 27.11 Two parallel rails with negligible resistance are 10.0 cm apart.
They are connected by a 5.0 Ω resistor. The circuit also contains two metal rods
having resistances of 10.0 Ω and 15.0 Ω along the rails. The rods are pulled
away from the resistor at constant speeds 4.00 m s/ and 2.00 m s/ respectively. A
uniform magnetic field of magnitude 0.01T is applied perpendicular to the,
plane of the rails. Determine the current in the 5.0 Ω resistor.

HOW TO PROCEED Here, two conductors are moving in a uniform magnetic field. So,

we will use the motional approach. The rod ab will act as a source of emf,

e Bvl V1
34 10= = = ×( )( )( ) –0.01 4.0 0.1

and internal resistance r1 = 10.0 Ω
Similarly, rod ef will also act as a source of emf,

e2 = ( )( )( )0.01 2.0 0.1 = ×2.0 10 3– V

and internal resistance r2 = 15.0 Ω.

From right hand rule we can see that, V Vb a> and V Ve f>
Now, either by applying Kirchhoff’s laws or applying principle of superposition

(discussed in the chapter of current electricity) we can find current through 5.0 Ω
resistor. We will here use the superposition principle. You solve it by using

Kirchhoff’s laws.

Solution In the figures R = 5.0 Ω, r1 10= Ω, r2 15= Ω, e1
34 10= × – V and e2

32 10= × – V
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Refer figure (b) Net resistance of the circuit = +
+

r
Rr

R r
2

1

1

= + ×
+

15
10 5

10 5
= 55

3
Ω

∴ Current, i
e

= = × = ×2
3

32 10

55 3

6

55
10

Net resistance
A

–
–

/

∴ Current through R,

i
r

R r
i1

1

1

=
+







 =

+






×





10

10 5

6

55
10 3– A

= ×4

55
10 3– A = 4

55
mA

Refer figure (c) Net resistance of the circuit = +
+

r
Rr

R r
1

2

2

= + ×
+

10
5 15

5 15
= Ω55

4

∴ Current, i
e

′ = 1

Net resistance

= × = ×4 10

55 4

16

55
10

3
3

–
–

/
A

∴ Current through R, i
r

R r
i′ =

+






 ′1

2

2

=
+













×15

15 5

16

55
10 3– A

= 12

55
mA

From superposition principle net current through 5.0 Ω resistor is

i i′ =1 1

8

55
– mA from d to c Ans.

V Example 27.12 Figure shows the top view of a rod that can slide without
friction. The resistor is 6.0 Ω and a 2.5 T magnetic field is directed

perpendicularly downward into the paper. Let l = 1.20 m.

(a) Calculate the force F required to move the rod to the right at a constant speed of

2.0 m/s.

(b) At what rate is energy delivered to the resistor?

(c) Show that this rate is equal to the rate of work done by the applied force.
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Solution The motional emf in the rod, e Bvl= or e = (2.5) (2.0) (1.2) V = 6.0 V

The current in the circuit, i
e

R
= = =6.0

6.0
1.0 A

(a) The magnitude of force F required will be equal to the magnetic force acting on the rod,

which opposes the motion.

∴ F F ilBm= = or F = =(1.0) (1.2) (2.5) N N3 Ans.

(b) Rate by which energy is delivered to the resistor is

P i1
2= (6.0) WR = =( )1 62 Ans.

(c) The rate by which work is done by the applied force is

P F v2 3 6= ⋅ = =( ) (2.0) W

P P1 2= Hence proved.

1. A horizontal wire 0.8 m long is falling at a speed of 5 m/s perpendicular to a uniform magnetic

field of 1.1 T, which is directed from east to west. Calculate the magnitude of the induced emf. Is

the north or south end of the wire positive?

2. As shown in figure, a metal rod completes the circuit. The circuit area is perpendicular to a

magnetic field with B = 0.15 T. If the resistance of the total circuit is 3 Ω, how large a force is

needed to move the rod as indicated with a constant speed of2 m/s?

3. A rod of length3l is rotated with an angular velocityωas shown in

figure. The uniform magnetic field B is into the paper. Find

(a)V VA C− (b)V VA D−
4. As the bar shown in figure moves in a direction perpendicular to the field, is an external force

required to keep it moving with constant speed.
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27.6 Self-inductance and Inductors
Consider a single isolated circuit. When a current is present in the circuit, it sets up a magnetic field

that causes a magnetic flux through the same circuit. This flux changes as the current in the circuit is

changed. According to Faraday’s law any change in flux in a circuit produces an induced emf in it.

Such an emf is called a self-induced emf. The name is so called because the source of this induced

emf is the change of current in the same circuit.

According to Lenz’s law the self-induced emf always opposes the change in the current that caused

the emf and so tends to make it more difficult for variations in current to occur. We will here like to

define a term self-inductance L of a circuit which is of great importance in our proceeding

discussions. It can be defined in the following two ways :

First Definition Suppose a circuit includes a coil with N turns of wire. It carries a current i. The

total flux ( )N Bφ linked with the coil is directly proportional to the current ( )i in the coil, i.e.

N iBφ ∝
When the proportionality sign is removed a constant L comes in picture, which depends on the

dimensions and number of turns in the coil. This constant is called self-inductance. Thus,

N LiBφ = or L
N

i

B=
φ

From here we can define self-inductance ( )L of any circuit as, the total flux per unit current. The SI

unit of self-inductance is henry (1H).

Second Definition If a current i is passed in a circuit and it is changed with a rate di dt/ , the induced

emf e produced in the circuit is directly proportional to the rate of change of current. Thus,

e
di

dt
∝

When the proportionality constant is removed, the same constant L again comes here.

Hence, e L
di

dt
= –

The minus sign here is a reflection of Lenz’s law. It says that the self-induced emf in a circuit opposes

any change in the current in that circuit. From the above equation,

L
e

di dt
=

–

/

This equation states that, the self-inductance of a circuit is the magnitude of self induced emf per

unit rate of change of current.

A circuit or part of a circuit, that is designed to have a particular inductance is called an inductor. The

usual symbol for an inductor is

Thus, an inductor is a circuit element which opposes the change in current through it. It may be a

circular coil, solenoid etc.
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Significance of Self-inductance and Inductor
Like capacitors and resistors, inductors are among the circuit elements of modern electronics. Their

purpose is to oppose any variations in the current through the circuit. In a DC circuit, an inductor

helps to maintain a steady state current despite fluctuations in the applied emf. In an AC circuit, an

inductor tends to suppress variations of the current that are more rapid than desired. An inductor plays

a dormant role in a circuit so far as current is constant. It becomes active when current changes in the

circuit. Every inductor has some self-inductance which depends on the size, shape and the number of

turns etc. For N turns close together, it is always proportional to N 2 . It also depends on the magnetic

properties of the material enclosed by the circuit. When the current passing through it is changed, an

emf of magnitude L di dt/ is induced across it. Later in this article, we will explore the method of

finding the self-inductance of an inductor.

Potential Difference Across an Inductor
We can find the polarities of self-induced emf across an inductor from Lenz’s law.

The induced emf is produced whenever there is a change in the current in the

inductor. This emf always acts to oppose this change. Figure shows three cases.

Assume that the inductor has negligible resistance, so the PD, V V Vab a b= –

between the inductor terminals a and b is equal in magnitude to the self-induced

emf.

Refer figure (a) The current is constant, and there is no self-induced emf.

Hence, Vab =0

Refer figure (b) The current is increasing, so
di

dt
is positive. The induced emf e

must oppose the increasing current, so it must be in the sense from b to a, a

becomes the higher potential terminal andVab is positive. The direction of the emf

is analogous to a battery with a as its positive terminal.

Refer figure (c) The current is decreasing and
di

dt
is negative. The self-induced

emf eopposes this decrease andVab is negative. This is analogous to a battery with

b as its positive terminal.

In each case, we can write the PD,Vab as

V e L
di

dt
ab = =–

The circuit’s behaviour of an inductor is quite different from that of a resistor. While a resistor

opposes the current i, an inductor opposes the change ( / )di dt in the current.
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Kirchhoff’s potential law with an inductor In Kirchhoff’s potential law when we go through an

inductor in the same direction as the assumed current, we encounter a voltage drop equal to L di dt/ ,

where di dt/ is to be substituted with sign.

For example in the loop shown in figure, Kirchhoff’s second law gives the equation.

E iR L
di

dt
– – =0

V Example 27.13 The inductor shown in the figure has inductance 0.54 H and
carries a current in the direction shown that is decreasing at a uniform rate
di

dt
A/s= – 0.03 .

(a) Find the self-induced emf.

(b) Which end of the inductor a or b is at a higher potential?

Solution (a) Self-induced emf,

e L
di

dt
= – = (– ) (– )0.54 0.03 V

= ×1.62 V10 2–
Ans.

(b) V L
di

dt
ba = = ×– –1.62 V10 2

Since,V V Vba b a( – )= is negative. It implies thatV Va b> or a is at higher potential. Ans.

V Example 27.14 In the circuit diagram shown in figure, R = 10 Ω, L H= 5 ,
E V= 20 , i A= 2 . This current is decreasing at a rate of –1.0 A/s. Find Vab at
this instant.

Solution PD across inductor,

V L
di

dt
L = = =( ) (– –5 51.0) V
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Now, V iR V E Va L b– – – =
∴ V V V E iR Vab a b L= = + +–

= + =20 2 10 5 35( ) ( ) – V Ans.

Note As the current is decreasing, the inductor can be replaced by a source of emf e L
di

dt
V= ⋅ =5 in such a

manner that this emf supports the decreasing current, or it sends the current in the circuit in the same

direction as the existing current. So, positive terminal of this source is towards b. Thus, the given circuit

can be drawn as shown below,

Now, we can find Vab.

Method of Finding Self-inductance of a Circuit
We use the equation, L N iB= φ / to calculate the inductance of given circuit.

A good approach for calculating the self-inductance of a circuit consists of the following steps:

(a) Assume that there is a current i flowing through the circuit (we can call the circuit as inductor).

(b) Determine the magnetic field B produced by the current.

(c) Obtain the magnetic flux φB .

(d) With the flux known, the self-inductance can be found from L N iB= φ / .

To demonstrate this procedure, we now calculate the self-inductance of two inductors.

Inductance of a Solenoid
Let us find the inductance of a uniformly wound solenoid having N turns and length l. Assume that l is

much longer than the radius of the windings and that the core of the solenoid is air.

We can assume that the interior magnetic field due to a current i is uniform and given by equation,

B ni
N

l
i= = 





µ µ0 0

where, n
N

l
= is the number of turns per unit length.

The magnetic flux through each turn is, φ = =B BS
NS

l
iµ 0

Here, S is the cross-sectional area of the solenoid. Now,

L
N

i

N

i

NSi

l

N S

l

B=
φ

= 





=
µ µ0 0

2

∴ L
N S

l
=

µ 0
2
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This result shows that L depends on dimensions ( , )S l and is proportional to the square of the

number of turns.

L N∝ 2

Because N nl= , we can also express the result in the form,

L
nl

l
S n Sl n V= = =µ µ µ0

2

0
2

0
2( )

or L n V= µ0
2

Here,V Sl= is the volume of the solenoid.

Inductance of a Rectangular Toroid
A toroid with a rectangular cross-section is shown in figure. The inner and outer radii of the toroid are

R1 and R2 and h is the height of the toroid. Applying Ampere’s law for a toroid, we can show that

magnetic field inside a rectangular toroid is given by

B
Ni

r
=

µ
π
0

2

where, r is the distance from the central axis of the toroid. Because the magnitude of magnetic field

changes within the toroid, we must calculate the flux by integrating over the toroid’s cross-section.

Using the infinitesimal cross-sectional area element dS hdr= shown in the figure, we obtain

φ =∫B B dS = 



∫

µ
π
0

21

2 Ni

r
hdr

R

R
( )

=








µ
π

0 2

12

Nhi R

R
ln

Now, L
N

i

N h R

R

B=
φ

=








µ
π

0
2

2

12
ln

or L
N h R

R
=









µ
π

0
2

2

12
ln

As expected, the self-inductance is a constant determined by only the physical properties of the

toroid.
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Energy Stored in an Inductor
The energy of a capacitor is stored in the electric field between its plates. Similarly, an inductor has

the capability of storing energy in its magnetic field.

An increasing current in an inductor causes an emf between its terminals.

The work done per unit time is power.

P
dW

dt
ei Li

di

dt
= = =– –

From dW dU= – or P
dW

dt

dU

dt
= = –

We have,
dU

dt
Li

di

dt
= or dU Li di=

The total energy U supplied while the current increases from zero to a final value i is

U L idi Li
i

= =∫0

21

2

∴ U Li=
1

2

2

This is the expression for the energy stored in the magnetic field of an inductor when a current i flows

through it. The source of this energy is the external source of emf that supplies the current.

Note (i) After the current has reached its final steady state value i, di dt/ = 0 and no more energy is taken by the

inductor.

(ii) When the current decreases from i to zero, the inductor acts as a source that supplies a total amount of

energy
1

2

2Li to the external circuit. If we interrupt the circuit suddenly by opening a switch, the current

decreases very rapidly, the induced emf is very large and the energy may be dissipated as a spark across

the switch.

(iii) If we compare the behaviour of a resistor and an inductor towards the current flow we can observe that
energy flows into a resistor whenever a current passes through it. Whether the current is steady
(constant) or varying this energy is dissipated in the form of heat. By contrast energy flows into an ideal,
zero resistance inductor only when the current in the inductor increases. This energy is not dissipated, it
is stored in the inductor and released when the current decreases.

(iv) As we said earlier also, the energy in an inductor is actually stored in the magnetic field within the coil.
We can develop relations of magnetic energy density u (energy stored per unit volume) analogous to
those we obtained in electrostatics. We will concentrate on one simple case of an ideal long cylindrical
solenoid. For a long solenoid its magnetic field can be assumed completely of within the solenoid. The
energy U stored in the solenoid when a current i is

U Li n V i= =1

2

1

2

2
0

2 2
( )µ as L n V= µ0

2
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i (increasing)

e L=
di

dt

e L=
di

dt
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The energy per unit volume is u
U

V
=

∴ u
U

V
n i

ni B= = = =1

2

1

2

1

2
0

2 2 0
2

0

2

0

µ µ
µ µ

( )

as B ni= µ0

Thus, u
B= 1

2

2

0µ

This expression is similar to u E= 1

2
0

2ε used in electrostatics. Although, we have derived it for one

special situation, it turns out to be correct for any magnetic field configuration.

V Example 27.15 (a) Calculate the inductance of an air core solenoid
containing 300 turns if the length of the solenoid is 25.0 cm and its

cross-sectional area is 4.00 cm2 .

(b) Calculate the self-induced emf in the solenoid if the current through it is

decreasing at the rate of 50.0 A/s.

Solution (a) The inductance of a solenoid is given by

L
N S

l
=

µ 0
2

Substituting the values, we have

L = × ×
×

( ) ( ) ( )

( )

– –

–

4 10 300 10

10

7 2 4

2

π 4.00

25.0
H

= ×1.81 H10 4–
Ans.

(b) e L
di

dt
= –

Here,
di

dt
= – 50.0 A/s

∴ e = ×– ( ) (– )–1.81 50.010 4

= ×9.05 V10 3–

or e = 9.05 mV Ans.

V Example 27.16 What inductance would be needed to store 1.0 kWh of energy

in a coil carrying a 200 A current. (1 )kWh J= ×3.6 106

Solution We have, i = 200 A

and U = = ×1 106kWh 3.6 J

∴ L
U

i
= 2

2
U Li=





1

2

2

= × =2 10

200
180

6

2

( )

( )

3.6
H Ans.
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V Example 27.17 (a) What is the magnetic flux through one turn of a solenoid

of self-inductance 8.0 × −10 5H when a current of 3.0 A flows through it? Assume

that the solenoid has 1000 turns and is wound from wire of diameter 1.0 mm.

(b) What is the cross-sectional area of the solenoid?

Solution Given, L i N= × = =−8.0 H 3.0A10 10005 , and turns

(a) From the relation, L
N

i
= φ

The flux linked with one turn,

φ = = × −
Li

N

( ) ( )8.0 3.010

1000

5

= × −2.4 Wb10 7

(b) This φ = =BS ni S( ) ( )µ 0

Here, n = number of turns per unit length

= = =N

l

N

Nd d

1

∴ φ =
µ 0 iS

d

or S
d

i
= φ = × ×

×

−

−µ π0

7 3

7

10 10

4 10

( ) ( )

( ) ( )

–2.4 1.0

3.0

= × −6.37 m10 5 2
Ans.

V Example 27.18 A 10 H inductor carries a current of 20 A. How much ice at

0°C could be melted by the energy stored in the magnetic field of the inductor?

Latent heat of ice is 22.6 ×10 .3 J kg/

Solution Energy stored is
1

2

2Li .

This energy is completely used in melting the ice.

Hence,
1

2

2Li mL f=

Here, L f = latent heat of fusion
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Hence, mass of ice melted, m
Li

L f

=
2

2

Substituting the values, we have

m =
×

( ) ( )

( )

10 20

2 10

2

32.26

= 0.88 kg Ans.

1. The current through an inductor of 1H is given by i t t= 3 sin . Find the voltage across the

inductor.

2. In the figure shown i e
t= −10 4

A. FindVL andVab.

3. The current (in Ampere) in an inductor is given by I t= +5 16 , where t is in seconds. The

self-induced emf in it is 10 mV. Find

(a) the self-inductance, and

(b) the energy stored in the inductor and the power supplied to it at t = 1s

4. (a) Calculate the self-inductance of a solenoid that is tightly wound with wire of diameter

0.10 cm, has a cross-sectional area 0.90 cm2 and is 40 cm long.

(b) If the current through the solenoid decreases uniformly from 10 A to 0 A in 0.10 s, what is the

emf induced between the ends of the solenoid?

27.7 Mutual Inductance
We have already discussed in Chapter 26, the magnetic interaction between two wires carrying steady

currents. The current in one wire causes a magnetic field, which exerts a force on the current in the

second wire.

An additional interaction arises between two circuits when there is a changing current in one of the

circuits.
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Consider two neighbouring coils of wire as shown in Fig. 27.42. A current flowing in coil 1 produces

magnetic field and hence, a magnetic flux through coil 2. If the current in coil 1 changes, the flux

through coil 2 changes as well. According to Faraday’s law this induces an emf in coil 2. In this way, a

change in the current in one circuit can induce a current in a second circuit. This phenomenon is

known as mutual induction. Like the self-inductance ( )L , two circuits have mutual inductance ( )M .

It also have two definitions as under:

First Definition Suppose the circuit 1 has a current i1 flowing in it. Then, total flux N B2 2
φ linked

with circuit 2 is proportional to the current in 1. Thus,

N iB2 12
φ ∝

or N MiB2 12
φ =

Here, the proportionality constant M is known as the mutual inductance M of the two circuits.

Thus, M
N

i

B=
φ2

1

2

From this expression, M can be defined as the total flux N
B2 2

φ linked with circuit 2 per unit

current in circuit 1.

Second Definition If we change the current in circuit 1 at a rate di dt1 / , an induced emf e2 is

developed in circuit 1, which is proportional to the rate di dt1 / . Thus,

e di dt2 1∝ /

or e Mdi dt2 1= – /

Here, the proportionality constant is again M . Minus sign indicates that e2 is in such a direction that it

opposes any change in the current in circuit 1. From the above equation,

M
e

di dt
=

–

/

2

1

This equation states that, the mutual inductance of two circuits is the magnitude of induced emf

e2 per unit rate of change of current di dt1 / .

Note down the following points regarding the mutual inductance:

1. The SI unit of mutual inductance is henry (1H).

2. M depends upon closeness of the two circuits, their orientations and sizes and the number of

turns etc.

3. Reciprocity theorem : M M M21 12= =

e M di dt2 1= – ( / )

and e M di dt1 2= – ( / )

M
N

i

B

12

2

1

2=
φ

and M
N

i

B

21

1

2

1=
φ
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4. A good approach for calculating the mutual inductance of two circuits consists of the following

steps:

(a) Assume any one of the circuits as primary (first) and the other as secondary (second).

(b) Pass a current i1 through the primary circuit.

(c) Determine the magnetic field B produced by the current i1 .

(d) Obtain the magnetic flux φB2
.

(e) With this flux, the mutual inductance can be found from,

M
N

i

B=
φ2

1

2

Mutual Inductance of a Solenoid Surrounded by a Coil
Figure shows a coil of N2 turns and radius R2 surrounding a long solenoid of length l1 , radius R1 and

number of turns N1 .

To calculate M between them, let us assume a current i1 in solenoid.

There is no magnetic field outside the solenoid and the field inside has magnitude,

B
N

l
i=







µ 0

1

1
1

and is directed parallel to the solenoid’s axis. The magnetic flux φB2
through the surrounding coil is,

therefore,

φ = =B B R
N i

l
R

2 1
2 0 1 1

1
1
2( )π

µ
π

Now, M
N

i

N

i

N i

l
R

N N R

l

B=
φ

=














 =2

1

2

1

0 1 1

1
1
2 0 1 2 1

2
2 µ

π
µ π

1

∴ M
N N R

l
=

µ π0 1 2 1
2

1

Note that M is independent of the radius R2 of the surrounding coil. This is because solenoid’s

magnetic field is confined to its interior. In principle, we can also calculate M by finding the magnetic

flux through the solenoid produced by the current in the surrounding coil. This approach is much

more difficult, because φB1
is so complicated. However, since M M12 21= , we do know the result of

this calculation.
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Combination of Inductances

In series If several inductances are in series so that there are no interactions through mutual

inductance.

Refer figure (a)

V V L
di

dt
a c– = 1

V V L
di

dt
c d– = 2

and V V L
di

dt
d b– = 3

Adding all these equations, we have

V V L L L
di

dt
a b– ( )= + +1 2 3 …(i)

Refer figure (b)

V V L
di

dt
a b– = …(ii)

Here, L = equivalent inductance.

From Eqs. (i) and (ii), we have

L L L L= + +1 2 3

In parallel

Refer figure (a)

i i i i= + +1 2 3

or
di

dt

di

dt

di

dt

di

dt
= + +1 2 3

or
di

dt

V V

L

V V

L

V V

L

a b a b a b= + +
– – –

1 2 3

…(i)
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Refer figure (b)

di

dt

V V

L

a b=
–

…(ii)

From Eqs. (i) and (ii),
1 1 1 1

1 2 3L L L L
= + +

V Example 27.19 A straight solenoid has 50 turns per cm in primary and total

200 turns in the secondary. The area of cross-section of the solenoids is 4 2cm .

Calculate the mutual inductance. Primary is tightly kept inside the secondary.

Solution The magnetic field at any point inside the straight solenoid of primary with n1 turns

per unit length carrying a current i1 is given by the relation,

B n i= µ 0 1 1

The magnetic flux through the secondary of N 2 turns each of area S is given as

N N BS n N i S2 2 2 0 1 2 1φ = =( ) µ

∴ M
N

i
n N S=

φ
=2 2

1

0 1 2µ

Substituting the values, we get

M = × 





×( ) ( ) ( )–

–

–4 10
50

10
200 4 107

2

4π

= ×5.0 H10 4– Ans.

V Example 27.20 Two solenoids A and B spaced close to each other and sharing

the same cylindrical axis have 400 and 700 turns, respectively. A current of

3.50 A in coil A produced an average flux of 300 2µT m- through each turn of A

and a flux of 900 2. µT m- through each turn of B.

(a) Calculate the mutual inductance of the two solenoids.

(b) What is the self-inductance of A?

(c) What emf is induced in B when the current in A increases at the rate of 0.5 A/s?

Solution (a) M
N

i

B B

A

=
φ

= ×( ) ( )–700 90 10 6

3.5

= ×1.8 H10 2–
Ans.

(b) L
N

i
A

A A

A

=
φ

= ×( ) ( )–400 300 10 6

3.5

= ×3.43 H10 2–
Ans.
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(c) e M
di

dt
B

A= 





= ×( ) ( )–1.8 0.510 2

= ×9.0 V10 3– Ans.

1. Calculate the mutual inductance between two coils when a current of 4 A changes to 12 A in

0.5 s in primary and induces an emf of 50 mV in the secondary. Also, calculate the induced emf

in the secondary if current in the primary changes from 3 A to 9 A is 0.02 s.

2. A coil has 600 turns which produces5 10 3× − Wb / turn of flux when 3 A current flows in the wire.

This produced 6 10 3× − Wb/turn in 1000 turns secondary coil. When the switch is opened, the

current drops to zero in 0.2 s in primary. Find

(a) mutual inductance,

(b) the induced emf in the secondary,

(c) the self-inductance of the primary coil.

3. Two coils have mutual inductance M = ×3.25 H10 4– . The current i1 in the first coil increases at a

uniform rate of 830 A /s.

(a) What is the magnitude of the induced emf in the second coil? Is it constant?

(b) Suppose that the current described is in the second coil rather than the first. What is the

induced emf in the first coil?

27.8 Growth and Decay of Current in an L-R Circuit

Growth of Current
Let us consider a circuit consisting of a battery of emf E, a coil of

self-inductance L and a resistor R. The resistor R may be a separate circuit

element, or it may be the resistance of the inductor windings. By closing

switch S1 , we connect R and L in series with constant emf E. Let i be the

current at some time t after switch S1 is closed and di dt/ be its rate of increase

at that time. Applying Kirchhoff’s loop rule starting at the negative terminal

and proceeding counterclockwise around the loop

E V Vab bc– – =0 or E iR L
di

dt
– – =0

∴
di

E iR

dt

L

i t

–
=∫ ∫0 0

or i
E

R
e

Rt

L= ( – )
–

1

By letting E R i/ = 0 and L R L/ = τ , the above expression reduces to

i i e
t L= 0 1( – )

– / τ

Here, i E R0 = / is the current at t = ∞. It is also called the steady state current or the maximum current

in the circuit.
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And τ L

L

R
= is called time constant of the L-R circuit. At a time

equal to one time constant the current has risen to ( – / )1 1 e or about

63% of its final value i0 .

The i-t graph is as shown in figure.

Note that the final current i0 does not depend on the inductance L, it

is the same as it would be if the resistance R alone were connected

to the source with emf E.

Let us have an insight into the behaviour of an L R- circuit from

energy considerations.

The instantaneous rate at which the source delivers energy to the circuit ( )P Ei= is equal to the

instantaneous rate at which energy is dissipated in the resistor ( )= i R2 plus the rate at which energy is

stored in the inductor = =





iV Li
di

dt
bc or

d

dt
Li Li

di

dt

1

2

2





= ⋅

Thus, Ei i R Li
di

dt
= +2

Decay of Current
Now suppose switch S1 in the circuit shown in figure has been

closed for a long time and that the current has reached its steady

state value i0 . Resetting our stopwatch to redefine the initial time

we close switch S 2 at time t =0 and at the same time we should

open the switch S1 to by pass the battery. The current through L

and R does not instantaneously go to zero but decays

exponentially. To apply Kirchhoff’s loop rule and to find current in

the circuit at time t, let us draw the circuit once more.

Applying loop rule we have,

( – ) ( – )V V V Va b b c+ =0 (as V Va c= )

or iR L
di

dt
+ 





=0

Note Don’t bother about the sign of
di

dt
.

∴ di

i

R

L
dt= –

∴ di

i

R

L
dt
t

i

i
= ∫∫ –

00

∴ i i e t L= 0
– / τ

where, τ L

L

R
= , is the time for current to decrease to 1/ e or about 37% of its original value. The i-t graph

is as shown in Fig. 27.49.`
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The energy that is needed to maintain the current during this decay is provided by energy stored in the

magnetic field. Thus, the rate at which energy is dissipated in the resistor = rate at which the stored

energy decreases in magnetic field of inductor

or i R
dU

dt

d

dt
Li Li

di

dt

2 21

2
= = 





= 





– – –

or i R Li
di

dt

2 = 





–

V Example 27.21 A coil of resistance 20 Ω and inductance 0.5 H is switched to

DC 200 V supply. Calculate the rate of increase of current

(a) at the instant of closing the switch and

(b) after one time constant.

(c) Find the steady state current in the circuit.

Solution (a) This is the case of growth of current in an L-R circuit. Hence, current at time t is

given by

i i e
t L= 0 1( – )

– / τ

Rate of increase of current,

di

dt

i
e

L

t L= 0

τ
τ– /

At t = 0,
di

dt

i E R

L R

E

LL

= = =0

τ
/

/

Substituting the value, we have

di

dt
= =200

400
0.5

A/s Ans.

(b) At t L= τ ,

di

dt
e= =( ) ( ) ( )–400 4001 0.37

= 148 A/s Ans.

(c) The steady state current in the circuit,

i
E

R
0

200

20
10= = = A Ans.
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V Example 27.22 A 5 H inductor is placed in series with a 10 Ω resistor. An emf
of 5 V being suddenly applied to the combination. Using these values prove the
principle of conservation of energy, for time equal to the time constant.

Solution At any instant t, current in L-R circuit is given as

i i e
t L= 0 1( – )

– / τ

Here, i
E

R
0 = and τ L

L

R
=

After one time constant ( )t L= τ , current in the circuit is

i
E

R e e
= 





= 





=1
1 5

10
1

1
– – 0.316 A

The rate at which the energy is delivered by the battery is

P Ei1 5= = =( ) ( )0.316 1.58 W …(i)

At this time rate by which energy is dissipated in the resistor is

P i R2
2 2 10= = =( ) ( )0.316 0.998 W …(ii)

The rate at which energy is stored in the inductor is

P
d

dt
Li Li

di

dt
3

21

2
= 





= 





Here,
di

dt

i
e

E

eLL

= =0 1

τ
– (after one time constant)

Substituting the values, we get

P L i
E

eL

Ei

e
3 = 





=( ) ( )

= × =5 0.316

2.718
0.582 W …(iii)

From Eqs. (i), (ii) and (iii), we have

P P P1 2 3= +
It is the same as required by the principle of conservation of energy.

1. Show that
L

R
has units of time.

2. A coil of inductance 2 H and resistance10 Ω are in a series circuit with an open key and a cell of

constant 100 V with negligible resistance. At time t = 0, the key is closed. Find

(a) the time constant of the circuit.

(b) the maximum steady current in the circuit.

(c) the current in the circuit at t = 1s.

3. In the simple L-R circuit, can the emf induced across the inductor ever be greater than the emf of

the battery used to produce the current?
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27.9 Oscillations in L-C Circuit
If a charged capacitor C is short-circuited through an inductor L, the charge and current in the circuit

start oscillating simple harmonically. If the resistance of the circuit is zero, no energy is dissipated as

heat. We also assume an idealized situation in which energy is not radiated away from the circuit.

With these idealizations-zero resistance and no radiation, the oscillations in the circuit persist

indefinitely and the energy is transferred from the capacitor’s electric field to the inductor’s magnetic

field and back. The total energy associated with the circuit is constant. This is analogous to the

transfer of energy in an oscillating mechanical system from potential energy to kinetic energy and

back, with constant total energy. Later, we will see that this analogy goes much further.

Let us now derive an equation for the oscillations in an L-C circuit.

]

Refer figure (a) A capacitor is charged to a PD, V q C0 0=
Here, q0 is the maximum charge on the capacitor. At time t =0, it is connected to an inductor through

a switch S. At time t =0, switch S is closed.

Refer figure (b) When the switch is closed, the capacitor starts discharging. Let at time t charge on

the capacitor is q q( )< 0 and since, it is further decreasing there is a current i in the circuit in the

direction shown in figure. Later we will see that, as the charge is oscillating there may be a situation

when q will be increasing, but in that case direction of current is also reversed and the equation

remains unchanged.

The potential difference across capacitor = potential difference across inductor, or

V V V Vb a c d– –=

∴
q

C
L

di

dt
= 





…(i)

Now, as the charge is decreasing, i
dq

dt
= 





–

or
di

dt

d q

dt
= –

2

2

Substituting in Eq. (i), we get
q

C
L

d q

dt
=









–

2

2

or
d q

dt LC
q

2

2

1
= 





– …(ii)
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This is the standard equation of simple harmonic motion
d x

dt
x

2

2

2=








– .ω

Here, ω =
1

LC
…(iii)

The general solution of Eq. (ii), is q q t= ± φ0 cos ( )ω
For example in our case φ =0 as q q= 0 at t =0.

Hence, q q t= 0 cos ω …(iv)

Thus, we can say that charge in the circuit oscillates simple harmonically with angular frequency
given by Eq. (iii). Thus,

ω
ω
π π

= = =
1

2

1

2LC
f

LC
, and T

f
LC= =

1
2π

The oscillations of the L-C circuit are an electromagnetic analog to the mechanical oscillations of a

block-spring system.

Table below shows a comparison of oscillations of a mass-spring system and an L-C circuit.

Table 27.1

S.No. Mass spring system Inductor-capacitor circuit

1. Displacement ( )x Charge (q)

2. Velocity ( )v Current (i)

3. Acceleration ( )a Rate of change of current
di

dt







4. d x

dt
x

2

2

2= – ,ω where ω = k

m

d q

dt
q

2

2

2= – ,ω where ω = 1

LC

5. x A t= ± φsin ( )ω or x A t= ± φcos ( )ω q q t= ± φ0 sin ( )ω or q q t= ± φ0 cos ( )ω

6. v
dx

dt
A x= = ω 2 2– i

dq

dt
q q= = ω 0

2 2–

7. a
dv

dt
x= = – ω2 Rate of change of current = =di

dt
q– ω2

8. Kinetic energy = 1

2

2mv Magnetic energy = 1

2

2Li

9. Potential energy = 1

2

2kx Potential energy = 1

2

2q

C

10. 1

2

1

2

2 2mv kx+ = =constant
1

2

2kA = 1

2

2mvmax
1

2

1

2

2
2

Li
q

C
+ = constant = 1

2
0
2q

C
= 1

2

2Limax

11. | |maxv A= ω i qmax = 0ω

12 | |maxa A= ω2 di

dt
q





=
max

ω2
0

13. 1

k
C

14. m L

490 � Electricity and Magnetism



A graphical description of the energy transfer between the inductor and the capacitor in an L-C circuit

is shown in the figure. The right side of the figure shows the analogous energy transfer in the

oscillating block-spring system.

Note In L-C oscillations, q, i and
di

dt
all oscillate simple harmonically with same angular frequency ω. But the

phase difference between q and i or between i and
di

dt
is

π
2

, while that between i and
di

dt
is π. Their

amplitudes are q q0 0, ω and ω2
0q respectively. So, now suppose

q q t= 0 cos ,ω then

i
dq

dt
q t= = – sin0ω ω and

di

dt
q t= – cos0

2ω ω
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Similarly, potential energy across capacitor ( )UC and across inductor ( )UL also oscillate with double the

frequency 2ω but not simple harmonically. The different graphs are as shown in Fig. 27.52.

V Example 27.23 A capacitor of capacitance 25 µF is charged to 300 V . It is then
connected across a 10 mH inductor. The resistance in the circuit is negligible.

(a) Find the frequency of oscillation of the circuit.

(b) Find the potential difference across capacitor and magnitude of circuit current

1.2 ms after the inductor and capacitor are connected.

(c) Find the magnetic energy and electric energy at t = 0 and t ms= 1.2 .

Solution (a) The frequency of oscillation of the circuit is

f
LC

= 1

2π
Substituting the given values, we have

f =
× ×

1

2 10 10 25 103 6π ( ) ( )– –
= 318.3 Hz Ans.

(b) Charge across the capacitor at time t will be

q q t= 0 cos ω and i q t= – sin0ω ω
Here, q CV0 0

6 325 10 300 10= = × = ×( ) ( )– –7.5 C

Now, charge in the capacitor after t = ×1.2 s10 3– is

q = × × ×( ) cos ( ) ( )– –7.5 318.3 1.2 C10 2 103 3π

= ×– –5.53 C10 3

∴ PD across capacitor, V
q

C
= = ×

×
=| | –

–

5.53
221.2 volt

10

25 10

3

6
Ans.

The magnitude of current in the circuit at t = ×1.2 s10 3– is

| | sini q t= 0ω ω
= × × ×( ) ( ) ( ) sin ( ( )– –7.5 318.3 318.3) 1.2 A10 2 2 103 3π π

= 10.13 A Ans.
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(c) At t = 0 Current in the circuit is zero.

Hence,UL = 0

Charge in the capacitor is maximum.

Hence, U
q

C
C = 1

2

0
2

or UC = × ×
×

1

2

10

25 10

3 2

6

( )

( )

–

–

7.5

= 1.125 J Ans.

∴ Total energy, E U UL C= + =1.125 J

At t 1.2 ms=

U LiL = 1

2

2

= ×1

2
10 10 3 2( ) ( )– 10.13

= 0.513 J

∴ U E UC L= =– –1.125 0.513

= 0.612 J Ans.

OtherwiseUC can be calculated as

U
q

C
C = 1

2

2

= × ×
×

1

2

10

25 10

3 2

6

( )

( )

–

–

5.53

= 0.612 J

1. Show that LC has units of time.

2. While comparing the L-C oscillations with the oscillations of spring-block system, with whom the

magnetic energy can be compared and why?

3. In an L-C circuit, L = 0.75 H and C = 18 µF,

(a) At the instant when the current in the inductor is changing at a rate of 3.40 A/s, what is the

charge on the capacitor?

(b) When the charge on the capacitor is 4.2 C× 10 4– , what is the induced emf in the inductor?

4. An L-C circuit consists of a 20.0 mH inductor and a 0.5 Fµ capacitor. If the maximum

instantaneous current is 0.1 A, what is the greatest potential difference across the capacitor?
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27.10 Induced Electric Field
When a conductor moves in a magnetic field, we can understand the induced emf on the basis of

magnetic forces on charges in the conductor as described in Art. 27.5. But an induced emf also occurs

when there is a changing flux through a stationary conductor. What is it that pushes the charges

around the circuit in this type of situation?

As an example, let’s consider the situation shown in figure. A conducting circular loop is placed in a

magnetic field which is directed perpendicular to the paper inwards. When the magnetic field

changes with time (suppose it increases with time) the magnetic flux φB also changes and according

to Faraday’s law the induced emf e
d

dt

B=
φ

– is produced in the loop. If the total resistance of the loop

is R, the induced current in the loop is given by

i
e

R
=

But what force makes the charges move around the loop? It can’t be the magnetic force, because the

charges are not moving in the magnetic field.

Actually, there is an induced electric field in the conductor caused by the changing magnetic flux.

This electric field has the following important properties:

1. It is non-conservative in nature. The line integral of E around a closed path is not zero. This line

integral is given by

E l⋅ =
φ

∫ d
d

dt

B
– …(i)

Note that this equation is valid only if the path around which we integrate is stationary.
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2. Because of symmetry, the electric field Ehas the same magnitude at every point on the circle and

is tangent to it at each point. The directions of Eat several points on the loop are shown in figure.

3. Being a non-conservative field, the concept of potential has no meaning for such a field.

4. This field is different from the electrostatic field produced by stationary charges (which is

conservative in nature).

5. The relation F E= q is still valid for this field.

6. This field can vary with time.

So, a changing magnetic field acts as a source of electric field of a sort that we cannot produce

with any static charge distribution. This may seen strange but its the way nature behaves.

Note 1. For symmetrical situations (as shown in figure) Eq. (i), in simplified form can be written as

El
d

dt
S

dB

dt
B= φ =

Here, l is the length of closed loop in which electric field is to be calculated and S is the area in which

magnetic field is changing.

2. Direction of electric field is the same as the direction of induced current.

V Example 27.24 The magnetic field at all points within the cylindrical region
whose cross-section is indicated in the accompanying figure start increasing at a
constant rate α T /s . Find the magnitude of electric field as a function of r, the
distance from the geometric centre of the region.

Solution For r R≤

Using El S
dB

dt
= or E r r( ) ( )2 2π π α=

∴ E
r= α
2
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∴ E r∝ , i.e. E r- graph is a straight line passing through origin.

At r R E
R= =,

α
2

For r R≥

Using El S
dB

dt
= ,

∴ E r R( ) ( ) ( )2 2π π α=

∴ E
R

r
= α 2

2

∴ E
r

∝ 1
, i.e. E-r graph is a rectangular hyperbola.

The E-r graph is as shown in figure.

The direction of electric field is shown in above figure.

V Example 27.25 A long thin solenoid has 900 turns/metre and radius 2.50 cm.
The current in the solenoid is increasing at a uniform rate of 60 A s/ . What is the
magnitude of the induced electric field at a point?

(a) 0.5 cm from the axis of the solenoid.

(b) 1.0 cm from the axis of the solenoid.

Solution Q B ni= µ 0

∴ dB

dt
n

di

dt
= µ 0

= × −( ) ( ) ( )4 10 900 607π

= 0.068 T/s
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Using the result of electric field derived in above problem (as both points lie inside the solenoid).

E
r dB

dt
= 



2

(a) E = ×









−0.5 10
0.068

2

2
( ) = × −1.7 10 V/m4

(b) E = × −( )
( )

1.0 10
0.068

2

2
= × −3.4 10 V/m4

1. A long solenoid of cross-sectional area 5.0 cm2 is wound with 25 turns of wire per centimetre. It

is placed in the middle of a closely wrapped coil of 10 turns and radius 25 cm as shown.

(a) What is the emf induced in the coil when the current through the solenoid is decreasing at a

rate –0.20 A/s?

(b) What is the electric field induced in the coil?

2. For the situation described in figure, the magnetic field changes with time according to

B t t= +( –2.00 4.00 0.8 T3 2 ) and r R2 2= =5.0 cm

(a) Calculate the force on an electron located at P2 at t = 2.00 s

(b) What are the magnitude and direction of the electric field at P1 when t = 3.00 s and

r1 = 0.02 m.

Hint : For the direction, see whether the field is increasing or decreasing at given times.
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Final Touch Points

1. Eddy currents When a changing magnetic flux is applied to a piece of conducting material,

circulating currents called eddy currents are induced in the material. These eddy currents often have

large magnitudes and heat up the conductor.

When a metal plate is allowed to swing through a strong magnetic field, then in entering or leaving the

field the eddy currents are set up in the plate which opposes the motion as shown in figure. The

kinetic energy dissipates in the form of heat. The slowing down of the plate is called the

electromagnetic damping.

The electromagnetic damping is used to damp the oscillations of a galvanometer coil or chemical

balance and in braking electric trains. Otherwise, the eddy currents are often undesirable. To reduce

the eddy currents some slots are cut into moving metallic parts of machinery. These slots intercept

the conducting paths and decreases the magnitudes of the induced currents.

2. Back EMF of Motors An electric motor converts electrical energy into mechanical energy and is

based on the fact that a current carrying coil in a uniform magnetic field experiences a torque. As the

coil rotates in the magnetic field, the flux linked with the rotating coil will change and hence, an emf

called back emf is  produced in the coil.

When the motor is first turned on, the coil is at rest and so there is no back emf. The ‘start up’ current

can be quite large. To reduce ‘start up’ current a resistance called ‘starter’ is put in series with the

motor for a short period when the motor is started. As the rotation rate increases the back emf

increases and hence, the current reduces.

3. Electric Generator or Dynamo A dynamo converts mechanical energy (rotational kinetic energy)

into electrical energy. It consists of a coil rotating in a magnetic field. Due to rotation of the coil

magnetic flux linked with it changes, so an emf is induced in the coil.

Suppose at time t = 0, plane of coil is perpendicular to the magnetic field.
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The flux linked with it at any time t will be given by

φ =NBA tcos ω (N = number of turns in the coil)

∴ e
d

dt
NBA t= φ =– sinω ω

or e e t=
0

sin ω
where, e NBA

0
= ω

4. Transformer It is a device which is either used to increase or decrease the voltage in AC circuits

through mutual induction. A transformer consists of two coils wound on the same core.

The coil connected to input is called primary while the other connected to output is called secondary

coil. An alternating current passing through the primary creates a continuously changing flux through

the core. This changing flux induces an alternating emf in the secondary.

As magnetic lines of force are closed curves, the flux per turn of primary must be equal to flux per turn

of the secondary. Therefore,

φ = φP

P

S

SN N

or

1 1

N

d

dt N

d

dtP

P

S

S⋅ φ = ⋅ φ
as e

d

dt
∝ φ





∴ e

e

N

N

S

P

S

P

=

In an ideal transformer, there is no loss of power. Hence,

ei = constant

∴ e

e

N

N

i

i

S

P

S

P

P

S

= =

Regarding a transformer, the following are few important points.

(i) In step-up transformer, N NS P> . It increases voltage and reduces current

(ii) In step-down transformer, N NP S> . It increases current and reduces voltage

(iii) It works only on AC

(iv) A transformer cannot increase (or decrease) voltage and current simultaneously. As,

ei = constant

(v) Some power is always lost due to eddy currents, hysteresis, etc.
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TYPED PROBLEMS

Type 1. Based on Faraday’s and Lenz’s law

Concept

Problems of induced emf or induced current can be solved by the following two methods.

Method 1 Magnitudes are given by

| |e N
d

dt

B=
φ


 


 and | |

| |
i

e

R
=

Direction is given by Lenz’s law.

Method 2 Magnitudes are given by

| | | |e Bvl= or | |e
B l= ω 2

2
and | |

| |
i

e

R
=

Direction is given by right hand rule.

Note In the first method, we have to first find the magnetic flux passing through the loop and then differentiate it

with respect to time. Second method is simple but it can be applied if and only if some conductor is either in

translational or rotational motion.

V Example 1 Current in a long current carrying wire is

I t= 2

A conducting loop is placed to the right of this wire. Find

(a) magnetic flux φB passing through the loop.

(b) induced emf| |e produced in the loop.

(c) if total resistance of the loop is R, then find induced current

Iin in the loop.

Solution Here, no conductor is in motion. So, we can apply only method-1. Further, magnetic

field of straight wire is non-uniform. Therefore, magnetic flux can be obtained by integration.

Solved Examples

I t= 2 c

ba

I

x

ba

x

x
x
x
x

c
dx



(a) At a distance x from the straight wire, magnetic field is

B
I

x
= µ

π
0

2
[ ]in direction⊗

Let us take a small strip of width dx.

∴ Area of this strip is

dS c dx= ( )

Now, dS can also be assumed inwards. Or, angle between B and dS may be assumed to be 0°.
Therefore, small magnetic flux passing through the loop is

d BdSBφ = °cos 0

= µ
π
0

2

I

x
cdx

Total magnetic flux is

φ = φ
=

= +

∫B B
x a

x a b
d

= 





+

∫
µ

π
0

2

Ic dx

xa

a b

= +





µ
π

0

2

Ic a b

a
ln

Substituting the values of I, we get

φ = + 



B

ct a b

a

µ
π
0 ln Ans.

(b) | | lne
d

dt

d

dt

ct a b

a

B= φ

 


 = +











µ
π
0

= +





µ
π
0c a b

a
ln Ans.

(c) Induced current,

I
e

R

c

R

a b

a
in = = +





| |
ln

µ
π

0

Note The main current I t( )= 2 is increasing with time. Hence, ⊗ magnetic field passing through the loop will also

increase. So, induced current Iin will produce magnetic field. Or, induced current is anti-clockwise.

V Example 2 A constant current I flows through a long straight wire as shown in

figure. A square loop starts moving towards right with a constant speed v.

(a) Find induced emf produced in the loop as a function of x.

(b) If total resistance of the loop is R, then find induced current in the loop.
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Note In this problem, loop is in motion therefore both methods can be applied.

Solution Method 1

(a) Using the result of magnetic flux obtained in Example-1, we have

φ = +



B

Ic a b

a

µ
π

0

2
ln

Here, a x b c a= = =,

Substituting the values, we get

φ = +



B

Ia x a

x

µ
π

0

2
ln

= +





µ
π

0

2
1

Ia a

x
ln

Now, | |e
d

dt

Ia x

x a

a

x

dx

dt

B= φ =
+







 





µ
π

0
22

Putting
dx

dt
v= , we have

| |
( )

e
Ia

x x a
v=

+
µ

π
0

2

2
Ans.

(b) Induced current,

I
e

R

Ia v

Rx x a
in = =

+
| |

( )

µ
π

0
2

2
Ans.

Note Near the wire (towards right) value of ⊗ magnetic field is high. So, the loop is moving from higher magnetic

field to lower magnetic field. or, ⊗ magnetic field passing through the loop is decreasing. Hence, induced

current will produce ⊗ magnetic field or it should be clockwise..

Method 2

e B vl
I

x
va1 1

0

2
= = µ

π

e B vl
I

x a
va2 2

0

2
= =

+
µ
π

e e1 2>

∴ e e e
Iva

x x a
net = − = −

+






1 2

0

2

1 1µ
π

=
+

µ
π

0
2

2

Iva

x x a( )

This is the same result as was obtained in Method 1.
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V Example 3 A conducting circular ring is rotated with angular

velocity ω about point A as shown in figure. Radius of ring is a.

Find

(a) potential difference between points A and C

(b) potential difference between the points A and D.

Solution Here, the loop is rotating. So, we can applying e
B l= ω 2

2

(a)

Using right hand rule, we can see that

V VC A>

∴ V V
B l B a

B aC A− = = =ω ω ω
2 2

2

2

2

2
2

( )
Ans.

(b)

Using right hand rule, we can see that

V VD A>

∴ V V
B l B a

B aD A− = = =ω ω ω
2 2

2

2

2

2

( )
Ans.

Type 2. Based on potential difference across an inductor

V Example 4 Two different coils have self-inductances L mH1 8= and L2 2= mH.

The current in one coil is increased at a constant rate. The current in the second

coil is also increased at the same constant rate. At a certain instant of time, the

power given to the two coils is the same. At that time, the current, the induced

voltage and the energy stored in the first coil are i1, V1 and W1respectively.

Corresponding values for the second coil at the same instant are i2 , V2 and W2

respectively. Then, (JEE 1994)

(a)
i

i

1

2

1

4
= (b)

i

i

1

2

4=

(c)
W

W

1

2

1

4
= (d)

V

V

1

2

4=
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Solution Potential difference across an inductor :

V L∝ , if rate of change of current is constant V L
di

dt
= −





∴ V

V

L

L

2

1

2

1

2

8

1

4
= = =

or
V

V

1

2

4=

Power given to the two coils is same, i.e.

V i V i1 1 2 2=

or
i

i

V

V

1

2

2

1

1

4
= =

Energy stored, W Li= 1

2

2

∴ W

W

L

L

i

i

2

1

2

1

2

1

2

21

4
4=















 = 





( )

or
W

W

1

2

1

4
=

∴ The correct options are (a), (c) and (d).

V Example 5 In the figure shown, i e At
1

210= – , i A2 4= and V e VC
t= 3 2– .

Determine (JEE 1992)

(a) iL and VL (b) Vac, Vab and Vcd .

Solution (a) Charge stored in the capacitor at time t,

q CVC=
= ( ) ( )–2 3 2e t

= 6 2e t– C

∴ i
dq

dt
ec

t= = – –12 2 A

(Direction of current is from b to O)

Applying junction rule at O,

i i i iL c= + +1 2 = +10 4 122 2e et t– ––

= ( – )–4 2 2e t A

= +[ ( – )]–2 2 1 2e t A Ans.
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iL versus time graph is as shown in figure.

iL increases from 2 A to 4 A exponentially.

V V L
di

dt
L Od

L= = = ( ) ( – )–4 4 2 2d

dt
e t

= 16 2e t– V Ans.

VL versus time graph is as shown in figure.

VL decreases exponentially from 16 V to 0.

(b) V V Vac a c= –

V i R i R Va c– 1 1 2 2+ =
∴ V V V i R i Ra c ac– –= = 1 1 2 2

Substituting the values, we have

V eac
t= ( ) ( ) – ( ) ( )–10 2 4 32

V eac
t= ( – )–20 122 V

At t = 0, Vac = 8 V and at t = ∞, Vac = – 12V

Therefore, Vac decreases exponentially from 8 V to –12 V.

V V – V
ab a b

=
V i R V Va C b– 1 1 + =

∴ V V V i R Va b ab C– –= = 1 1

Substituting the values, we have

V e eab
t t= ( ) ( ) –– –10 2 32 2

or V eab
t= 17 2– V Ans.

Thus, Vab decreases exponentially from 17 V to 0.
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Vab versus t graph is shown in figure.

V V – V
cd c d

=
V i R V Vc L d– –2 2 =

∴ V V V i R Vc d cd L– = = +2 2

Substituting the values, we have

V ecd
t= +( ) ( ) –4 3 16 2

or V ecd
t= +( )–12 16 2 V Ans.

At t = 0, Vcd = 28 V and at t = ∞, Vcd = 12 V

i.e. Vcd decreases exponentially from 28 V to 12 V.

Vcd versus t graph is shown in figure.

Type 3. Based on L R- circuit

Concept

At time t = 0, when there is zero current in the circuit, an inductor offers infinite resistance
and at t = ∞, when steady state is reached an ideal inductor (of zero resistance) offers zero
resistance.

Thus, in the circuit shown, if switch S is closed at time t = 0, then

i2 0=

and i i
E

R R
= =

+1
1 2

at t = 0

as initially the inductor offers infinite resistance and at t = ∞,

i1 0= , while i i
E

R
= =2

1

as in steady state the inductor offers zero resistance.

V Example 6 For the circuit shown in figure, E V= 50 ,

R1 10= Ω, R2 20= Ω, R3 30= Ω and L mH= 2.0 . Find

the current through R1 and R2 .

(a) Immediately after switch S is closed.

(b) A long time after S is closed.

(c) Immediately after S is reopened.

(d) A long time after S is reopened.
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Solution (a) Resistance offered by inductor immediately after switch is closed will be infinite.

Therefore, current through R3 will be zero and

current through R1 = current through R
E

R R
2

1 2

=
+

=
+

=50

10 20

5

3
A Ans.

(b) After long time of closing the switch, resistance offered by inductor will be zero.

In that case R2 and R3 are in parallel, and the resultant of these two is then in series with R1.
Hence,

R R
R R

R R
net = +

+1
2 3

2 3

= +
+

=10
20 30

20 30
22

( ) ( ) Ω

Current through the battery (or through R1)

= =E

Rnet

50

22
A Ans.

This current will distribute in R2 and R3 in inverse ratio of resistance. Hence,

Current through R
R

R R
2

3

2 3

50

22
= 



 +









= 



 +







 =50

22

30

30 20

15

11
A Ans.

(c) Immediately after switch is reopened, the current through R1 will become zero.

But current through R2 will be equal to the steady state current through R3 , which is equal to,

50

22

15

11
–







=A 0.91 A Ans.

(d) A long after S is reopened, current through all resistors will be zero.

V Example 7 An inductor of inductance L = 400 mH and resistors of resistances

R1 2= Ω and R2 2= Ω are connected to a battery of emf E =12 V as shown in the

figure. The internal resistance of the battery is negligible. The switch S is closed

at time t = 0.

What is the potential drop across L as a function of time? After the steady state

is reached, the switch is opened. What is the direction and the magnitude of

current through R1 as a function of time? (JEE 2001)

Solution (a) Given, R R1 2 2= = Ω, E =12 V and L = =400 04mH H. .

Two parts of the circuit are in parallel with the applied battery.
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E

R1

L

R2S



So, the given circuit can be broken as :

Now refer Fig. (b)

This is a simple L-R circuit, whose time constant

τL L R= = =/ 2
2

0.4
0.2 s

and steady state current

i
E

R
0

2

12

2
6= = = A

Therefore, if switch S is closed at time t = 0, then current in the circuit at any time t will be
given by

i t i e t L( ) ( )/= − −
0 1 τ

i t e t( ) ( )/ .= − −6 1 0 2

= − =−6 1 5( )e it (say)

Therefore, potential drop across L at any time t is

V L
di

dt
L e t=


 


 = −( )30 5 = −( . )( )04 30 5e t or V e t= −12 5 volt

(b) The steady state current in L or R2 is

i0 6= A

Now, as soon as the switch is opened, current in R1 is reduced to zero immediately. But in L and
R2 it decreases exponentially. The situation is as follows :
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V
V
V
V

S

V
V
V
V

EE

S

+

L

(a) (b)

L

R1

R1

S

R2

R2

E

V
V
V
V

E

R2

L

V
V
V
V

V
V
V
V

V
V
V
V

6A

6A

i = 0

V
V
V
V

R2

L

V
V
V
V

R1

i

t t=t

S

= 0
is open

(d) (e)

Steady state condition

(c)

i0R1



Refer figure (e)

Time constant of this circuit would be

τL

L

R R
′ =

+1 2

=
+

=04

2 2

.

( )
0.1 s

∴ Current through R1 at any time t is

i i e et L t= =− ′ −
0 6 01/ / .τ

or i e t= −6 10 A

Direction of current in R1 is as shown in figure or clockwise.

V Example 8 A solenoid has an inductance of 10 H and a resistance of 2 Ω. It is

connected to a 10 V battery. How long will it take for the magnetic energy to

reach 1/4 of its maximum value? (JEE 1996)

Solution U Li= 1

2

2, i.e. U i∝ 2

U will reach
1

4
th of its maximum value when current is reached half of its maximum value. In

L-R circuit, equation of current growth is written as

i i e t L= − −
0 1( )/ τ

Here, i0 = Maximum value of current

τL = Time constant = L R/

τL =
10

2
5

H
s

Ω
=

Therefore, i i i e t= = − −
0 0

52 1/ ( )/

or
1

2
1 5= − −e t/ or e t− =/5 1

2

or − = 





t / ln5
1

2
or t / ln5 2= =( ) 0.693

∴ t = ( )( . )5 0693 or t =3465. s

V Example 9 A circuit containing a two position switch S is shown in figure.

(a) The switch S is in position 1. Find the potential difference V VA B− and the rate of

production of joule heat in R1.

(b) If now the switch S is put in position 2 at t = 0. Find

(i) steady current in R4 and (ii) the time when current in R4 is half the steady value.

Also calculate the energy stored in the inductor L at that time.
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R4

R5

R3

R1

S

1

2

2

2

A B

E1

12 V

3 V

C

R2

2

E2

10 mH

3
L

2 Fµ

Ω

Ω Ω

Ω Ω1



Solution (a) In steady state, no current will flow through capacitor.

Applying Kirchhoff’s second law in loop 1,

− + − + =2 2 12 02 1 2i i i( )

∴ 2 4 121 2i i− = −
or i i1 22 6− = − …(i)

Applying Kirchhoff’s second law in loop 2,

− − − + − =12 2 3 2 01 2 1( )i i i

∴ 4 2 91 2i i− = − …(ii)

Solving Eqs. (i) and (ii), we get

i2 = 2.5 A and i1 1= − A

Now, V i VA B+ − =3 2 1 or V V iA B− = −2 31

= − − = −2 1 3 5( ) V

P i i RR1 1 2
2

1
21 2= − = − −( ) ( ) ( )2.5

= 24.5 W

(b) In position 2 Circuit is as below

Steady current in R4,

i0

3

3 2
=

+
= 0.6 A

Time when current in R4 is half the steady value,

i i e t L= − −
0 1( )/ τ

i i= 0 2/ at t t= 1 2/ , where

t
L

R
L1 2 2 2/ (ln ) ln ( )= =τ = × −( )

ln ( )
10 10

5
2

3

= × −1.386 10 3 s

U Li= = × −1

2

1

2
10 102 3 2( ) (0.3)

= × −4.5 J10 4
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i1

1

2

i1 i2
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Ω

2 Fµ

2 Ω

2 Ω

2 Ω

1Ω

i1

i2

i2

3 V
2

10 mH

3

Ω

Ω



Type 4. Based on L-C oscillations

V Example 10 In an L-C circuit, L H= 3.3 and C pF= 840 . At t = 0, charge on the

capacitor is 105 µC and maximum. Compute the following quantities at t ms= 2.0 :

(a) The energy stored in the capacitor.

(b) The total energy in the circuit,

(c) The energy stored in the inductor.

Solution Given, L = 3.3 H , C = ×840 10 12– F and q0
6105 10= × – C

The angular frequency of L-C oscillations is

ω = 1

LC
=

× ×

1

840 10 123.3 –

= ×1.9 rad s104 /

Charge stored in the capacitor at time t would be

q q t= 0 cos ω
(a) At t = ×2 10 3– s,

q = × × ×( ) cos [ ] [ ]– –105 10 10 2 106 4 31.9

= ×100.3 C10 6–

∴ Energy stored in the capacitor,

U
q

C
C = 1

2

2

= ×
× ×

( )–

–

100.3 10

2 840 10

6 2

12

= 6.0 J Ans.

(b) Total energy in the circuit,

U
q

C
= 1

2

0
2

= ×
× ×

( )–

–

105 10

2 840 10

6 2

12

= 6.56 J Ans.

(c) Energy stored in inductor in the given time

= total energy in circuit – energy stored in capacitor

= ( – )6.56 6.0 J

= 0.56 J Ans.

V Example 11 An inductor of inductance 2.0 mH is connected across a charged

capacitor of capacitance 5.0 µF and the resulting L-C circuit is set oscillating at its

natural frequency. Let Q denotes the instantaneous charge on the capacitor and I

the current in the circuit. It is found that the maximum value of Q is200 µC.
(JEE 1998)

(a) When Q C= 100 µ , what is the value of| / |dI dt ?

(b) When Q C= 200 µ , what is the value of I?

(c) Find the maximum value of I.

(d) When I is equal to one-half of its maximum value, what is the value of| |Q ?
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Solution This  is a problem of L-C oscillations.

Charge stored in the capacitor oscillates simple harmonically as

Q Q t= ± φ)0 sin (ω

Here, Q0= maximum value of Q =200 µC = × −2 10 4 C

ω = 1

LC
=

× ×− −

1

2 10 50 103 6( )( . )
= 104s−1

Let at t = 0, Q Q= 0, then

Q t Q t( ) cos= 0 ω …(i)

I t
dQ

dt
Q t( ) sin= = − 0ω ω and …(ii)

dI t

dt
Q t

( )
cos= − 0

2ω ω …(iii)

(a) Q = 100µC

or
Q0

2
at cosωt = 1

2

or ω π
t =

3

At cosωt = 1

2
, from Eq. (iii) :

dI

dt



 


 = × 





− −( )( )2.0 C s10 10
1

2

4 4 1 2

dI

dt



 


 = 104 A /s

(b) Q = 200µC or Q0 when cos , ,ω ω πt t= =1 0 2i. e. …

At this time I t Q t( ) sin= − 0ω ω

or I t( ) = 0 (sin sin0 2 0° = =π )

(c) I t Q t( ) sin= − 0ω ω

∴ Maximum value of I is Q0 ω

I Qmax = 0 ω = × −( )( )2.0 10 104 4

Imax = 2.0 A

(d) From energy conservation,

1

2

1

2

1

2

2 2
2

LI LI
Q

C
max = +

or Q LC I I= −( )max
2 2

I
I= =max 1.0 A

2

∴ Q = × × −− −( . )( . )( )2 0 10 50 10 2 13 6 2 2

Q = × −3 10 4 C

or Q = × −1.732 10 4 C
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Type 5. Based on induced electric field

V Example 12 A uniform but time-varying magnetic field B(t) exists in a circular

region of radius a and is directed into the plane of the paper as shown. The

magnitude of the induced electric field at point P at a distance r from the centre

of the circular region (JEE 2000)

(a) is zero (b) decreases as 1/r (c) increases as r (d) decreases as 1 2/r

Solution E l⋅ = φ

 


∫ d

d

dt
= 


 


S

dB

dt
or E r a

dB

dt
( )2 2π π= 


 




For r a≥ ,

∴ E
a

r

dB

dt
= 


 




2

2

∴ Induced electric field ∝ 1 / r

For r a≤ ,

E r r
dB

dt
( )2 2π π= 


 


 or E

r dB

dt
= 


 




2
or E r∝

At r a= , E
a dB

dt
= 


 




2

Therefore, variation of E with r (distance from centre) will be as follows

∴ The correct option is (b).

V Example 13 The magnetic field B at all points within a

circular region of radius R is uniform in space and directed

into the plane of the page in figure. If the magnetic field is

increasing at a rate dB dt/ , what are the magnitude and

direction of the force on a stationary positive point charge q

located at points a, b and c? (Point a is a distance r above the

centre of the region, point b is a distance r to the right of the

centre, and point c is at the centre of the region.)
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E

r
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Solution Inside the circular region at distance r,

El
d

dt
S

dB

dt
= = 





φ

∴ E r r
dB

dt
( ) ( )2 2π π= ⋅

∴ E
r dB

dt
=

2

F qE
qr dB

dt
= =

2

At points a and b, distance from centre is r.

∴ F
qr dB

dt
=

2

At point C, distance r = 0

∴ F = 0

⊗ magnetic field is increasing. Hence, induced current in an imaginary loop passing through a
and b should produce umagnetic field. Hence, induced current through an imaginary circular

loop passing through a and b should be anti-clockwise. Force on positive charge is in the

direction of induced current. Hence, force at a is towards left and force at b is upwards.

Type 6. Based on motion of a wire in uniform magnetic field with other element like resistance,
capacitor or an inductor

Concept

A constant force F is applied on wire PQ of length l and mass m. There is an electrical

element X in the box as shown in figure. There are the following three different cases :

Case 1 If X is a resistance, then velocity of the wire increases exponentially.

Case 2 If X is a capacitor, then wire moves with a constant acceleration a ( / )< F m .

Case 3 If X is an inductor and instead of constant force F an initial velocity v0 is given to

the wire then the wire starts simple harmonic motion with v0 as the maximum velocity

( )= ωA at mean position.

V Example 14 In the above case if X is a resistance R, then find velocity of wire as

a function of time t.

Solution At time t suppose velocity of wire is v, then due to motional emf a current i flows in

the closed circuit in anti-clockwise direction.

i
e

R

Bvl

R
= =
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X

⊗ B

Q

F

P



Due to this current magnetic force will act on the wire in the direction shown in figure,

F ilB
B l

R
vm = =









2 2

F F F F
B l

R
v m

dv

dt
mnet = − = −







 =

2 2

∴ dv

F
B l

R
v

m
dt

v t

−








=∫ ∫2 20 0

1

Solving this equation, we get

v
FR

B l
e

B l

mR
t

= −
−

2 2
1

2 2

( )

Thus, velocity of the wire increases exponentially. v t- graph is as shown below.

V Example 15 If X is a capacitor C, then find the constant acceleration a of the

wire.

Solution At time t suppose velocity of wire is v. Then, due to motional emf e Bvl= capacitor
gets charged .

q CV C Bvl= = ( )

This charge is increasing as v will be increasing.

Hence, there will be a current in the circuit as shown in figure.

i
dq

dt
BlC

dv

dt
= = ( )
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FR
——
B l2 2

t

v

i

F, vFm
q

+

–

⊗ B
i

R F, vFm



or i BlC a= ( ) as
dv

dt
a=





Due to this current a magnetic force Fm will act in the direction shown in figure,

F ilB B l C am = = ( )2 2

Now,

F F Fmnet = −
or ma F B l C a= − ( )2 2

∴ a
F

m B l C
=

+ 2 2
Ans.

Now, we can see that this acceleration is constant but less than F m/ .

V Example 16 A pair of parallel horizontal conducting rails of negligible

resistance shorted at one end is fixed on a table. The distance between the rails is

L. A conducting massless rod of resistance R can slide on the rails frictionlessly.

The rod is tied to a massless string which passes over a pulley fixed to the edge of

the table. A mass m tied to the other end of the string hangs vertically. A constant

magnetic field B exists perpendicular to the table. If the system is released from

rest, calculate (JEE 1997)

(a) the terminal velocity achieved by the rod and

(b) the acceleration of the mass at the instant when the velocity of the rod is half the

terminal velocity.

Solution (a) Let v be the velocity of the wire (as well as block) at any instant of time t.

Motional emf, e BvL=

Motional current, i
e

r

BvL

R
= =

and magnetic force on the wire

F iLB
vB L

R
m = =

2 2

Net force on the system at this moment will be

F mg F mg
vB L

R
mnet = − = −

2 2

or ma mg
vB L

R
= −

2 2

a g
vB L

mR
= −

2 2

…(i)
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Velocity will acquire its terminal value, i.e. v vT= when

Fnet or acceleration a of the particle becomes zero.

Thus, 0
2 2

= −g
v B L

mR

T

or v
mgR

B L
T =

2 2

(b) When v
v mgR

B L

T= =
2 2 2 2

Then from Eq. (i), acceleration of the block,

a g
mgR

B L

B L

mR
g

g= − 











 = −

2 22 2

2 2

or a
g=
2

V Example 17 A loop is formed by two parallel conductors connected by a solenoid

with inductance L and a conducting rod of mass m which can freely (without

friction) slide over the conductors. The conductors are located in a horizontal

plane in a uniform vertical magnetic field B. The distance between the conductors

is l.

At the moment t = 0, the rod is imparted an initial velocity v0 directed to the

right. Find the law of its motion x (t) if the electric resistance of the loop is

negligible.

Solution Let at any instant of time, velocity of the rod is v towards right. The current in the

circuit is i. In the figure,

V V V Va b d c– –=

or L
di

dt
Bvl Bl

dx

dt
= = as v

dx

dt
=





i.e. Ldi Bldx=
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v0 x

m, l

vFm

a

b c

di



Integrating on both sides, we get

Li Blx=

or i
Bl

L
x= …(i)

Magnetic force on the rod at this instant is

F ilB
B l

L
xm = =

2 2

…(ii)

Since, this force is in opposite direction of v, so from Newton’s second law we can write

m
d x

dt

B l

L
x

2

2

2 2





 = –

or
d x

dt

B l

mL
x

2

2

2 2





 = –

Comparing this with equation of SHM,

d x

dt
x

2

2

2= – ω

We have, ω = Bl

mL

Therefore, the rod will oscillate simple harmonically with angular frequency ω = Bl

mL
. At time

t = 0, rod was at x = 0 and it was moving towards positive x-axis. Hence, x-t equation of the rod is

x A t= sinω …(iii)

To find A, we use the fact that at t = 0, v or
dx

dt
has a value v0. Hence,

dx

dt
v A t= = ω ωcos

or A vω = 0 (at t = 0)

or A
v= 0

ω
Substituting in Eq. (iii), we have

x
v

t= 0

ω
ωsin , where ω = Bl

mL
Ans.

Alternate method of finding A

At x A= , v = 0, i.e. whole of its kinetic energy is converted into magnetic energy. Thus,

1

2

1

2

2
0
2Li mv=

Substituting value of i from Eq. (i), with x A= , we have

L
Bl

L
A mv







=
2

0
2

or A
mL

Bl
v

v= =0
0

ω

as ω = Bl

mL
Ans.

518 � Electricity and Magnetism



V Example 18 A sensitive electronic device of resistance 175 Ω is to be connected

to a source of emf by a switch. The device is designed to operate with a current of

36 mA, but to avoid damage to the device, the current can rise to no more than

4.9 mA in the first 58 µs after the switch is closed. To protect the device it is

connected in series with an inductor.

(a) What emf must the source have?

(b) What inductance is required?

(c) What is the time constant?

Solution (a) Given, R = 175 Ω and peak value current

i0
336 10= × – A

Applied voltage, V i R= = × =0
3175 36 10( ) ( )– volt 6.3 V Ans.

(b) From the relation,

i i e t L= 0 1( – )– / τ

We have, ( ) ( ) [ – ]– /4.9 = 36 1 e t Lτ

or e t L– / –τ = =1
36

4.9
0.864

∴ t

Lτ
= =– ln ( )0.864 0.146

or
t

L R/
= 0.146

∴ Rt

L
= 0.146

or L
Rt= = ×

0.146 0.146

( ) ( )–175 58 10 6

= ×7.0 10 2– H Ans.

(c) Time constant of the circuit,

τL

L

R
= = ×7.0 10

175

2–

= ×4.0 10 4– Ans.

V Example 19 A conducting rod shown in figure of

mass m and length l moves on two frictionless

horizontal parallel rails in the presence of a uniform

magnetic field directed into the page. The rod is given

an initial velocity v0 to the right and is released at

t = 0. Find as a function of time,

(a) the velocity of the rod

(b) the induced current and

(c) the magnitude of the induced emf.

v0

a

b

Rl

Miscellaneous Examples



HOW TO PROCEED The initial velocity will produce an induced emf and hence, an

induced current in the circuit. The current carrying wire will now experience a

magnetic force ( )Fm in opposite direction of its velocity. The force will retard the

motion of the conductor. Thus,

Initial velocity → motional emf → induced current → magnetic force → retardation.

Solution (a) Let v be the velocity of the rod at time t.

Current in the circuit at this moment is

i
Bvl

R
= …(i)

From right hand rule, we can see that this current is in counterclockwise direction.

The magnetic force is,

F ilB
B l

R
vm = =– –

2 2

Here, negative sign denotes that the force is to the left and retards the motion. This is the only
horizontal force acting on the bar, and hence, Newton’s second law applied to motion in
horizontal direction gives

m
dv

dt
F

B l

R
vm= = –

2 2

∴ dv

v

B l

mR
dt=







–

2 2

Integrating this equation using the initial condition that,

v v= 0 at t = 0, we find that

dv

v

B l

mR
dt

v

v t

0

2 2

0∫ ∫= –

Solving this equation, we find that

v v e t= 0
– / τ …(ii) Ans.

where, τ = mR

B l2 2

This expression indicates that the velocity of the rod decreases exponentially with time under
the action of the magnetic retarding force.

(b) i
Bvl

R
=

Substituting the value of v from Eq. (ii), we get

i
Blv

R
e t= 0 – / τ Ans.

(c) e iR Blv e t= = 0
– / τ Ans.

i and e both decrease exponentially with time. v t- , i t- and e t- graphs are as shown in figure
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Alternate solution This problem can also be solved by energy conservation principle. Let at

some instant velocity of the rod is v. As no external force is present. Energy is dissipated in the

resistor at the cost of kinetic energy of the rod. Hence,

–
dK

dt







= power dissipated in the resistor

or –
d

dt
mv

e

R

1

2

2
2





=

or – mv
dv

dt

B l v

R







=
2 2 2

(as e Bvl= )

∴ dv

v

B l

mR
dt= –

2 2

∴ dv

v

B l

mR
dt
t

v

v
= ∫∫ –

2 2

00

or v v e t= 0
– / τ ,    where τ = mR

B l2 2

V Example 20 A wire loop enclosing a semicircle of radius R

is located on the boundary of a uniform magnetic field B. At

the moment t = 0, the loop is set into rotation with a constant

angular acceleration α about an axis O coinciding with a

line of vector B on the boundary. Find the emf induced in

the loop as a function of time. Draw the approximate plot of

this function. The arrow in the figure shows the emf

direction taken to be positive.

Solution θ α= 1

2

2t

∴ t = =2θ
α

time taken to rotate an angle θ

where, θ =0 to π, 2π to 3π, 4π to 5π etc.

⊗ magnetic field passing through the loop is increasing. Hence, current in the loop is

anti-clockwise or induced emf is negative. And for, θ π= to 2π, 3π to 4π, 5π to 6π etc.

⊗ magnetic field passing through the loop is decreasing. Hence, current in the loop is clockwise

or emf is positive.

So,

t1 = time taken to rotate an angle π π
α

= 2

t2 = time taken to rotate an angle 2
4π π
α

=

… … … … … …

tn = time taken to rotate an angle n
nπ π
α

= 2

Now, from 0 to t1 emf is negative

t1 to t2 emf is positive

t2 to t3 emf is again negative
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and so on.

Now, at time t, angle rotated is θ α= 1

2

2t

Area inside the field is

S R R= 





=( )π θ
π

θ2 2

2

1

2

or S R t= 1

4

2 2α

So, flux passing through the loop, φ = =BS BR t
1

4

2 2α

e
d

dt
BR t= φ = 1

2

2α

e t∝
i.e. e-t graph is a straight line passing through origin. e-t equation with sign can be written as

e BR tn= 





(– )1
1

2

2α Ans.

Here, n = …1 2 3, , is the number of half revolutions that the loop performs at the given

moment t.

The e-t graph is as shown in figure.

V Example 21 A uniform wire of resistance per unit length λ is bent into a

semicircle of radius a. The wire rotates with angular velocity ω in a vertical plane

about a horizontal axis passing through C. A uniform magnetic field B exists in

space in a direction perpendicular to paper inwards.

(a) Calculate potential difference between points A and D. Which point is at higher

potential?

(b) If points A and D are connected by a conducting wire of zero resistance, find the

potential difference between A and C.
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Solution (a) Length of straight wire AC is l a1 2
2

= 





sin
θ

Therefore, the motional emf (or potential difference) between points C and A is

V V V B l a BCA C A= = = 





– sin
1

2
2

2
1
2 2 2ω ω θ

…(i)

From right hand rule, we can see that V VC A>
Similarly, length of straight wire CD is

l a a2 2
2 2

2
2

= 





= 





sin – cos
π θ θ

Therefore, the PD between points C and D is

V V V B l a BCD C D= = = 





– cos
1

2
2

2
2
2 2 2ω ω θ

…(ii)

with V VC D>
Eq. (ii) –  Eq.(i) gives,

V V a BA D– cos – sin= 





2
2 2

2 2 2ω θ θ

= 2 2a Bω θcos Ans.

A is at higher potential.

(b) When A and D are connected from a wire current starts flowing in the circuit as shown in

figure :

Resistance between A and C is r1 = (length of arc AC) λ θλ= a

and between C and D is r2 = (length of arc CD) λ π θ λ= ( – ) a

In the figure, E a B1
2 22

2
= 





ω θ
sin and E a B2

2 22
2

= 





ω θ
cos

with E E2 1>
∴ Current in the circuit is

i
E E

r r

a B

a

aB=
+

= =2 1

1 2

22 2– cos cosω θ
π λ

ω θ
πλ
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and potential difference between points C and A is

V E ir a B
aB

aCA
′ = + = 





+ 



1 1

2 22
2

2ω θ ω θ
πλ

θλsin
cos

( )

= +





2
2

2 2a Bω θ θ
π

θsin cos Ans.

Note V ECA = 1 when no current flows through the circuit and V E irCA′ = +1 1 when a current i flows in the circuit.

V Example 22 A battery of emf E and of negligible internal resistance is connected

in an L-R circuit as shown in figure. The inductor has a piece of soft iron inside

it. When steady state is reached the piece of soft iron is abruptly pulled out

suddenly so that the inductance of the inductor decreases to nL with n < 1 with

battery remaining connected. Calculate

(a) current as a function of time assuming t = 0 at the instant when piece is pulled.

(b) the work done to pull out the piece.

(c) thermal power generated in the circuit as a function of time.

(d) power supplied by the battery as a function of time.

HOW TO PROCEED When the inductance of an inductor is abruptly changed, the flux

passing through it remains constant.

φ = constant

∴ Li = constant L
i

= φ





Solution (a) At time t = 0, steady state current in the circuit is i E R0 = / . Suddenly, L reduces

to nL ( )n < 1 , so current in the circuit at time t = 0 will increase to
i

n

E

nR

0 = . Let i be the current

at time t.

Applying Kirchhoff's loop rule, we have

E nL
di

dt
iR– –







= 0

∴ di

E iR nL
dt

–
= 1

∴ di

E iR nL
dt
t

i n

i

–/
= ∫∫

1

00
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Solving this equation, we get i i i
i

n
e t L= 



0 0

0– – – / τ Ans.

Here, i
E

R
0 =

and τL

nL

R
=

From the i-t equation, we get i
i

n
= 0 at t = 0 and i i= 0 at

t = ∞
The i-t graph is as shown in figure.

Note At t = 0, current in the circuit is
i

n
0 . Current in the circuit in steady state will be again i0. So, it will decrease

exponentially from
i

n
0 to i0. From the i-t graph, the equation can be formed without doing any calculation.

∴ i i
i

n
i e t L= + 



0

0
0– – / τ

(b) Work done to pull out the piece,

W U Uf i= – = 1

2

1

2

2 2L i L if f i i–

= 











1

2

1

2

2 2

( ) – ( )nL
E

nR
L

E

R

= 











1

2

1
1

2

L
E

R n
–

= 











1

2

1
2

L
E

R

n

n

–
Ans.

(c) Thermal power generated in the circuit as a function of time is

P i R1
2= Ans.

Here, i is the current calculated in part (a).

(d) Power supplied by the battery as a function of time is

P Ei2 = Ans.
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LEVEL 1

Assertion and Reason
Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true; but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false, but the Reason is true.

1. Assertion : A square loop is placed in x-y plane as shown in figure. Magnetic field in the

region is B k= − B x0
$ . The induced current in the loop is anti-clockwise.

Reason : If inward magnetic field from such a loop increases, then current should be
anti-clockwise.

2. Assertion : Magnetic field B (shown inwards) varies with time t as shown. At time t0 induced

current in the loop is clockwise.

Reason : If rate of change of magnetic flux from a coil is constant, charge should flow in the
coil at a constant rate.

3. Assertion : Electric field produced by a variable magnetic field can’t exert a force on a
charged particle.

Reason : This electric field is non-conservative in nature.

4. Assertion : Current flowing in the circuit is i t= −2 8

At t = 1 s, V Va b− = + 4 V

Reason : V Va b− is + 4 V all the time.

Exercises

x

y

t0
t

B

B

a b

2 H

i



5. Assertion : Angular frequency of L-C oscillations is 2 rad/s and maximum current in the
circuit is 1 A. Then, maximum rate of change of current should be 2 A s/ .

Reason :
dI

dt
I







=
max

max( )ω.

6. Assertion : A conducting equilateral loop abc is moved translationally with constant speed v

in uniform inward magnetic field B as shown. Then : V V V Va b b c− = − .

Reason : Point a is at higher potential than point b.

7. Assertion : Motional induced emf e Bvl= can be derived from the relation e
d

dt
= − φ

.

Reason : Lenz’s law is a consequence of law of conservation of energy.

8. Assertion : If some ferromagnetic substance is filled inside a solenoid, its coefficient of self
induction L will increase.

Reason : By increasing the current in a coil, its coefficient of self induction L can be
increased.

9. Assertion : In the circuit shown in figure, current in wire ab will become zero as soon as
switch is opened.

Reason : A resistance does not oppose increase or decrease of current through it.

10. Assertion : In parallel, current distributes in inverse ratio of inductance

i
L

∝ 1

Reason : In electrical circuits, an inductor can be treated as a resistor.

Objective Questions

1. The dimensions of self inductance are

(a) [ ]– –MLT A2 2 (b) [ ]ML T A2 1 2− −

(c) [ ]ML T A2 2 2− − (d) [ ]ML T A2 2 1− −

2. When the number of turns in the two circular coils closely wound are doubled (in both), their
mutual inductance becomes

(a) four times (b) two times

(c) remains same (d) sixteen times
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3. Two coils carrying current in opposite direction are placed co-axially with centres at some finite
separation. If they  are brought close to each other then, current flowing in them should

(a) decrease (b) increase

(c) remain same (d) become zero

4. A current carrying ring is placed in a horizontal plane. A charged particle is dropped along the
axis of the ring to fall under the influence of gravity

(a) the current in the ring may increase

(b) the current in the ring may decrease

(c) the velocity of the particle will increase till it reaches the centre of the ring

(d) the acceleration of the particle will decrease continuously till it reaches the centre of the ring

5. Identify the incorrect statement. Induced electric field

(a) is produced by varying magnetic field

(b) is non-conservative in nature

(c) cannot exist in a region not occupied by magnetic field

(d) None of the above

6. In the figure shown, Vab at t = 1 s is

(a) 30 V (b) – 30 V

(c) 20 V (d) – 20 V

7. Two coils have a mutual inductance of 0.005 H. The current changes in the first coil according
to equation I I t= 0 sinω , where I0 10= A and ω π= 100 rad/ s. The maximum value of emf (in
volt) in the second coil is

(a) 2π (b) 5π
(c) π (d) 4π

8. An inductance of 2 H carries a current of 2 A. To prevent sparking when the circuit is broken a
capacitor of 4 µF is connected across the inductance. The voltage rating of the capacitor is of the
order of

(a) 103 V (b) 10 V

(c) 105 V (d) 106 V

9. A conducting rod is rotated about one end in a plane perpendicular to a uniform magnetic field
with constant angular velocity. The correct graph between the induced emf (e) across the rod
and time (t) is

(a) (b)

(c) (d)
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10. A magnet is taken towards a conducting ring in such a way that a constant current of 10 mA is

induced in it. The total resistance of the ring is 0.5 Ω. In 5 s, the magnetic flux through the ring

changes by

(a) 0.25 mWb (b) 25 mWb

(c) 50 mWb (d) 15 mWb

11. A uniform but increasing with time magnetic field exists in a cylindrical

region. The direction of force on an electron at P is

(a) towards right

(b) towards left

(c) into the plane of paper

(d) out of the plane of paper

12. A magnetic flux through a stationary loop with a resistance R varies during the time interval τ
as φ = at ( )τ − t . Find the amount of heat generated in the  loop during that time

(a)
a

R

τ2

2
(b)

a

R

2 3

3

τ

(c)
2

3

2 3a

R

τ
(d)

a

R

τ
3

13. The current i in an induction coil varies with time t according to the graph shown in the figure.

Which of the following graphs shows the induced emf ( )ε in the coil with time?

(a) (b) (c) (d)

14. The network shown in the figure is a part of complete circuit. What is the potential difference

V VB A− when the current I is 5 A and is decreasing at a rate of 103 A/s?

(a) 5 V (b) 10 V

(c) 15 V (d) 20 V

15. In the given branch AB of a circuit a current, I t= +( )10 5 A is flowing, where t is time in

second. At t = 0, the potential difference between points A Band ( )V VA B− is

(a) 15 V (b) – 5 V

(c) – 15 V (d) 5 V
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16. In an LC circuit, the capacitor has maximum charge q0. The value of
dI

dt







max

is

(a)
q

LC

0 (b)
q

LC

0

(c)
q

LC

0 1− (d)
q

LC

0 1+

17. An alternating current I in an inductance coil varies with time t according to
the graph as shown :

Which one of the following graphs gives the variation of voltage with time?

(a) (b) (c) (d)

18. A loop of area 1 2m is placed in a magnetic field B = 2T, such that plane of the loop is parallel to
the magnetic field. If the loop is rotated by 180°, the amount of net charge passing through any
point of loop, if its resistance is 10 Ω, is

(a) 0.4 C (b) 0.2 C

(c) 0.8 C (d) 0 C

19. A rectangular loop of sides a band is placed in xy-plane. A uniform but time varying magnetic

field of strength B i j k= + +20 10 502t t$ $ $ is present in the region. The magnitude of induced emf

in the loop at time t is

(a) 20 20+ t (b) 20

(c) 20 t (d) zero

20. The armature of a DC motor has 20 Ω resistance. It draws a current of 1.5 A when run by
200 V DC supply. The value of back emf induced in it will be

(a) 150 V (b) 170 V

(c) 180 V (d) 190 V

21. In a transformer, the output current and voltage are respectively 4 A and 20 V. If the ratio of
number of turns in the primary to secondary is 2 : 1, what is the input current and voltage?

(a) 2 A and 40 V (b) 8 A and 10 V

(c) 4 A and 10 V (d) 8 A and 40 V

22. When a loop moves towards a stationary magnet with speed v, the induced emf in the loop is E.
If the magnet also moves away from the loop with the same speed, then the emf induced in the
loop is

(a) E (b) 2E

(c)
E

2
(d) zero
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23. A short magnet is allowed to fall from rest along the axis of a horizontal conducting ring. The
distance fallen by the magnet in one second may be

(a) 5 m (b) 6 m

(c) 4 m (d) None of these

24. In figure, if the current i decreases at a rate α, then V VA B− is

(a) zero (b) −αL
(c) αL (d) No relation exists

25. A coil has an inductance of 50 mH and a resistance of 0.3 Ω. If a 12 V emf is applied across the
coil, the energy stored in the magnetic field after the current has built up to its steady state
value is

(a) 40 J (b) 40 mJ

(c) 20 J (d) 20 mJ

26. A constant voltage is applied to a series R-L circuit by closing the switch. The voltage across
inductor ( )L = 2 H is 20 V at t = 0 and drops to 5 V at 20 ms. The value of R in Ω is

(a) 100 2ln Ω (b) 100 1 2( ln )− Ω
(c) 100 4ln Ω (d) 100 1 4( ln )−

27. A coil of area 10 cm2 and 10 turns is in magnetic field directed perpendicular to the plane and

changing at a rate of 108 gauss/s. The resistance of coil is 20 Ω. The current in the coil will be

(a) 0.5 A (b) 5 10 3× − A (c) 0.05 A (d) 5 A

28. In figure, final value of current in 10 Ω resistor, when plug of key K is inserted is

(a)
3

10
A (b)

3

20
A (c)

3

11
A (d) zero

29. A circuit consists of a circular loop of radius R kept in the plane of paper and an
infinitely long current carrying wire kept perpendicular to the plane of paper
and passing through the centre of loop. The mutual inductance of wire and loop
will be

(a)
µ π0

2

R
(b) 0

(c) µ π0
2R (d)

µ0
2

2

R

30. A flat circular coil of n turns, area A and resistance R is placed in a uniform magnetic field B.
The plane of coil is initially perpendicular to B. When the coil is rotated through an angle of
180° about one of its diameter, a charge Q1 flows through the coil. When the same coil after
being brought to its initial position, is rotated through an angle of 360° about the same axis a
charge Q2 flows through it. Then, Q Q2 1/ is

(a) 1 (b) 2 (c) 1/2 (d) 0
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31. A small circular loop is suspended from an insulating thread. Another
coaxial circular loop carrying a current I and having radius much larger
than the first loop starts moving towards the smaller loop. The smaller
loop will

(a) be attracted towards the bigger loop

(b) be repelled by the bigger loop

(c) experience no force

(d) All of the above

32. In the circuit shown in figure, L = 10H,R E= =5 15Ω , V. The switchS is
closed at t = 0. At t = 2 s, the current in the circuit is

(a) 3 1
1−



e

A (b) 3 1
1
2

−



e

A

(c) 3
1

e







A (d) 3
1
2e







A

33. In the figure shown, a T-shaped conductor moves with constant angular
velocity ω in a plane perpendicular to uniform magnetic field B. The potential
difference V VA B− is

(a) zero (b)
1

2

2B lω

(c) 2 2B lω (d) B lω 2

34. A conducting rod of length l falls vertically under gravity in a region of
uniform magnetic field B. The field vectors are inclined at an angle θ with
the horizontal as shown in figure. If the instantaneous velocity of the rod is
v, the induced emf in the rod ab is

(a) Blv

(b) Blv cos θ
(c) Blv sin θ
(d) zero

35. A semi-circular conducting ring acb of radius R moves with constant speed
v in a plane perpendicular to uniform magnetic field B as shown in figure.
Identify the correct statement.

(a) V V BRva c− = (b) V V BRvb c− =

(c) V Va b− =0 (d) None of these

36. The ring B is coaxial with a solenoid A as shown in figure. As the switch S is

closed at t = 0, the ring B

(a) is attracted towards A

(b) is repelled by A

(c) is initially repelled and then attracted

(d) is initially attracted and then repelled

37. If the instantaneous magnetic flux and induced emf produced in a coil is φand E respectively,

then according to Faraday’s law of electromagnetic induction

(a) E must be zero if φ =0 (b) E ≠ 0 if φ =0

(c) E ≠ 0 but φmay or may not be zero (d) E = 0 then φmust be zero
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38. The figure shows a conducting ring of radius R. A uniform steady magnetic field B lies
perpendicular to the plane of the ring in a circular region of radius r R( )< . If the resistance per
unit length of the ring is λ , then the current induced in the ring when its radius gets doubled is

(a)
BR

λ
(b)

2BR

λ

(c) zero (d)
Br

R

2

4 λ

39. A metallic rod of length l is hinged at the point M and is rotating about an axis perpendicular to

the plane of paper with a constant angular velocityω. A uniform magnetic field of intensity B is

acting in the region (as shown in the figure) parallel to the plane of paper. The potential

difference between the points M Nand

(a) is always zero (b) varies between
1

2

2B lω to 0

(c) is always
1

2

2B lω (d) is always B lω 2

Subjective Questions

Note You can take approximations in the answers.

1. An inductor is connected to a battery through a switch. The emf induced in the inductor is

much larger when the switch is opened as compared to the emf induced when the switch is

closed. Is this statement true or false?

2. A coil formed by wrapping 50 turns of wire in the shape of a square is positioned in a magnetic

field so that the normal to the plane of the coil makes an angle of 30°, with the direction of the

field. When the magnetic field is increased uniformly from 200 µT to 600 µT in 0.4 s, an emf of

magnitude 80.0 mV is induced in the coil. What is the total length of the wire?

3. A loop of wire enclosing an area S is placed in a region where the magnetic field is

perpendicular to the plane. The magnetic field B varies with time according to the expression

B B e at= 0
– where a is some constant. That is, at t = 0. The field is B0 and for t > 0, the field

decreases exponentially. Find the induced emf in the loop as a function of time.
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4. The long straight wire in figure (a) carries a constant current i. A metal bar of length l is
moving at constant velocity v as shown in figure. Point a is a distance d from the wire.

(a) Calculate the emf induced in the bar.

(b) Which point a or b is at higher potential?

(c) If the bar is replaced by a rectangular wire loop of resistance R, what is the magnitude of current

induced in the loop?

5. The switch in figure is closed at time t = 0. Find the current in the inductor and the current
through the switch as functions of time thereafter.

6. A small coil is introduced between the poles of an electromagnet so that its axis coincides with

the magnetic field direction. The cross-sectional area of the coil is equal to S = 3.0 mm2, the

number of turns is N = 60. When the coil turns through 180° about its diameter, a

galvanometer connected to the coil indicates a charge q = 4.5 Cµ flowing through it. Find the

magnetic induction magnitude between the poles, provided the total resistance of the electric

circuit equals R = 40 Ω.

7. The magnetic field through a single loop of wire, 12 cm in radius
and of 8.5 Ω resistance, changes with time as shown in figure.
Calculate the emf in the loop as a function of time. Consider the
time intervals

(a) t = 0 to t = 2.0 s (b) t = 2.0 s to t = 4.0 s (c) t = 4.0 s to t = 6.0 s.

The magnetic field is perpendicular to the plane of the loop.

8. A square loop of wire with resistance R is moved at constant speed v across a uniform magnetic
field confined to a square region whose sides are twice the lengths of those of the square loop.
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(a) Sketch a graph of the external force F needed to move the loop at constant speed, as a function of

the coordinate x, from x L= −2 to x L= +2 . (The coordinate x is measured from the centre of the

magnetic field region to the centre of the loop. It is negative when the centre of the loop is to the

left of the centre of the magnetic field region. Take positive force to be to the right).

(b) Sketch a graph of the induced current in the loop as a function of x. Take counterclockwise

currents to be positive.

9. A square frame with side a and a long straight wire carrying a current i are located in the same
plane as shown in figure. The frame translates to the right with a constant velocity v. Find the
emf induced in the frame as a function of distance x.

10. In figure, a wire perpendicular to a long straight wire is moving parallel to the later with a
speed v = 10 m/ s in the direction of the current flowing in the later. The current is 10 A. What is
the magnitude of the potential difference between the ends of the moving wire?

11. The potential difference across a 150 mH inductor as a function of time is shown in figure.
Assume that the initial value of the current in the inductor is zero. What is the current when
t = 2.0 ms? and t = 4.0 ms ?

12. At the instant when the current in an inductor is increasing at a rate of 0.0640 A/ s, the
magnitude of the self-induced emf is 0.0160 V.

(a) What is the inductance of the inductor?

(b) If the inductor is a solenoid with 400 turns, what is the average magnetic flux through each turn

when the current is 0.720 A?
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13. Two toroidal solenoids are wound around the same pipe so that the magnetic field of one passes
through the turns of the other. Solenoid 1 has 700 turns and solenoid 2 has 400 turns. When
the current in solenoid 1 is 6.52 A, the average flux through each turn of solenoid 2 is
0.0320 Wb.

(a) What is the mutual inductance of the pair of solenoids?

(b) When the current in solenoid 2 is 2.54 A, what is the average flux through each turn of

solenoid 1?

14. A coil of inductance 1 H and resistance10 Ω is connected to a resistanceless battery of emf 50 V
at time t = 0. Calculate the ratio of the rate at which magnetic energy is stored in the coil to the
rate at which energy is supplied by the battery at t = 0.1 s.

15. A 3.56 H inductor is placed in series with a 12.8 Ω resistor. An emf of 3.24 V is then suddenly

applied across the RL combination.

(a) At 0.278 s after the emf is applied what is the rate at which energy is being delivered by the

battery?

(b) At 0.278 s, at what rate is energy appearing as thermal energy in the resistor?

(c) At 0.278 s, at what rate is energy being stored in the magnetic field?

16. A 35.0 V battery with negligible internal resistance, a 50.0 Ω resistor, and a 1.25 mH inductor
with negligible resistance are all connected in series with an open switch. The switch is
suddenly closed

(a) How long after closing the switch will the current through the inductor reach one-half of its

maximum value?

(b) How long after closing the switch will the energy stored in the inductor reach one-half of its

maximum value?

17. A solenoid of inductance L with resistance r is connected in parallel to a

resistance R. A battery of emf E and of negligible internal resistance is

connected across the parallel combination as shown in the figure. At time

t = 0, switch S is opened, calculate

(a) current through the solenoid after the switch is opened.

(b) amount of heat generated in the solenoid

18. In the given circuit, find the current through the 5 mH inductor in steady
state.

19. In an oscillating L-C circuit in which C = 4.00 Fµ , the maximum potential difference across the
capacitor during the oscillations is 1.50 V and the maximum current through the inductor is
50.0 mA.

(a) What is the inductance L?

(b) What is the frequency of the oscillations?

(c) How much time does the charge on the capacitor take to rise from zero to its maximum value?
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20. In the L-C circuit shown, C = 1 µF. With capacitor charged to 100 V,

switch S is suddenly closed at time t = 0. The circuit then oscillates

at 103Hz.

(a) Calculate ω and T

(b) Express q as a function of time

(c) Calculate L

(d) Calculate the average current during the first quarter-cycle.

21. An L C- circuit consists of an inductor with L = 0.0900 H and a capacitor of C = × −4 10 4 F. The

initial charge on the capacitor is 5.00 Cµ , and the initial current in the inductor is zero.

(a) What is the maximum voltage across the capacitor?

(b) What is the maximum current in the inductor?

(c) What is the maximum energy stored in the inductor?

(d) When the current in the inductor has half its maximum value, what is the charge on the

capacitor and what is the energy stored in the inductor?

LEVEL 2

Single Correct Option

1. Two ends of an inductor of inductance L are connected to two
parallel conducting wires. A rod of length l and mass m is given
velocity v0 as shown. The whole system is placed in
perpendicular magnetic field B. Find the maximum current in
the inductor. (Neglect gravity and friction)

(a)
mv

L

0 (b)
m

L
v0

(c)
mv

L

0
2

(d) None of these

2. A conducting rod is moving with a constant velocity v over the parallel conducting rails which
are connected at the ends through a resistor R and capacitorC as shown in the figure. Magnetic
field B is into the plane. Consider the following statements.

(i) Current in loop AEFBA is anti-clockwise (ii) Current in loop AEFBA is clockwise

(iii) Current through the capacitor is zero (iv) Energy stored in the capacitor is
1

2

2 2 2CB L v

Which of the following options is correct?

(a) Statements (i) and (iii) are correct (b) Statements (ii) and (iv) are correct

(c) Statements (i), (iii) and (iv) are correct (d) None of these
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3. A rod is rotating with a constant angular velocityωabout pointO (its centre) in a magnetic field
B as shown. Which of the following figure correctly shows the distribution of charge inside the
rod?

(a) (b) (c) (d)

4. A straight conducting rod PQ is executing SHM in xy-plane from
x d= − to x d= + . Its mean position is x = 0 and its length is along
y-axis. There exists a uniform magnetic field B from x d= − to x = 0
pointing inward normal to the paper and from x = 0 to = + d there
exists another uniform magnetic field of same magnitude B but
pointing outward normal to the plane of the paper. At the instant t = 0,
the rod is at x = 0 and moving to the right. The induced emf ( )ε across
the rod PQ vs time ( )t graph will be

(a) (b) (c) (d)

5. Two parallel long straight conductors lie on a smooth plane surface. Two other parallel
conductors rest on them at right angles so as to form a square of side a. A uniform magnetic
field B exists at right angles to the plane containing the conductors. Now, conductors start
moving outward with a constant velocity v0 at t = 0. Then, induced current in the loop at any
time t is (λ is resistance per unit length of the conductors)

(a)
aBv

a v t

0

0λ ( )+
(b)

aBv0

2λ

(c)
Bv0

λ
(d)

Bv0

2λ
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6. A conducting square loop is placed in a magnetic field B with its plane perpendicular to the
field. Now the sides of the loop start shrinking at a constant rateα. The induced emf in the loop
at an instant when its side is a, is

(a) 2a Bα (b) a B2α (c) 2 2a Bα (d) a Bα

7. A conducting straight wire PQ of length l is fixed along a diameter of a non-conducting ring as
shown in the figure. The ring is given a pure rolling motion on a horizontal surface such that its
centre of mass has a velocity v. There exists a uniform horizontal magnetic field B in horizontal
direction perpendicular to the plane of ring. The magnitude of induced emf in the wire PQ at
the position shown in the figure will be

(a) Bvl (b) 2Bvl (c) 3 2Bvl/ (d) zero

8. A conducting rod of length L = 0.1 m is moving with a uniform speed v = 0.2 m/ s on conducting
rails in a magnetic field B = 0.5 T as shown. On one side, the end of the rails is connected to a
capacitor of capacitance C = 20 µF. Then, the charges on the capacitor’s plates are

(a) q qA B= =0 (b) qA = + 20 µC and qB = −20 µC

(c) qA = + 0.2 Cµ and qB = −0.2 Cµ (d) qA = −0.2 C and qB = −0.2 Cµ

9. A wire is bent in the form of aV shape and placed in a horizontal plane. There
exists a uniform magnetic field B perpendicular to the plane of the wire. A
uniform conducting rod starts sliding over the V shaped wire with a constant
speed v as shown in the figure. If the wire has no resistance, the current in
rod will

(a) increase with time (b) decrease with time

(c) remain constant (d) always be zero

10. A square loop of side b is rotated in a constant magnetic field Bat angular frequencyωas shown
in the figure. What is the emf induced in it?

(a) b B t2 ω ωsin (b) bB tω ωsin2

(c) bB t2ω ωcos (d) b B2 ω
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11. A uniform but time varying magnetic field exists in a cylindrical region as
shown in the figure. The direction of magnetic field is into the plane of the

paper and its magnitude is decreasing at a constant rate of 2 10 3× − T/s. A

particle of charge 1 µC is moved slowly along a circle of radius 1m by an
external force as shown in figure. The plane of the circle lies in the plane of
the paper and it is concentric with the cylindrical region. The work done by
the external force in moving this charge along the circle will be

(a) zero (b) 2π × −10 9 J

(c) π × −10 9 J (d) 4π × −10 6 J

12. Switch S is closed at t = 0, in the circuit shown. The change in flux in the inductor (L = 500 mH)

from t = 0 to an instant when it reaches steady state is

(a) 2 Wb (b) 1.5 Wb

(c) 0 Wb (d) None of these

13. An L-R circuit is connected to a battery at time t = 0. The energy stored in the inductor reaches
half its maximum value at time

(a)
R

L
ln

2

2 1−








 (b)

L

R
ln

2 1

2

−









(c)
L

R
ln

2

2 1−






 (d)

R

L
ln

2 1

2

−









14. Electric charge q is distributed uniformly over a rod of length l. The rod is placed parallel to a
long wire carrying a current i. The separation between the rod and the wire is a. The force
needed to move the rod along its length with a uniform velocity v is

(a)
µ

π
0iqv

a2
(b)

µ
π

0iqv

a4

(c)
µ

π
0iqvl

a2
(d)

µ
π

0iqvl

a4

15. AB is an infinitely long wire placed in the plane of rectangular coil of dimensions as shown in
the figure. Calculate the mutual inductance of wire AB and coil PQRS

(a)
µ

π
0b a

b2
ln (b)

µ
π
0c b

a2
ln (c)

µ
π

0abc

b a2 2( )−
(d) None of these
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16. PQ is an infinite current carrying conductor. AB CDand are smooth conducting rods on which
a conductor EF moves with constant velocity v as shown. The force needed to maintain
constant speed of EF is

(a)
1

2

2

vR

Iv b

a

µ
π

o ln
( )

( )







(b)
v

R

Iv a

b

µ
π

o

2

2

ln
( )

( )







(c)
v

R

Iv b

a

µ
π

o

2

2

ln
( )

( )







(d) None of these

17. The figure shows a circular region of radius R occupied by a time varying

magnetic field B( )t such that
dB

dt
< 0. The magnitude of induced electric field at

the point P at a distance r R< is

(a) decreasing with r (b) increasing with r

(c) not varying with r (d) varying as r−2

18. Two circular loops P Qand are concentric and coplanar as shown in

figure. The loop Q is smaller than P. If the current I1 flowing in loop P is

decreasing with time, then the current I2 in the loop Q

(a) flows in the same direction as that of P

(b) flows in the opposite direction as that of Q

(c) is zero

(d) None of the above

19. In the circuit shown in figure, the switch S is closed at t = 0. If VL is the
voltage induced across the inductor and i is the instantaneous current,
the correct variation of VL versus i is given by

(a) (b)

(c) (d)
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20. In the figure shown, a uniform magnetic field| |B = 0.5 T is perpendicular to the plane of

circuit. The sliding rod of length l = 0.25 m moves uniformly with constant speed v = −4 1ms . If

the resistance of the slides is 2 Ω, then the current flowing through the sliding rod is

(a) 0.1 A (b) 0.17 A

(c) 0.08 A (d) 0.03 A

21. The figure shows a non-conducting ring of radius R carrying a charge q. In a circular region of

radiusr, a uniform magnetic field Bperpendicular to the plane of the ring varies at a constant

rate
dB

dt
= β. The torque acting on the ring is

(a)
1

2

2qr β (b)
1

2

2qR β (c) qr2β (d) zero

22. A conducting ring of radius 2R rolls on a smooth horizontal conducting surface as shown in
figure. A uniform horizontal magnetic field B is perpendicular to the plane of the ring. The
potential of A with respect to O is

(a) 2 BvR (b)
1

2
BvR

(c) 8 BvR (d) 4 BvR

23. A uniformly wound long solenoid of inductance L and resistance R is cut into two parts in the
ratio η :1, which are then connected in parallel. The combination is then connected to a cell of
emf E. The time constant of the circuit is

(a)
L

R
(b)

L

R( )η + 1

(c)
η

η +








1

L

R
(d)

η
η
+





1 L

R
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24. When a choke coil carrying a steady current is short-circuited, the current in it decreases to
β ( )< 1 times its initial value in a time T . The time constant of the choke coil is

(a)
T

β
(b)

T

ln
1

β






(c)
T

ln β
(d) T ln β

25. In the steady state condition, the rate of heat produced in a choke coil is P. The time constant of
the choke coil is τ. If now the choke coil is short-circuited, then the total heat dissipated in the
coil is

(a) Pτ (b)
1

2
Pτ

(c)
Pτ
ln 2

(d) Pτ ln 2

26. In the circuit shown in figure initially the switch is in position 1 for a long
time, then suddenly at t = 0, the switch is shifted to position 2. It is
required that a constant current should flow in the circuit, the value of
resistance R in the circuit

(a) should be decreased at a constant rate

(b) should be increased at a constant rate

(c) should be maintained constant

(d) Not possible

27. The figure shows an L R- circuit, the time constant for the circuit is

(a)
L

R2
(b)

2L

R
(c)

2R

L
(d)

R

L2

28. In figure, the switch is in the position 1 for a long time, then the switch is shifted to position 2 at
t = 0. At this instant the value of i i1 2and are

(a)
E

R
, 0 (b)

E

R

E

R
,

−

(c)
E

R

E

R2 2
,

−
(d) None of these
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29. In a decaying L-R circuit, the time after which energy stored in the inductor reduces to
one-fourth of its initial value is

(a) (ln )2
L

R
(b) 0.5

L

R

(c) 2
L

R
(d)

2

2 1−








L

R

30. Initially, the switch is in position 1 for a long time and then shifted to position 2 at t = 0 as
shown in figure. Just after closing the switch, the magnitude of current through the
capacitor is

(a) zero (b)
E

R2

(c)
E

R
(d) None of these

31. When the switch S is closed at t = 0, identify the correct statement just after closing the switch

as shown in figure

(a) The current in the circuit is maximum

(b) Equal and opposite voltages are dropped across inductor and resistor

(c) The entire voltage is dropped across inductor

(d) All of the above

32. Two metallic rings of radius R are rolling on a metallic rod. A magnetic field of magnitude B is
applied in the region. The magnitude of potential difference between points A Cand on the two
rings (as shown), will be

(a) 0 (b) 4 2B Rω
(c) 8 2B Rω (d) 2 2B Rω
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33. In the figure, magnetic field points into the plane of paper and the conducting rod of length l is
moving in this field such that the lowest point has a velocity v1 and the topmost point has the
velocity v v v2 2 1( )> . The emf induced is given by

(a) Bv l1 (b) Bv l2

(c)
1

2
2 1B v v l( )+ (d)

1

2
2 1B v v l( )−

34. Find the current passing through battery immediately after key ( )K is closed. It is given that

initially all the capacitors are uncharged. (Given that R C= =6 4Ω and )µF

(a) 1 A (b) 5 A

(c) 3 A (d) 2 A

35. In the circuit shown, the key ( )K is closed at t = 0, the current through the key at the instant

t = −10 23 ln , is

(a) 2 A (b) 8 A

(c) 4 A (d) zero

36. A loop shown in the figure is immersed in the varying magnetic field B B t= 0 ,
directed into the page. If the total resistance of the loop is R, then the direction
and magnitude of induced current in the inner circle is

(a) clockwise
B a b

R

0
2 2(π − )

(b) anti-clockwise
B a b

R

0
2 2π ( )+

(c) clockwise
B a b

R

0
2 24( )π +

(d) clockwise
B b a

R

0
2 24( )− π
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37. A square loop of side a and a straight long wire are placed in the same plane as shown in figure.
The loop has a resistance R and inductance L. The frame is turned through 180° about the axis
OO ′. What is the electric charge that flows through the loop?

(a)
µ

π
0Ia

R

a b

b2

2
ln

+





(b)
µ

π
0Ia

R

b

b a2 2 2
ln

−








(c)
µ

π
0Ia

R

a b

b2

2
ln

+





(d) None of these

More than One Correct Options

1. The loop shown moves with a velocity v in a uniform magnetic field
of magnitude B, directed into the paper. The potential difference
between points P Qand is e. Then,

(a) e BLv= 1

2

(b) e BLv=
(c) P is positive with respect to Q

(d) Q is positive with respect to P

2. An infinitely long wire is placed near a square loop as shown in figure. Choose the correct
options.

(a) The mutual inductance between the two is
µ

π
0

2
2

a
ln ( )

(b) The mutual inductance between the two is
µ

π
0

2

2
2

a
ln ( )

(c) If a constant current is passed in the straight wire in upward direction and loop is brought close

to the wire, then induced current in the loop is clockwise

(d) In the above condition, induced current in the loop is anti-clockwise

3. Choose the correct options.

(a) SI unit of magnetic flux is henry-ampere

(b) SI unit of coefficient of self-inductance is J/A

(c) SI unit of coefficient of self-inductance is
volt -second

ampere

(d) SI unit of magnetic induction is weber
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4. In the circuit shown in figure, circuit is closed at time t = 0. At time
t = ln ( )2 second

(a) rate of energy supplied by the battery is 16 J/s

(b) rate of heat dissipated across resistance is 8 J/s

(c) rate of heat dissipated across resistance is 16 J/s

(d) V Va b− =4 V

5. Two circular coils are placed adjacent to each other. Their planes are parallel
and currents through them i i1 2and are in same direction. Choose the correct
options.

(a) When A is brought near B, current i2 will decrease

(b) In the above process, current i2 will increase

(c) When current i1 is increased, current i2 will decrease

(d) In the above process, current i2 will increase

6. A coil of area 2 2m and resistance 4 Ω is placed perpendicular to a uniform magnetic field of 4 T.

The loop is rotated by 90° in 0.1 second. Choose the correct options.

(a) Average induced emf in the coil is 8 V

(b) Average induced current in the circuit is 20 A

(c) 2 C charge will flow in the coil in above period

(d) Heat produced in the coil in the above period can’t be determined from the given data

7. In L-C oscillations,

(a) time period of oscillation is
2π
LC

(b) maximum current in circuit is
q

LC

0

(c) maximum rate of change of current in circuit is
q

LC

0

(d) maximum potential difference across the inductor is
q

C

0

2
. Here, q0 is maximum charge on

capacitor

8. Magnetic field in a cylindrical region of radius R in inward direction is as
shown in figure.

(a) an electron will experience no force kept at ( , , )2 0 0R if magnetic field

increases with time

(b) in the above situation, electron will experience the force in negative y-axis

(c) If a proton is kept at 0
2

0, ,
R





and magnetic field is decreasing, then it will

experience the force  in positive x-direction

(d) if a proton is kept at ( , , )−R 0 0 and magnetic field is increasing, then it will experience force in

negative y-axis

9. In the figure shown, q is in coulomb and t in second. At time t = 1 s

(a) V Va b− =4 V (b) V Vb c− =1 V

(c) V Vc d− =16 V (d) V Va d− =20 V
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10. An equilateral triangular conducting frame is rotated with angular velocity ω
in a uniform magnetic field Bas shown. Side of triangle is l. Choose the correct
options.

(a) V Va c− =0 (b) V V
B l

a c− = ω 2

2

(c) V V
B l

a b− = ω 2

2
(d) V V

B l
c b− = − ω 2

2

Comprehension Based Questions

Passage I (Q. No. 1 to 3 )

A uniform but time varying magnetic field B t t T= +( )2 243 is present in a

cylindrical region of radius R = 2.5 cm as shown in figure.

1. The force on an electron at P at t = 2.0 s is

(a) 96 10 21× − N

(b) 48 10 21× − N

(c) 24 10 21× − N

(d) zero

2. The variation of electric field at any instant as a function of distance measured from the centre

of cylinder in first problem is

3. In the previous problem, the direction of circular electric lines at t = 1 s is

(a) clockwise

(b) anti-clockwise

(c) no current is induced

(d) cannot be predicted

Passage II (Q. No. 4 to 7 )

A thin non-conducting ring of mass m, radius a carrying a charge q can rotate freely about its
own axis which is vertical. At the initial moment, the ring was at rest in horizontal position and
no magnetic field was present. At instant t = 0, a uniform magnetic field is switched on which is
vertically downward and increases with time according to the law B B t= 0 . Neglecting
magnetism induced due to rotational motion of ring.

4. The magnitude of induced emf on the closed surface of ring will be

(a) πa B2
0 (b) 2 2

0a B

(c) zero (d)
1

2

2
0πa B

5. The magnitude of an electric field on the circumference of the ring is

(a) aB0 (b) 2 0aB

(c)
1

2
0aB (d) zero
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6. Angular acceleration of ring is

(a)
qB

m

0

2
(b)

qB

m

0

4

(c)
qB

m

0 (d)
2 0qB

m

7. Find instantaneous power developed by electric force acting on the ring at t = 1 s.

(a)
2

14

2
0
2 2q B a

m
(b)

q B a

m

2
0
2 2

8

(c)
3 2

0
2 2q B a

m
(d)

q B a

m

2
0
2 2

4

Passage III (Q. No. 8 to 10 )

Figure shows a conducting rod of negligible resistance that can slide on smoothU-shaped rail
made of wire of resistance 1 Ω/m. Position of the conducting rod at t = 0 is shown. A time
dependent magnetic field B t= 2 tesla is switched on at t = 0.

8. The current in the loop at t = 0 due to induced emf is

(a) 0.16 A, clockwise (b) 0.08 A, clockwise

(c) 0.16 A, anti-clockwise (d) zero

9. At t = 0, when the magnetic field is switched on, the conducting rod is moved to the left at
constant speed 5 cm/s by some external means. At t = 2 s, net induced emf has magnitude

(a) 0.12 V (b) 0.08 V

(c) 0.04 V (d) 0.02 V

10. The magnitude of the force required to move the conducting rod at constant speed 5 cm/s at the
same instant t = 2s, is equal to

(a) 0.096 N (b) 0.12 N

(c) 0.08 N (d) 0.064 N

Passage IV (Q. No. 11 to 13)

Two parallel vertical metallic rails AB and CD are separated by1 m . They
are connected at the two ends by resistances R1 and R2 as shown in the
figure. A horizontal metallic bar L of mass 0.2 kg slides without friction,
vertically down the rails under the action of gravity. There is a uniform
horizontal magnetic field of 0.6T perpendicular to the plane of the rails. It
is observed that when the terminal velocity is attained, the powers
dissipated in R1 and R2 are 0.76 W and 1.2 W respectively ( )g m s= 9.8 / 2

11. The terminal velocity of the bar L will be

(a) 2 m/s (b) 3 m/s (c) 1 m/s (d) None of these
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12. The value of R1 is

(a) 0.47 Ω (b) 0.82 Ω
(c) 0.12 Ω (d) None of these

13. The value of R2 is

(a) 0.6 Ω (b) 0.5 Ω
(c) 0.4 Ω (d) 0.3 Ω

Match the Columns

1. Match the following two columns.

Column I Column II

(a) Magnetic induction (p) [MT A− −2 1 ]

(b) Coefficient of self-induction (q) [ ]L T2 2−

(c) LC (r) [ ]ML T A2 2 2− −

(d) Magnetic flux (s) None of these

2. In the circuit shown in figure, switch is closed at time t = 0. Match the
following two columns.

Column I Column II

(a) VL at t = 0 (p) zero

(b) VR at t = 0 (q) 10 V

(c) VL at t = 1 s (r) 10

e
V

(d) VR at t = 1 s (s)
1

1
10−



e

V

3. In an L-C oscillation circuit, L = 1 H, C = 1

4
F and maximum charge in the capacitor is 4 C.

Match the following two columns. Note that in Column II, all values are in SI units.

Column I Column II

(a) Maximum current in the circuit (p) 16

(b) Maximum rate of change of current in the

circuit

(q) 4

(c) Potential difference across inductor when

q C= 2

(r) 2

(d) Potential difference across capacitor when

rate of change of current is half its

maximum value

(s) 8
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4. In the circuit shown in figure, switch remains closed for long time. It is opened at time t = 0.
Match the following two columns at t = (ln )2 second.

Column I Column II

(a) Potential differences across inductor (p) 9 V

(b) Potential difference across 3 Ω resistance (q) 4.5 V

(c) Potential difference across 6 Ω resistance (r) 6 V

(d) Potential difference between points b cand (s) None of these

5. Magnetic flux passing through a coil of resistance 2 Ω is as shown in
figure. Match the following two columns. In Column II all physical
quantities are in SI units.

Column I Column II

(a) Induced emf produced (p) 4

(b) Induced current (q) 1

(c) Charge flow in 2 s (r) 8

(d) Heat generation in 2 s (s) 2

6. A square loop is placed near a long straight current carrying wire as shown. Match the
following two columns.

Column I Column II

(a) If current is increased (p) induced current in loop is

clockwise

(b) If current is decreased (q) induced current in loop is

anti-clockwise

(c) If loop is moved away from the wire (r) wire will attract the loop

(d) If loop is moved towards the wire (s) wire will repel the loop

Chapter 27 Electromagnetic Induction � 551

a

d

9 V
6 Ω

9 H

3 Ω

b

c

t (s)

4

φ (Wb)

2

i



Subjective Questions

1. In the circuit diagram shown, initially there is no energy in the inductor and the capacitor. The

switch is closed at t = 0. Find the current I as a function of time if R L C= / .

2. A rectangular loop with a sliding connector of length l is located in a uniform magnetic field
perpendicular to the loop plane. The magnetic induction is equal to B. The connector has an
electric resistance R, the sides ab and cd have resistances R1 and R2. Neglecting the
self-inductance of the loop, find the current flowing in the connector during its motion with a
constant velocity v.

3. A rod of length 2a is free to rotate in a vertical plane, about a horizontal axis O passing through
its mid-point. A long straight, horizontal wire is in the same plane and is carrying a constant
current i as shown in figure. At initial moment of time, the rod is horizontal and starts to rotate
with constant angular velocity ω, calculate emf induced in the rod as a function of time.

4. In the circuit arrangement shown in figure, the switch S is closed at t = 0. Find the current in
the inductance as a function of time? Does the current through 10 Ω resistor vary with time or
remains constant.
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5. In the circuit shown, switch S is closed at time t = 0. Find the current through the inductor as a
function of time t.

6. In the circuit shown in figure, E R R= = =120 1 2V , ,, 30.0 50.0Ω Ω and L = 0.200 H. Switch S is
closed at t = 0. Just after the switch is closed.

(a) What is the potential difference Vab across the inductor R1?

(b) Which point, a or b, is at higher potential?

(c) What is the potential difference Vcd across the inductor L?

(d) Which point, c or d, is at a higher potential?

The switch is left closed for a long time and then is opened. Just after the switch is opened

(e) What is the potential difference Vab across the resistor R1?

(f) Which point a or b, is at a higher potential?

(g) What is the potential difference Vcd across the inductor L?

(h) Which point, c or d, is at a higher potential?

7. Two capacitors of capacitances 2C and C are connected in series with an inductor of inductance
L. Initially, capacitors have charge such that V V VB A− = 4 0 and V V VC D− = 0. Initial current
in the circuit is zero. Find

(a) maximum current that will flow in the circuit,

(b) potential difference across each capacitor at that instant,

(c) equation of current flowing towards left in the inductor.

8. A 1.00 mH inductor and a1.00 Fµ capacitor are connected in series. The current in the circuit is
described by i t= 20 , where t is in second and i is in ampere. The capacitor initially has no
charge. Determine

(a) the voltage across the inductor as a function of time,

(b) the voltage across the capacitor as a function of time,

(c) the time when the energy stored in the capacitor first exceeds that in the inductor.
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9. In the circuit shown in the figure, E R= =50.0 V, 250 Ω and C = 0.500 Fµ . The switch S is

closed for a long time, and no voltage is measured across the capacitor. After the switch is

opened, the voltage across the capacitor reaches a maximum value of 150 V. What is the

inductance L?

10. The conducting rod abshown in figure makes contact with metal rails ca and db. The apparatus
is in a uniform magnetic field 0.800 T, perpendicular to the plane of the figure.

(a) Find the magnitude of the emf induced in the rod when it is moving toward the right with a speed

7.50 m/s.

(b) In what direction does the current flow in the rod?

(c) If the resistance of the circuit abdc is 1.50 Ω (assumed to be constant), find the force (magnitude

and direction) required to keep the rod moving to the right with a constant speed of 7.50 m/s. You

can ignore friction.

(d) Compare the rate at which mechanical work is done by the force ( )Fv with the rate at which

thermal energy is developed in the circuit ( )I R2 .

11. A non-conducting ring of mass m and radius R has a charge Q uniformly distributed over its
circumference. The ring is placed on a rough horizontal surface such that plane of the ring is

parallel to the surface. A vertical magnetic field B B t= 0
2 tesla is switched on. After 2 s from

switching on the magnetic field the ring is just about to rotate about vertical axis through its
centre.

(a) Find friction coefficient µ between the ring and the surface.

(b) If magnetic field is switched off after 4 s, then find the angle rotated by the ring before coming to

stop after switching off  the magnetic field.

12. Two parallel long smooth conducting rails separated by a
distance l are connected by a movable conducting
connector of mass m. Terminals of the rails are connected
by the resistor R and the capacitor C as shown in figure.
A uniform magnetic field B perpendicular to the plane of
the rail is switched on. The connector is dragged by a
constant force F. Find the speed of the connector as
a function of time if the force F is applied at t = 0. Also
find the terminal velocity of the connector.
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13. A circuit containing capacitors C1 and C2, shown in the figure is in the steady state with key K1

closed and K 2 opened. At the instant t K= 0 1, is opened and K 2 is closed.

(a) Find the angular frequency of oscillations of L C- circuit.

(b) Determine the first instant t, when energy in the inductor becomes one third of that in the

capacitor.

(c) Calculate the charge on the plates of the capacitor at that instant.

14. Initially, the capacitor is charged to a potential of 5 V and then connected to position 1 with the
shown polarity for 1 s. After 1 s it is connected across the inductor at position 2.

(a) Find the potential across the capacitor after 1 s of its connection to position 1.

(b) Find the maximum current flowing in the L C- circuit when capacitor is connected across the

inductor. Also, find the frequency of LC oscillations.

15. A rod of mass m and resistance R slides on frictionless
and resistanceless rails a distance l apart that include a
source of emf E0. (see figure). The rod is initially at rest.
Find the expression for the

(a) velocity of the rod v (t). (b) current in the loop i(t).

16. Two metal bars are fixed vertically and are connected on the top by a capacitor C. A sliding
conductor of length l and mass m slides with its ends in contact with the bars. The arrangement
is placed in a uniform horizontal magnetic field directed normal to the plane of the figure. The
conductor is released from rest. Find the displacement x(t) of the conductor as a function of
time t.
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17. A conducting light string is wound on the rim of a metal ring of radius r and mass m. The free
end of the string is fixed to the ceiling. A vertical infinite smooth conducting plane is always
tangent to the ring as shown in the figure. A uniform magnetic field B is applied perpendicular
to the plane of the ring. The ring is always inside the magnetic field. The plane and the string
are connected by a resistance R. When the ring is released, find

(a) the current in the resistance R as a function of time.

(b) the terminal velocity of the ring.

18. A conducting frame abcd is kept in a vertical plane. A conducting rod ef of mass m and length l
can slide smoothly on it remaining always horizontal. The resistance of the loop is negligible
and inductance is constant having value L. The rod is left from rest and allowed to fall under
gravity and inductor has no initial current. A magnetic field of constant magnitude B is present
throughout the loop pointing inwards. Determine

(a) position of the rod as a function of time assuming initial position of the rod to be x = 0 and

vertically downward as the positive x-axis.

(b) the maximum current in the circuit.

(c) maximum velocity of the rod

19. A rectangular loop with a sliding conductor of length l is located in a uniform magnetic field
perpendicular to the plane of loop. The magnetic induction perpendicular to the plane of loop is
equal to B. The part ad and bc has electric resistance R1 and R2, respectively. The conductor
starts moving with constant acceleration a0 at time t = 0.Neglecting the self-inductance of the
loop and resistance of conductor. Find

(a) the current through the conductor during its motion.

(b) the polarity of abcd terminal.

(c) external force required to move the conductor with the given acceleration.
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20. A conducting circular loop of radius a and resistance per unit length R is moving with a
constant velocity v0 ,parallel to an infinite conducting wire carrying current i0.A conducting rod

of length 2a is approaching the centre of the loop with a constant velocity
v0

2
along the direction

of the current. At the instant t = 0,the rod comes in contact with the loop at A and starts sliding
on the loop with the constant velocity. Neglecting the resistance of the rod and the
self-inductance of the circuit, find the following when the rod slides on the loop.

(a) The current through the rod when it is at a distance of
a

2







from the point A of the loop.

(b) Force required to maintain the velocity of the rod at that instant.

21. U-frame ABCD and a sliding rod PQ of resistance R, start moving with velocities v and 2v
respectively, parallel to a long wire carrying current i0. When the distance AP l= at t = 0,
determine the current through the inductor of inductance L just before connecting rod PQ loses
contact with the U-frame.
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Answers

Introductory Exercise 27.1
1. Anti-clockwise 2. No

3. [ML A T
2 –1 –3

] 4. Clockwise

5. Same direction, opposite direction. 6. 6.74 V

7. 1600 Cµ 8. 9.0 10 Wb
–7×

Introductory Exercise 27.2
1. 4.4 V, north 2. 0.00375 N

3. (a)
B lω 2

2
(b)

−3

2

2
B lω

4. No

Introductory Exercise 27.3
1. 3 ( cos sin )t t t+ 2. − −

80
4

e
t
, − −

40
4

e
t

3. (a) 0.625 mH (b) 0.13 J, 0.21 J s/ 4. (a) 4.5 10 H
–5× (b) 4.5 10 V

–3×

Introductory Exercise 27.4
1. 3.125 mH, 0.9375 V 2. (a) 2 H (b) 30 V (c) 1 H

3. (a) 0.27 V, Yes (b) 0.27 V

Introductory Exercise 27.5
2. (a) 0.2 s (b) 10 A (c) 9.93 A 3. No

Introductory Exercise 27.6

2. With KE as v i⇔ and m L⇔ . Therefore,
1

2

1

2

2 2
mv Li= 3. (a) 45.9 Cµ (b) 23.3 V 4. 20.0 V

Introductory Exercise 27.7
1. (a) 3.1 10 V

–6× (b) 2.0 10 V m
–6× /

2. (a) 8.0 10 N
–21× (downward and to the right perpendicular to r2)

(b) 0.36 V m/ (upwards and to the left perpendicular to r1 )

Exercises

LEVEL 1

Assertion and Reason

1. (d) 2. (b) 3. (d) 4. (a,b) 5. (a) 6. (d) 7. (b) 8. (c) 9. (d) 10. (c)

Objective Questions

1. (c) 2. (a) 3. (b) 4. (c) 5. (c) 6. (b) 7. (b) 8. (a) 9. (c) 10. (b)

11. (a) 12. (b) 13. (c) 14. (c) 15. (a) 16. (a) 17. (c) 18. (a) 19. (d) 20. (b)

21. (a) 22. (d) 23. (c) 24. (b) 25. (a) 26. (c) 27. (d) 28. (d) 29. (b) 30. (d)

31. (b) 32. (a) 33. (a) 34. (d) 35. (c) 36. (b) 37. (c) 38. (c) 39. (a)



Subjective Questions
1. True 2. 272 m

3. e aSB e
at= 0

– 4. (a)
µ

π
0

2
1

iv l

d
ln +





(b) a (c) zero

5. (a) (0.5) ( – )
–

1
10

e A
t

(b) 1.50 A (0.25 A)–
–

e
t10

6. 0.5 T 7. (a) 0.011 V (b) zero (c) – 0.011 V

8. 9. e
ia v

x x a
=

+
µ

π
0

2

4

2

( )

10. ( ) ln ( )2 10 10
5× −

V

11. 3.33 10 A, 6.67 10 A
–2 –2× ×

12. (a) 0.25 H (b) 4.5 10 Wb
–4×

13. (a) 1.96 H (b) 7.12 10 Wb
–3×

14. 0.37

15. (a) 518 mW (b) 328 mW (c) 191 mW 16. (a) 17.3 sµ (b) 30.7 sµ

17. (a)
E

r
e

R r

L
t–

+







(b)
E L

r R r

2

2 ( )+
18.

8

3
A 19. (a) 3.6 mH (b) 1.33 kHz (c) 0.188 ms

20. (a) 6.28 10 rad s
3× / , 10

3−
s (b) 10 cos (6.28 10

4 3− × t ) (c) 0.0253 H (d) 0.4 A

21. (a) 1.25 10 V
–2× (b) 8.33 10 A

–4× (c) 3.125 10 J
–8× (d) 4.33 10 C, 7.8 10 J

–6 –7× ×

LEVEL 2

Single Correct Option

1.(b) 2.(c) 3.(a) 4.(b) 5.(c) 6.(a) 7.(a) 8.(c) 9.(c) 10.(a)

11.(b) 12.(b) 13.(c) 14.(a) 15.(b) 16.(a) 17.(b) 18.(a) 19.(d) 20.(a)

21.(a) 22.(d) 23.(a) 24.(b) 25.(b) 26.(d) 27.(b) 28.(b) 29.(a) 30.(c)

31.(c) 32.(b) 33.(c) 34.(a) 35.(a) 36.(d) 37.(d)

More than One Correct Options

1. (a,c) 2. (a,c) 3. (a,c) 4. (a,b,d) 5. (a,c) 6. (b,c,d) 7. (b,c) 8. (b,c,d) 9. (a,b,c) 10. (a,c)

Comprehension Based Questions

1.(b) 2.(c) 3.(b) 4.(a) 5.(c) 6.(a) 7.(d) 8.(a) 9.(b) 10.(c)

11.(c) 12.(a) 13.(d)

Match the Columns
1. (a) → p (b) → r (c) → s (d) → s

2. (a) → q (b) → p (c) → r (d) → s

3. (a) → s (b) → p (c) → s (d) → s

4. (a) → s (b) → q (c) → p (d) → p

5. (a) → s (b) → q (c) → s (d) → p

6. (a) → q, s (b) → p, r (c) → p, r (d) → q, s
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Subjective Questions

1. I
V

R
= 2. i

Bvl

R R
=

+ ′
where R

R R

R R
′ =

+
1 2

1 2

3. e
i

t

d

t

d a t

d a t
a=

−
+









 +







µ ω
π ω ω

ω
ω

0

2
2

sin sin

sin

sin
ln







4. 3.6 A( )
– /

1 − e
t Lτ

. Here, τ µL = 300 s. Current through 10 Ω resistor varies with time.

5. i e
t= −5 1

2000 3
( )

– /
A

6. (a) 120 V (b) a (c) 120 V (d) c (e) −72 V (f) b (g) −192 V (h) d

7. (a) q0ω (b) 3 30 0V V: (c) i q t= 0 sinω . Here, q CV0 02= and ω = 3

2LC

8. (a) 20 mV (b) 10
7 2

t V (c) 63.2 sµ 9. 0.28 H

10. (a) 3 V (b) b to a (c) 0.8 N towards right (d) both are 6 W 11. (a)
2 0B QR

mg
(b)

B Q

m

0

12. V
FR

B l
e

t= −
2 2

1( )
– α

Here, α =
+

=B l

mR RB l C
v

FR

B l
T

2 2

2 2 2 2
,

13. (a) 5 10 rad s
4× / (b) 1.05 10 s

–5× (c) 10 3 Cµ 14. (a) 8.16 V (b) 5.16 A, 10 Hz

15. (a) v
E

Bl
e

B l

mR
t

= 0 1

2 2

( – )
–

(b) i
E Blv

R
= 0 –

16. x
mgt

m CB l
=

+

2

2 2
2 ( )

17. (a) i
mg

Br
e

B r

mR
t

= −
− −

2
1

2
2 2

( ) (b) v
mgR

B r
T =

4
2 2

18. (a) x
v

t
Bl

mL
= =0 1

ω
ω ω( – cos ), (b) i

mg

Bl
max = 2

(c) v v
g mL

Bl
max = =0

19. (a) i
Bla t

R R
R R= +0

1 2

1 2( ) (b) Polarity of a, b is positive and polarity of c, d is negative

(c) F a m
B l t

R R
R Rext = + +









0

2 2

1 2

1 2( )

20. (a) i
v i

aR
=

9

16
3

0 0 0

2

µ
π

ln ( ) (b)
9

32
3

0

2

0

2

0

3

2µ
π

i v

aR
(ln ) 21. i

e

R
e

lR Lv= 





− −
[ ]

/
1 , where e

i v= µ
π

0 0

2
2ln ( )
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28.1 Introduction
A century ago, one of the great technological debates was whether the electrical distribution system

should be AC or DC. Thomas Edison favoured direct current (DC), that is, steady current that does

not vary with time. George Westinghouse favoured alternating current (AC), with sinusoidally

varying voltages and currents. He argued that transformers can be used to step the voltage up or down

with AC but not with DC. Low voltages are safer for consumer use, but high voltages and

correspondingly low currents are best for long distances power transmission to minimize i R2 losses

in the cables. Eventually, Westinghouse prevailed, and most present day household and industrial

power distribution systems operate with alternating current.

A time varying current or voltage may be periodic and non-periodic. In case of periodic current or

voltage, the current or voltage is said to be alternating if its amplitude is constant and alternate half

cycle is positive and half negative. If the current or voltage varies periodically as sine or cosine

function of time, the current or voltage is said to be sinusoidal and is what we usually mean by it.

28.2 Alternating Currents and Phasors
The basic principle of the AC generator is a direct consequence of Faraday's law of induction. When a

conducting loop is rotated in a magnetic field at constant angular frequency ω a sinusoidal voltage

(emf) is induced in the loop. This instantaneous voltage is

V V t= 0 sin ω …(i)

The usual circuit diagram symbol for an AC source is shown in Fig. 28.2.

In Eq. (i),V0 is the maximum output voltage of the AC generator or the

voltage amplitude and ω is the angular frequency equal to 2π times

the frequency f.

ω π=2 f

The frequency of AC in India is 50 Hz, i.e.

f =50 Hz

So, ω π= ≈2 314f rad/s

The time of one cycle is known as time period T, the number of cycles per second the frequency f.

T
f

=
1

or T =
2π
ω
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A sinusoidal current might be described as

i i t= 0 sin ω
If an alternating current is passed through an ordinary ammeter or voltmeter, it will record the mean

value for the complete cycle, as the quantity to be measured varies with time. The average value of

current for one cycle is

i i
idt

dt
T

T

TOne cycle av= =
∫
∫

( )
0

0

= =
∫

∫

( sin )

/

i t dt

dt

0

2

0

2
0

ω
0

π/ω

π ω

Thus, i
One cycle

=0

Similarly, the average value of the voltage (or emf) for one cycle is zero.

V
One cycle

=0

Since, these averages for the whole cycle are zero, the DC instrument will indicate zero deflection. In

AC, the average value of current is defined as its average taken over half the cycle. Hence,

i i
idt

dt

i t dt

T

T

THalf cycle av= = =
∫
∫

( )
( sin )

/

/

/

/

2
0

2

0

2

00
ω

π ω

0

π/ω π
∫

∫
=

dt

i
2

0

This is sometimes simply written as iav . Hence,

i i i iav Half cycle 0 00.637= = ≈
2

π

Similarly, V V Vav 0.637= ≈
2

0 0π

A DC meter can be used in an AC circuit if it is connected in the full wave rectifier circuit. The

average value of the rectified current is the same as the average current in any half cycle, i.e.
2

π
times

the maximum current i0 . A more useful way to describe a quantity is the root mean square (rms)

value. We square the instantaneous current, take the average (mean) value of i2 and finally take the

square root of that average. This procedure defines the root-mean-square current denoted as irms .

Even when i is negative, i2 is always positive so irms is never zero (unless i is zero at every instant).

Hence,

i
i dt

dt

T

T

2

2

0

0

One cycle
=

∫
∫

= =
∫

∫

( sin )
/

/

i t dt

dt

i0
2 2

0

2

0

2

0
2

2

ω
π ω

π ω

∴ i i
i

irms
One cycle

0.707= = ≈2 0
0

2

Thus, i
i

irms 0.707= ≈0
0

2

Chapter 28 Alternating Current � 563



Similarly, we get

V
V

Vrms 0.707= ≈0
0

2

The square root of the mean square value is called the virtual value and is the value given by AC

instruments.

Thus, when we speak of our house hold power supply as 220 V AC, this means that the rms voltage is

220 V and its voltage amplitude is

V V0 2 311= =rms V

Form Factor

The ratio, = =
rms value

average value

V

V

0

0

2

2

/

/π
= =

π
2 2

1.11

is known as form factor.

The different values i0 , iav and irms are shown in Fig. 28.3.

Note (1) The average value of sinωt, cos ωt, sin2ωt, cos 2ωt, etc., is zero because it is positive in half of the time

and negative in rest half of the time. Thus,

sin cos sin cosω ω ω ωt t t t= = = =2 2 0

If i i t= 0 sinω
then i i t i t= = =0 0 0sin sinω ω

(2) The average value of sin
2 ωt and cos

2 ωt is
1

2
⋅

or sin cos
2 2 1

2
ω ωt t= =

If i i t2
0
2 2= sin ω

then i i t i t
i2

0
2 2

0
2 2 0

2

2
= = =sin sinω ω

(3) Like SHM, general expressions of current/voltage in an sinusoidal AC are

i i t= ± φ0 sin ( )ω
V V t= ± φ0 sin ( )ω

or i i t= ± φ0 cos ( )ω
and V V t= ± φ0 cos ( )ω

(4) Average value of current or voltage over a half cycle can be zero also. This depends on the time interval

(of course T /2) over which average value is to be found. Think why?

Phasors

If an AC generator is connected to a series circuit containing resistors, inductors and capacitors and

we want to know the amplitude and time characteristics of the alternating current. To simplify our

analysis of circuits containing two or more elements, we use graphical constructions called phasor

diagrams. In these constructions, alternating (sinusoidal) quantities, such as current and voltage are

rotating vectors called phasors.

In these diagrams, the instantaneous value of a quantity that varies sinusoidally with time is

represented by the projection onto a vertical axis (if it is a sine function) or onto a horizontal axis (if it
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is a cosine function) of a vector with a length equal to the amplitude ( )i0 of the quantity. The vector

rotates counterclockwise with constant angular velocity ω.

A phasor is not a real physical quantity with a direction in space, such as velocity, momentum or

electric field. Rather, it is a geometric entity that helps us to describe and analyze physical quantities

that vary sinusoidally with time.

V Example 28.1 Show that average heat produced during a cycle of AC is same
as produced by DC with i i rms= .

Solution For an AC, i i t= 0 sin ω
Therefore, instantaneous value of heat produced in time dt across a resistance R is

dH i Rdt i R t dt= =2
0
2 2sin ω

∴ Average value of heat produced during a cycle,

H
dH

dt

i R t dt

dt

T

Tav = =∫
∫

∫
∫

0

0

0
2 2

0

2

2

( sin )
/

ω
π ω

0

π/ω

= 





i
R0

2

2

2π
ω

= i RTrms
2

i.e. AC produces same heating effects as DC of value i i= rms .

V Example 28.2 If the current in an AC circuit is represented by the equation,

i t= 5 300 4sin ( – / )π
Here, t is in second and i in ampere. Calculate

(a) peak and rms value of current (b) frequency of AC (c) average current

Solution (a) As in case of AC,

i i t= ± φ0 sin ( )ω
∴ The peak value, i0 5= A Ans.

and i
i

rms = =0

2

5

2
= 3.535 A Ans.

(b) Angular frequency, ω = 300 rad/s

∴ f = =ω
π π2

300

2
≈ 47.75 Hz Ans.

(c) i iav = 





= 





2 2
50π π

( ) = 3.18 A Ans.
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28.3 Current and Potential Relations
In this section, we will derive voltage current relations for individual circuit elements carrying a

sinusoidal current. We will consider resistors, inductors and capacitors.

Resistor in an AC Circuit
Consider a resistor with resistance R through which there is a sinusoidal current given by

i i t= 0 sin ω …(i)

Here, i0 is the current amplitude (maximum current). From Ohm's law, the instantaneous PD between

points a and b is

V iRR = = ( ) sini R t0 ω
We can write as

i R V0 0= , the voltage amplitude

∴ V V tR = 0 sin ω …(ii)

From Eqs. (i) and (ii), we can see that current and voltage are in phase if only resistance is in the

circuit. Fig. 28.6 shows graphs of i andVR as functions of time.

The corresponding phasor diagram is shown in Fig. 28.7.

Because i and VR are in phase and have the same frequency, the current and voltage phasors rotate

together, they are parallel at each instant. Their projection on vertical axis represents the

instantaneous current and voltage respectively.

Note Direction of an alternating current is not shown in a circuit, as it keeps on changing. In the figure, the

direction of instantaneous current is only shown.

Capacitor in an AC Circuit
If a capacitor of capacitance C is connected across the alternating source, the instantaneous charge on
the capacitor is

q CV CV tC= = 0 sin ω
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and the instantaneous current i passing through it is given by

i
dq

dt
CV t= = 0ω ωcos

= +
V

C
t

0

1
2

/
sin ( / )

ω
ω π

or i i t= +0 2sin ( / )ω π

Here, V
i

C
0

0=
ω

This relation shows that the quantity
1

ωC
is the effective AC resistance or the capacitive reactance of

the capacitor and is represented as X C . It has unit as ohm. Thus,

X
C

C =
1

ω

It is clear that the current leads the voltage by 90° or the potential drop across the capacitor lags the

current passing it by 90°.
Fig. 28.9 shows V and i as functions of time t.

The phasor diagram 28.10 shows that voltage phasor is behind the current phasor by a quarter

cycle or 90°.

Inductor in an AC Circuit
Consider a pure inductor of self-inductance L and zero resistance

connected to an alternating source. Again we assume that an

instantaneous current i i t= 0 sin ω flows through the inductor.

Although, there is no resistance, there is a potential difference VL

between the inductor terminals a and b because the current varies with

time giving rise to a self-induced emf.

V V L
di

dt
L ab= = = 





– ( ) – –induced emf

or V L
di

dt
Li tL = = 0ω ωcos
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or V V tL = +



0

2
sin ω

π
…(i)

Here, V i L0 0= ( )ω …(ii)

or i
V

L
0

0=
ω

∴ i
V

L
t= 0

ω
ωsin …(iii)

Eq. (iii) shows that effective AC resistance, i.e. inductive reactance of inductor is

X LL = ω

and the maximum current,

i
V

X L
0

0=

The unit of X L is also ohm.

From Eqs. (i) and (iii), we see that the voltage across the inductor leads the current passing

through it by 90°.

Fig. 28.12 shows VL and i as functions of time.

Phasor diagram in Fig. 28.13 shows that VL leads the current i by 90°.

� Circuit elements with AC

Circuit elements Amplitude relation Circuit quantity Phase of V

Resistor V R0 0= i R in phase with i

Capacitor V XC0 0= i X
C

C = 1

ω lags i by 90°

Inductor V XL0 0= i X LL = ω leads i by 90°

� In DC, ω = 0, therefore, XL = 0 and XC = ∞
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� The potential of point a with respect to point b is given by

V L
di

dt
L = + , the negative of the induced emf. This expression gives the

correct sign of VL in all cases.

� If an oscillating voltage of a given amplitude V0 is applied across an inductor, the resulting current will have

a smaller amplitude i0 for larger value ofω. Since, XL is proportional to frequency, a high frequency voltage

applied to the inductor gives only a small current while a lower frequency voltage of the same amplitude

gives rise to a larger current. Inductors are used in some circuit applications, such as power supplies and

radio interference filters to block high frequencies while permitting lower frequencies to pass through. A

circuit device that uses an inductor for this purpose is called a low pass filter.

� The capacitive reactance of a capacitor is inversely proportional to the capacitance C and the angular

frequency ω. The greater the capacitance and the higher the frequency, the smaller is the capacitive

reactance XC . Capacitors tend to pass high frequency current and to block low frequency current, just the

opposite of inductors. A device that passes signals of high frequency is called a high pass filter.

� Figure shows the graphs of R XL, and XC as functions of angular frequency ω.

� Remember that we can write, V RR = i , ( )V RR0 0= i , ( )V XL L0 0= i and ( )V XC C0 0= i but can't write (for

instantaneous voltages).

V XL L= i

or V XC C= i

This is because there is a phase difference between the voltage and current in both an inductor and a

capacitor.

V Example 28.3 A 100 Ω resistance is connected in series with a 4 H inductor.

The voltage across the resistor is V V rad s tR = ( ) sin ( / )2.0 103 :

(a) Find the expression of circuit current

(b) Find the inductive reactance

(c) Derive an expression for the voltage across the inductor.

Solution (a) i
V

R

R= = ( )sin ( )2.0 V rad /s10

100

3 t

= ×( ) sin (–2.0 A rad /s)10 102 3 t Ans.

(b) X LL = ω = ( / ) ( )10 43 rad s H

= × Ω4.0 103
Ans.

(c) The amplitude of voltage across inductor,

V i X L0 0
2 310 10= = × × Ω( ) ( )–2.0 A 4.0

= 80 V Ans.
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In an AC, voltage across the inductor leads the current by 90° or π/2 rad. Hence,

V V tL = +0 2sin ( / )ω π

= +







( ) sin ( )80 10
2

3V rad /s radt
π

Note That the amplitude of voltage across the resistor ( )= 2.0 V is not same as the amplitude of the voltage

across the inductor ( )= 80 V , even though the amplitude of the current through both devices is the same.

28.4 Phasor Algebra
The complex quantities normally employed in AC circuit analysis, can be added and subtracted like

coplanar vectors. Such coplanar vectors which represent sinusoidally time varying quantities are

known as phasors.
In Cartesian form, a phasor A can be written as

A = +a jb

where, a is the x-component and b is the y-component of phasor A.

The magnitude of A is | |A = +a b2 2

and the angle between the direction of phasor A and the positive x-axis is

θ = 





tan –1 b

a

When a given phasor A, the direction of which is along the x-axis is multiplied by the operator j, a
new phasor jA is obtained which will be 90° anti-clockwise from A, i.e. along y-axis. If the operator j

is multiplied now to the phasor jA, a new phasor j2
A is obtained which is along –x-axis and having

same magnitude as of A. Thus,

j2
A A= –

∴ j2 1= – or j = –1

Now, using the j operator, let us discuss different circuits of an AC.

28.5 Series L-R Circuit
As we know, potential difference across a resistance in AC is in phase with current and it leads in

phase by 90° with current across the inductor.

Suppose in phasor diagram current is taken along positive x-direction. Then,VR is also along positive

x-direction and VL along positive y-direction, so, we can write

570 � Electricity and Magnetism

θ

b A

a

y

x

Fig. 28.16

VR VL

Fig. 28.17



V V V= +R Lj = +iR j iX L( )

= +iR j i L( )ω (as X LL = ω )

= i Z

Here, Z = + = +R jX R j LL ( )ω is called as impedance of the circuit. Impedance plays the same role

in AC circuits as the ohmic resistance does in DC circuits. The modulus of impedance is

| | ( )Z = +R L2 2ω

The potential difference leads the current by an angle,

φ =tan
| |

| |

–1 V

V

L

R

= 





tan –1 X

R

L

or φ = 





tan –1 ωL

R

28.6 Series C-R Circuit
Potential difference across a capacitor in AC lags in phase by 90° with

the current in the circuit.

Suppose in phasor diagram current is taken along positive x-direction.

Then, VR is also along positive x-direction but VC is along negative

y-direction. So, we can write

V V V= R Cj– = iR j iXC– ( )

= 





iR j
i

C
–

ω
= iZ

Here, impedance is Z = 





R j
C

–
1

ω

Chapter 28 Alternating Current � 571

y

x
φ

VR

VL
V

i

Fig. 28.18

VC VR

Fig. 28.19

i

y

xφ

V

VR

VC

Fig. 28.20



The modulus of impedance is

| |Z = + 





R
C

2
2

1

ω

and the potential difference lags the current by an angle,

φ = =tan tan– –1 1V

V

X

R

C

R

C = 





tan
/–1 1ωC

R

or φ = 





tan –1 1

ωRC

28.7 Series L-C-R Circuit
Potential difference across an inductor leads the current by 90° in

phase while that across a capacitor, it lags in phase by 90°.

Suppose in a phasor diagram current is taken along positive

x-direction. Then, VR is along positive x-direction, VL along positive

y-direction and VC along negative y-direction.

Let us assume that X XL C> or V VL C>
So, we can write V V V VR L Cj – j= + = +iR j iX j iXL C( ) – ( )

= +iR j i X XL C[ ( – )] = iZ

Here, impedance is Z R j X XL C= + ( – ) = + 





R j L
C

ω
ω

–
1

The modulus of impedance is | | –Z = + 





R L
C

2
2

1
ω

ω

and the potential difference leads the current by an angle,

φ =
−

tan –1 V V

V

L C

R

= 





tan
––1 X X

R

L C

or φ =














tan
–

–1

1
ω

ω
L

C

R
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Note Let us take the most general case of a series L-C-R circuit in an AC.

| | ( ~ )Z = +R X XL C
2 2

If X XL C= or ω
ω

L
C

= 1
or ω = 1

LC
or f

LC
= 1

2π
the modulus of impedance

| |Z = R

and the current is in phase with voltage, i.e. if V V t= 0 sinω , then

i i t= 0 sinω

where, i
V V

R
0

0 0= =
| |Z

Such a condition is known as resonance and frequency known as resonance frequency and is given by

f
LC

= 1

2π

The current in such a case is maximum.

If X XL C> , then the modulus of the impedance

| | ( – )Z = +R X XL C
2 2

and the voltage leads the current by an angle given by

φ = 





tan
––1 X X

R
L C

i.e. if V V t= 0 sinω , then i i t= φ0 sin ( – )ω

where, i
V

0
0=

| |Z

If X XC L> , then the modulus of the impedance is

| | ( – )Z = +R X XC L
2 2

and the current leads the voltage by an angle given by

φ = 





tan
––1 X X

R
C L

i.e. if V V t= 0 sinω , then i i t= + φ0 sin ( )ω

where, i
V

0
0=

| |Z

� i
V

0
0=

| |Z
, i

V
rms

rms=
| |Z

. But in general i
V≠

| |
.

Z

� In L-C-R circuit, whenever voltage across various elements is asked, find rms values unless stated in the

question for the peak or instantaneous value.

The rms values are

V i RR = rms , V i XL L= rms

and V i XC C= rms

The peak values can be obtained by multiplying the rms values by 2. The instantaneous values across

different elements is rarely asked.
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� Voltage magnification in series resonance circuit At resonance f
LC

=





1

2 π
, the PD across the

inductor and the capacitor are equal and 180° out of phase and therefore, cancel out. Hence, the applied

emf is merely to overcome the resistance opposition only. If an inductance or capacitance of very large

reactance (XL or XC ) is connected with X XL C= (at resonance) then PD across them increases to a very

high value. The ratio is known as voltage magnification and is given by,

PD across inductance (or capacitance)

Applied emf
= i rms

rms

( )

( )

ω ωL

i R

L

R
= or

i
C

i R CR

rms

rms

1

1ω
ω





 =

( )

This ratio is greater than unity.

� Response curves of series circuit The impedance of an

L C R- - circuit depends on the frequency. The dependence is

shown in figure. The frequency is taken on logarithmic scale

because of its wide range.

From the figure, we can see that at resonance,

(i) X XL C= or ω = 1

LC

(ii) Z Z R= =
min

and

(iii) i is maximum.

Note Here, by Z we mean the modulus of Z and i means irms.

� Acceptor circuit If the frequency of the AC supply can be varied (e.g. in radio or television signal), then

in series L-C-R circuit, at a frequency f LC= 1 2/ π maximum current flows in the circuit and have a

maximum PD across its inductance (or capacitance). This is the method by which a radio or television set

is tuned at a particular frequency. The circuit is known as acceptor circuit.

V Example 28.4 An alternating emf 200 virtual volts at 50 Hz is connected to a

circuit of resistance 1 Ω and inductance 0.01 H. What is the phase difference

between the current and the emf in the circuit? Also, find the virtual current in

the circuit.

Solution In case of an L R- AC circuit, the voltage leads the current in phase by an angle,

φ = 





−tan 1 X

R

L

Here, X L fLL = =ω π( )2

= = Ω( ) ( ) ( )2 50π π0.01

and R = Ω1

∴ φ = ≈ °tan ( )–1 π 72.3 Ans.

Further, i
V

rms
rms=

| |Z
=

+

V

R X L

rms

2 2

Substituting the values, we have

i rms =
+

200

1 2 2( ) ( )π
= 60.67 A Ans.
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V Example 28.5 A resistance and inductance are connected in series across a
voltage,

V t= 283 314sin

The current is found to be4 314 4sin ( – / )t π . Find the values of the inductance and

resistance.

Solution In L-R series circuit, current lags the voltage by an angle,

φ = 





−tan 1 X

R

L

Here, φ = π
4

∴ X RL = or ωL R= (ω = 314 rad/s)

∴ 314 L R= …(i)

Further, V i0 0= | |Z

∴ 283 4 2 2= +R X L

or R L2 2
2

283

4
+ = 





( )ω = 5005.56

or 2 2R = 5005.56 (as ωL R= )

∴ R ≈ Ω50 Ans.

and from Eq. (i), L = 0.16 H Ans.

V Example 28.6 Find the voltage across the various elements, i.e. resistance,
capacitance and inductance which are in series and having values 1000 Ω, 1 µF
and 2.0 H, respectively. Given emf is

V t volt= 100 2 1000sin

Solution The rms value of voltage across the source,

V rms V= =100 2

2
100

∴ ω = 1000 rad /s

∴ i
V V

R X XL C

rms
rms rms= =

+| | ( ~ )Z 2 2
=

+ 





V

R L
C

rms

2
2

1ω
ω

–

=

+ ×
× ×











100

1000 1000 2
1

1000 1 10

2

6

2

( ) –
–

= 0.0707 A
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The current will be same every where in the circuit, therefore,

PD across resistor, V i RR = = × =rms 0.0707 70.7 V1000

PD across inductor, V i XL L= = × × =rms 0.0707 141.4 V1000 2 and

PD across capacitor, V i XC C= = ×
× ×

rms 0.0707
1

1 1000 10 6–

= 70.7 V Ans.

Note The rms voltages do not add directly as `V V V VR L C+ + =282.8 which is not the source voltage 100 V.

The reason is that these voltages are not in phase and can be added by vector or by phasor algebra.

V V V VR L C= +2 2
( ~ )

1. (a) What is the reactance of a 2.00 H inductor at a frequency of 50.0 Hz?

(b) What is the inductance of an inductor whose reactance is2.00 Ω at 50.0 Hz?

(c) What is the reactance of a 2.00 Fµ capacitor at a frequency of 50.0 Hz?

(d) What is the capacitance of a capacitor whose reactance is2.00 Ω at 50.0 Hz?

2. An electric lamp which runs at 100 V DC and consumes 10 A current is connected to AC mains

at 150 V, 50 Hz cycles with a choke coil in series. Calculate the inductance and drop of voltage

across the choke. Neglect the resistance of choke.

3. A circuit operating at
360

2π
Hzcontains a1µFcapacitor and a20 Ω resistor. How large an inductor

must be added in series to make the phase angle for the circuit zero? Calculate the current in

the circuit if the applied voltage is 120 V.

28.8 Power in an AC Circuit
In case of a steady current, the rate of doing work is given by

P Vi=
In an alternating circuit, current and voltage both vary with time and also they differ in time. So, we

cannot use P Vi= for the power generated.

Suppose in an AC, the voltage is leading the current by an angle φ. Then, we can write

V V t= 0 sin ω and i i t= φ0 sin ( – )ω
The instantaneous value of power in that case is

P Vi V i t t= = φ0 0 sin sin ( – )ω ω

or P V i t t= φ φ



0 0

2 1

2
sin cos – sin sinω ω2 …(i)

Now, the average rate of doing work (power) in one cycle will be

P
Pdt

dt

T

TOne cycle
=

=

=

∫
∫
0

2

0

2

π ω

π ω

/

/
…(ii)
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Substituting the value of P from Eq. (i) in Eq. (ii) and then integrating it with proper limits, we get

P V i
V i

One cycle
= φ = ⋅ φ

1

2 2 2
0 0

0 0
cos cos

or P V i
One cycle rms rms= φcos

Here, the term cosφ is known as power factor.

It is said to be leading if current leads voltage, lagging if current lags voltage. Thus, a power factor of

0.5 lagging means current lags the voltage by 60° (as cos –1 600.5 = °). The product of V rms and irms

gives the apparent power. While the true power is obtained by multiplying the apparent power by

the power factor cosφ. Thus,

Apparent power = ×V irms rms

and True power = apparent power × power factor

For φ = °0 , the current and voltage are in phase. The power is thus, maximum (= ×V irms rms). For

φ = °90 , the power is zero. The current is then stated wattless. Such a case will arise when resistance

in the circuit is zero. The circuit is purely inductive or capacitive. The case is similar to that of a

frictionless pendulum, where the total work done by gravity upon the pendulum in a cycle is zero.

Let us consider a choke coil (used in tube lights) of large inductance L and low resistance R. The power

factor for such a coil is given by

cosφ = =
+

R

Z

R

R L2 2 2ω
≈ R

Lω
(as R L<< ω )

As R L<< ω , cosφ is very small. Thus, the power absorbed by the coil Vrms irms cosφ is very small. On

account of its large impedance Z R L= +2 2 2ω , the current passing through the coil is very small. Such a

coil is used in AC circuits for the purpose of adjusting current to any required value without waste of

energy. The only loss of energy is due to hysteresis in the iron core, which is much less than the loss of

energy in the resistance that can also reduce the current instead of a choke coil.

V Example 28.7 A 750 20Hz V, source is connected to a resistance of 100 Ω, an
inductance of 01803. H and a capacitance of 10 µF all in series. Calculate the
time in which the resistance (thermal capacity 2 J C/° ) will get heated by 10°C.

Solution The impedance of the circuit,

Z R X X R fL
fC

L C= + = + 







2 2 2

2

2
1

2
( – ) ( ) –

( )
π

π

= + × × ×
× × ×






( ) –( )

( )–
100 2 750

1

2 750 10

2

5
3.14 0.1803

3.14



2

= Ω834

Chapter 28 Alternating Current � 577

Extra Points to Remember



In case of an AC,

P V i V
V

Z

R

Z

V

Z
= φ = 











= 



rms rms rms

rms rmscos ( )


2

R

= 





×20

834
100

2

= 0.0575 J/s

Now, P t S× = ∆θ
Here, S = thermal capacity

∴ t
S

P
= ∆θ = ×2 10

0.0575
= 348 s Ans.

Note In AC, the whole energy or power is consumed by resistance.

V Example 28.8 In an L-C-R series circuit, R L H= =150 Ω, 0.750 and
C F= 0.0180 µ . The source has voltage amplitude V V= 150 and a frequency
equal to the resonance frequency of the circuit.

(a) What is the power factor?

(b) What is the average power delivered by the source?

(c) The capacitor is replaced by one with C F= 0.0360 µ and the source frequency is

adjusted to the new resonance value. Then, what is the average power delivered

by the source?

Solution (a) At resonance frequency,

X X Z RL C= =, and power factor cos φ = =R

Z
1.0

(b) P
V

R
= = =rms 75 W

2 2150 2

150

( / )

(c) Again, P
V

R
= =rms W

2

75

1. If a 0.03 H inductor, a 10 Ω resistor and a 2 µF capacitor are connected in series. At what

frequency will they resonate? What will be the phase angle at resonance?

2. An arc lamp consumes 10 A at 40 V. Calculate the power factor when it is connected with a

suitable value of choke coil required to run the arc lamp on AC mains of 200 V (rms) and 50 Hz.
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Final Touch Points

1. Frequency of AC in India is 50 Hz.

2. The AC is converted into DC with the help of rectifier while DC is converted into AC with the help of

inverter.

3. An AC cannot produce electroplating or electrolysis.

4. The AC is measured by hot wire ammeter.

5. An AC can be stepped up or down with the help of a transformer.

6. An AC can be transmitted over long distances without much power loss.

7. An AC can be regulated by using choke coil without any significant waste of energy.

8. In an AC (sinusoidal), current or voltage can have the following four values

(i) instantaneous value

(ii) peak value (i
0

orV
0
)

(iii) rms value (i
rms

orV
rms

)

(iv) average value : In full cycle, average value is zero while in half cycle it is non-zero.

Note That in sinusoidal AC the average value in half cycle can also be zero. It depends on the time interval

over which half average value is desired.

9. In an series L-C-R circuit,

(i) Capacitive reactance, X
C

C = 1

ω
(ii) Inductive reactance, X LL = ω

(iii) Impedance, Z R X XC L= + −2 2

( )

(iv) If X XC L> , current leads and if X XL C> , voltage leads by an angle φgiven by

cos φ = R

Z
and tan

~φ = X X

R

C L

(v) Instantaneous power = instantaneous current × instantaneous voltage

(vi) Average power = φV i
rms rms

cos , where

cos φ = =R

Z
power factor.

Note Power is also equal to P i Rrms= 2

But this is not equal to P
V

R
rms≠
2

This is because V i Zrms rms= and cos .φ = R

Z
If we substitute in P V irms rms= φcos , then we get the first relation

but not the second one. This implies that power is consumed only across resistance.

(vii) i
V

Z
0

0= or i
V

Z
rms

rms=

(viii) ( ) ( ) , ( ) ( )V i X V i X
C C L Lrms rms rms rms

= = and ( ) ( )V i R
R rms rms

=

(ix) V V V V
R C L

= +2 2

( ~ )

Here, V is the rms value of applied voltage

V
R

is the rms value of voltage across resistance.

V
C

across capacitor andV
L

across inductor etc.
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10. ω ω= =r
LC

1

is called resonance frequency.

11. At ω ω= r ,

(i) X XL C=
(ii) Z = minimum value = R

(iii) i
rms

= maximum value = =V

Z

V

R

rms

min

rms

(iv) i
0

= maximum value = =V

Z

V

R

0 0

min

(v) Power factor cos φ =1

12. In one complete cycle, power is consumed only by resistance. No power is consumed by a capacitor or

an inductor.

13.

X
C

C = 1

ω
⇒ XC ∝ 1

ω
X LL = ω ⇒ XL ∝ ω

R does not depend on ω. It is a constant.

At ω ω= =r C LX X: and Z Z R= =
min

14. For ω ω> >r L CX X, . Hence, voltage will lead the current or circuit is inductive.

For ω ω< >r C LX X, . Hence, current will lead the voltage function or circuit is capacitive.

At ω ω= =r C LX X, . Hence, current function and voltage function are in same phase.

15. Conditions Phase angle Power factor

R = 0 90° 0

X XC L= ≠ 0

R ≠ 0

0° 1

X XC L= = 0

R ≠ 0

0° 1

ω ω= r 0° 1

In all other cases, phase difference between current function and voltage function is

0 90° < φ < °

If X X
X X

R
C L

C L> φ = −





−
, tan

1

or cos

− 





1
R

Z

If X X
X X

R
L C

L C> φ = −





−
, tan

1

or cos

− 





1
R

Z
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TYPED PROBLEMS

Type 1. Based on a real inductor

Concept

An ideal inductor wire has zero resistance ( )R = 0 . So, in an AC, only X L is the impedance.

But, a real inductor has some resistance also. In DC, total resistance is only R. In AC, total

resistance called impedance is Z R X L= +2 2

Therefore,

I
V

R
DC

DC=

and I
V

Z

V

R X L

AC
AC AC= =

+2 2

If V VAC DC= , then I IAC DC<

V Example 1 A current of 4 A flows in a coil when connected to a 12 V DC source.

If the same coil is connected to a 12 V , 50 rad s/ AC source, a current of 2.4 A

flows in the circuit. Determine the inductance of the coil. Also, find the power

developed in the circuit if a 2500 µF capacitor is connected in series with the coil.

Solution (i) A coil consists of an inductance (L) and a resistance (R).

In DC, only resistance is effective. Hence,

R
V

i
= = = Ω12

4
3

In AC, i
V

Z

V

R L
rms

rms rms= =
+2 2 2ω

∴ L
V

i
R2

2

2

21=


















ω

rms

rms

–

∴ L
V

i
R=









1
2

2

ω
rms

rms

–

Substituting the values, we have

L = 





1

50

12
3

2
2

2.4
– ( )

= 0.08 H Ans.

Solved Examples



(ii) When capacitor is connected to the circuit, the impedance is

Z R X XL C= +2 2( – )

Here, R = Ω3

X LL = = = Ωω ( ) ( )50 40.08

and X
C

C = =
×

= Ω1 1

50 2500 10
8

6ω ( ) ( )–

∴ Z = + =( ) ( )3 4 8 52 2– Ω

Now, P V i= φrms rms cos

= × ×V
V

Z

R

Z
rms

rms

= 



 ×V

Z
Rrms

2

Substituting the values, we have

P = 



 ×12

5
3

2

= 17.28 W Ans.

Type 2. Different time functions in AC

Concept

In an L-C-R series circuit, there are total five
functions of time, V I V VR C, , , and VL . Now, the
following points are important in these functions.

(i) V and I have a phase difference of φwhere

0 90° ≤ φ ≤ °
(ii) VR and I are in same phase

(iii) VC lags behind I by 90°
(iv) VL leads I by 90°
(v) The functions, V V V VL C L= + + (all the time)

V Example 2

In the diagram shown in figure, V function is given. Find other four functions of

time I, V VC R, and VL . Also, find power consumed in the circuit, V is given in volts

and ω in rad/s.
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Solution Given, ω =100 rad/s

X LL = =ω 50 Ω

X
C

C = =
×

=−
1 1

100 10
10

3ω
Ω

Z R X XL C= + −2 2( )

= + −( ) ( )30 50 102 2

= 50 Ω
Current function

Maximum value of current,

I
V

Z
0

0 200

50
4= = = A

X XL C> , therefore voltage leads the current by a phase difference φwhere,

cos φ = = =R

Z

30

50

3

5

or φ = °53

∴ I t= + ° − °4 100 30 53sin ( )

or I t= − °4 100 23sin ( ) Ans.

V VR C, and VL functions

Maximum value of V I RR = = × =0 4 30 120 volt, VR and I are in same phase.

Therefore,

V tR = − °120 100 23sin ( ) Ans.

Maximum value of V I XC C= = × =0 4 10 40 volt

Now, VC function lags the current function by 90°.
Therefore,

V tC = − ° − °40 100 23 90sin ( )

or V tC = − °40 100 113sin ( ) Ans.

Maximum value of V I XL L= = × =0 4 50 200 volt, VL function leads the current function by 90°.
Therefore,

V tL = − ° + °200 100 23 90sin ( )

or V tL = + °200 100 67sin ( ) Ans.

Note We can check at any time that,

V V V VR L C= + +
Power Power is consumed in an AC circuit only across a resistance and this power is given by

P V I= φrms rms cos

= I Rrms
2

Let us use the first formula,

P = 

















200

2

4

2

3

5

= 240 watt Ans.
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Type 3. Parallel circuits

Concept

Two or more than two sine or cosine functions of same ω can be added by vector method.
Actually, their amplitudes are added by vectors method.

V Example 3 In the circuit shown in figure,

R R L H1 230 40= = =Ω Ω, , 0.4 and C mF= 1

3
.

Find seven functions of time I I I V V V VR L R C, , , , , and1 2 1 2
. Also, find total power

consumed in the circuit. In the given potential function, V is in volts and ω in rad/s.

Solution Circuit 1 (containing L and R1)

I1 : X LL = = × =ω 100 400.4 Ω
R1 30= Ω

∴ Z R XL1 1
2 2 2 230 40= + = +( ) ( )

= 50 Ω

Maximum value of current, I
V

Z
1

0

1

200

50
4= = = A

Since, there is only XL, so voltage function will lead the current function by an angle φ1, where

cos φ = = =1
1

1

30

50

3

5

R

Z

∴ φ = °1 53

∴ I t1 4 100 30 53= + ° − °sin ( )

or I t1 4 100 23= − °sin ( ) Ans.

VR1
: VR1

function is in phase with I1 function.

Maximum value of VR1
= (maximum value of I R1 1) ( )

= ( ) ( )4 30

= 120 volt

∴ V tR1
120 100 23= − °sin ( ) Ans.

VL : VL function is 90° ahead of I1 function.

Maximum value of VL = (maximum value of I1 ) ( )XL

= ( )( )4 40 = 160 volt
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∴ V tL = − ° + °160 100 23 90sin ( )

or V tL = + °160 100 67sin ( ) Ans.

Power In this circuit, power will be consumed only across R1. This power is given by

PR1
= ( rms value of I R1

2
1)

= 





4

2
30

2

( )

= 240 watt

Circuit 2 (containing C and R2 )

I2 : X
C

C = =
× ×

=
−

1 1

100
1

3
10

30
3ω

Ω

R2 40= Ω

∴ Z R XC2 2
2 2= +

= +( ) ( )40 302 2

= 50 Ω

Maximum value of I
V

Z
2

0

2

200

50
4= = = A

Since, there is only XC, so I2 function will lead the V function by an angle φ2, where

cos φ = = =2
2

2

40

50

4

5

R

Z

∴ φ = °2 37

∴ I t t2 4 100 30 37 4 100 67= + ° + ° = + °sin ( ) sin ( ) Ans.

VR2
: VR2

function is in phase with I2 function.

Maximum value of VR2
= ( maximum value of I R2 2) ( )

= ×4 40 = 160 volt

∴ V tR2
160 100 67= + °sin ( ) Ans.

VC : VC function lags I2 function by 90°
Maximum value of VC = (Maximum value of I XC2)( )

= ×4 30

= 120 volt

∴ V tC = + ° − °120 100 67 90sin ( )

or V tC = − °120 100 23sin ( ) Ans.

Power In this circuit, power will be consumed only across R2 and this power is given by

PR2
= (rms value of I R2

2
2)

= 





4

2
40

2

( )

= 320 W

∴ Total power consumed in the circuit,

P P PR R= +
1 2

= +( )240 320 W

= 560 W Ans.
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I : I I I= +1 2

I t t= − ° + + °4 100 23 4 100 67sin ( ) sin ( )

Now, the amplitudes can be added by vector method.

Resultant of 4 A and 4 A at 90° is 4 2 A at 45° from both currents or at 22° from 100 t line.

∴ I t= + °4 2 100 22sin ( ) Ans.

V Example 4 An AC circuit consists of a 220 Ω resistance and a 0.7 H choke. Find

the power absorbed from 220 V and 50 Hz source connected in this circuit if the

resistance and choke are joined

(a) in series (b) in parallel.

Solution (a) In series, the impedance of the circuit is

Z R L R fL= + = +2 2 2 2 22ω π( )

= + × × ×( ) ( )220 2 502 23.14 0.7

= Ω311

∴ i
V

Z
rms

rms 0.707 A= = =220

311

and cos φ = = =R

Z

220

311
0.707

∴ The power absorbed in the circuit,

P V i= φrms rms cos

= ( ) ( ) ( )220 0.707 0.707

= 110.08 W Ans.

(b) When the resistance and choke are in parallel, the entire power is absorbed in resistance, as

the choke (having zero resistance) absorbs no power.

∴ P
V

R
= rms

2

= ( )220

220

2

= 220 W Ans.

V Example 5 A sinusoidal voltage of frequency 60 Hz and peak value 150 V is

applied to a series L-R circuit, where R = Ω20 and L mH= 40 .

(a) Compute T X ZL, , ,ω and φ
(b) Compute the amplitudes of current, VR and VL
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22°
67°

23°

4 2 A√

100 t

Miscellaneous Examples

φ

XL

R

Z



Solution (a) T
f

= =1 1

60
s Ans.

ω π π= = =2 2 60 377f ( )( ) rad /s Ans.

X LL = =ω ( ) ( )377 0.040

= Ω15.08 Ans.

Z X RL= +2 2

= +( ) ( )15.08 2 220

= Ω25.05 Ans.

φ = 



 = 



 =−tan tan tan ( )– –1 1 1

20

X

R

L 15.08
0.754

= °37 Ans.

(b) Amplitudes (maximum value) are

i
V

Z
0

0 150
6= = ≈

25.05
A Ans.

( ) ( )( )V i RR0 0 6 20= = =120 V Ans.

( )V i XL L0 0=

= =( ) ( )6 15.08 90.5 V Ans.

Note V V VR L0 0
2

0
2= +( ) ( )

V Example 6 For the circuit shown in figure, find the instantaneous current

through each element.

Solution The three current equations are

V i RR= , V L
di

dt

L=

and V
q

C
= ⇒ dV

dt C
iC= 1

…(i)

The steady state solutions of Eq. (i) are

i
V

R
t i tR R= ≡0

0sin ( ) sinω ω

i
V

L
t

V

X
t i tL

L
L= ≡ ≡– cos – cos – ( ) cos0 0

0ω
ω ω ω

and i V C t
V

X
t i tC

C
C= ≡ ≡0

0
0ω ω ω ωcos cos ( ) cos

where, the reactances XL and XC are as defined.
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V Example 7 In the above problem find the total instantaneous current through

the source, and find expressions for phase angle of this current and the impedance

of the circuit.

Solution For the total current, we have

i i i iR L C= + +

= +
















V

R
t

X X
t

C L
0

1 1 1
sin – cosω ω

Using the trigonometric identity,

A B A Bsin cos sin (θ θ θ+ = + + φ)2 2

where, φ = tan ( / )–1 B A

We can write, i i t≡ + φ)0 sin (ω

Here, i
V

Z
0

0=

where,
1 1 1 1

2 2

Z R X XC L

= 



 +







–

and tan

–

( / )
φ =









1 1

1

X X

R

C L

V Example 8 An L-C-R series circuit with 100 Ω resistance is connected to an AC

source of 200 V and angular frequency 300 rad s/ . When only the capacitance is

removed, the current lags behind the voltage by 60° . When only the inductance is

removed, the current leads the voltage by 60° . Calculate the current and the power

dissipated in the L-C-R circuit

Solution When capacitance is removed, then

tan φ = X

R

L

or tan 60° = X

R

L

∴ X RL = 3 …(i)

When inductance is removed, then

tan φ = X

R

C

or tan60° = X

R

C

∴ X RC = 3 …(ii)

From Eqs. (i) and (ii), we see that X XC L=

So, the L-C-R circuit is in resonance.

Hence, Z R=
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∴ i
V

Z
rms

rms= = =200

100
2 A Ans.

P V i= φrms rms cos

At resonance current and voltage are in phase,

or φ = °0

∴ P = =( ) ( ) ( )200 2 1 400 W Ans.

V Example 9 A series L-C-R circuit containing a resistance of 120 Ω has

resonance frequency 4 105× rad s/ . At resonance the voltages across resistance and

inductance are 60 V and 40 V , respectively. Find the values of L and C. At what

angular frequency the current in the circuit lags the voltage by π /4?

Solution At resonance, X XL C– = 0

and Z R= = Ω120

∴ i
V

R

R
rms

rms A= = =( ) 60

120

1

2

Also, i
V

L

L
rms

rms= ( )

ω

∴ L
V

i

L= ( )rms

rmsω
=

× 





40

4 10
1

2

5( )

= ×2.0 H10 4–

= 0.2 mH Ans.

The resonance frequency is given by

ω = 1

LC
or C

L
= 1

2ω

Substituting the values, we have

C =
× ×

1

4 10 105 2 4( ) ( )–2.0

= ×3.125 F10 8– Ans.

Current lags the voltage by 45°, when

tan

–

45

1

° =
ω

ω
L

C
R

Substituting the values of L, C, R and tan 45°, we get

ω = ×8 105 rad/s Ans.

V Example 10 A choke coil is needed to operate an arc lamp at 160 V rms( ) and

50 Hz. The lamp has an effective resistance of 5 Ω when running at 10 A ( )rms .

Calculate the inductance of the choke coil. If the same arc lamp is to be operated

on 160 V DC( ), what additional resistance is required? Compare the power loses

in both cases.
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Solution For lamp,

( ) ( ) ( )V i RRrms rms V= = × =10 5 50

In series,

( ) ( ) ( )V V VR Lrms rms rms
2 2 2= +

∴ ( ) ( ) – ( )V V VL Rrms rms rms= 2 2

= ( ) – ( )160 502 2

= 152 V

As, ( ) ( ) ( ) ( )V i X i fLL Lrms rms rms= = 2π

∴ L
V

f i

L= ( )

( ) ( )

rms

rms2π

Substituting the values, we get

L = 152

2 50 10( ) ( ) ( )π

= ×4.84 H10 2– Ans.

Now, when the lamp is operated at 160 V, DC and instead of choke let an additional resistance

R′ is put in series with it, then

V i R R= + ′( )

or 160 10 5= + ′( )R

∴ R ′ = 11 Ω Ans.

In case of AC, as the choke has no resistance, power loss in choke is zero.

In case of DC, the loss in additional resistance R′ is

P i R= ′ =2 210 11( ) ( )

= 1100 W Ans.
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LEVEL 1

Assertion and Reason
Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : In an AC circuit, potential difference across the capacitor may be greater than
the applied voltage.

Reason : V IXC C= , whereas V IZ= and XC can be greater than Z also.

2. Assertion : In series L-C-R circuit, voltage will lead the current function for frequency
greater than the resonance frequency.

Reason : At resonance frequency, phase difference between current function and voltage
function is zero.

3. Assertion : Resonance frequency will decrease in L C R- - series circuit if a dielectric slab is
inserted in between the plates of the capacitor.

Reason : By doing so, capacity of capacitor will increase.

4. Assertion : Average value of current in the given graph is 3 A.

-

Reason : Average value can’t be greater than the peak value of any function.

5. Assertion : In series L C R- - circuit, if a ferromagnetic rod is inserted inside an inductor,
current in the circuit may increase or decrease.

Reason : By doing so XLwill increase.

6. Assertion : Potential difference across, resistor, capacitor and inductor each is 10 V. Then,
voltage function and current functions should be in phase.

Reason : At this condition current in the circuit should be maximum.

7. Assertion : At some given instant I I1 2and both are 2 A each. Then, I at this instant should

be zero.

Exercises

4

i (A)

t
32 4 5 6

(s)



Reason : There is a phase difference of π between I I1 2and functions.

8. Assertion : Peak value of current in AC through a resistance of 10 Ω is 2 A. Then, power
consumed by the resistance should be 20 W.

Reason : Power in AC is P I R= rms
2

9. Assertion : An inductor coil normally produces more current with DC source compared to an
AC source of same value of rms voltage.

Reason : In DC source, applied voltage remains constant with time.

10. Assertion : In an L-R series circuit in AC, current in the circuit will decrease with increase
in frequency.

Reason : Phase difference between current function and voltage function will increase with
increase in frequency.

11. Assertion : In series L-C-R, AC circuit, current and voltage are in same phase at resonance.

Reason : In series L-C-R, AC circuit, resonant frequency does not depend on the value of
resistance. Hence, current at resonance does not depend on resistance.

Objective Questions

1. The term cos φ in an AC circuit is called

(a) form factor (b) phase factor

(c) power factor (d) quality factor

2. A DC ammeter cannot measure alternating current because

(a) AC changes its direction

(b) DC instruments will measure the average value

(c) AC can damage the DC instrument

(d) AC produces more heat

3. As the frequency of an alternating current increases, the impedance of the circuit

(a) increases continuously (b) decreases continuously

(c) remains constant (d) None of these

4. Phasor diagram of a series AC circuit is shown in figure. Then,

(a) The circuit must be containing resistor and capacitor only

(b) The circuit must be containing resistor and inductor only

(c) The circuit must be containing all three elements L C R, and

(d) The circuit cannot have only capacitor and inductor

5. The rms value of an alternating current

(a) is equal to 0.707 times peak value

(b) is equal to 0.636 times peak value

(c) is equal to 2 times the peak value

(d) None of the above
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6. In an AC circuit, the applied potential difference and the current flowing are given by

V t= 200 100sin volt, I t= −





5 100
2

sin
π

amp

The power consumption is equal to

(a) 1000 W (b) 40 W

(c) 20 W (d) zero

7. The impedance of a series L-C-R circuit in an AC circuit is

(a) R X XL C+ −( ) (b) R X XL C
2 2 2+ −( )

(c) R (d) None of these

8. If V I0 0and are the peak current and voltage across the resistor in a series L-C-R circuit, then
the power dissipated in the circuit is (Power factor = cos )θ
(a)

V I0 0

2
(b)

V I0 0

2
(c) V I0 0 cos θ (d)

V I0 0

2
cos θ

9. A generator produces a time varying voltage given by V t= 240 120sin , where t is in second.
The rms voltage and frequency are

(a) 170 V and 19 Hz (b) 240 V and 60 Hz

(c) 170 V and 60 Hz (d) 120 V and 19 Hz

10. An L-C-R series circuit has a maximum current of 5 A. If L = 0.5 H and C = 8 µF, then the
angular frequency of AC voltage is

(a) 500 rad/s (b) 5000 rad/s

(c) 400 rad/s (d) 250 rad/s

11. The current and voltage functions in an AC circuit are

i t= 100 100sin ,mA V t= +





100 100
3

sin
π

V

The power dissipated in the circuit is

(a) 10 W (b) 2.5 W (c) 5 W (d) 5 kW

12. A capacitor becomes a perfect insulator for

(a) alternating current (b) direct current (c) both (a) and (b) (d) None of these

13. For an alternating voltage V t= 10 100cos π volt, the instantaneous voltage at t = 1

600
s is

(a) 1 V (b) 5 V

(c) 5 3 V (d) 10 V

14. In a purely resistive AC circuit,

(a) voltage leads current (b) voltage lags current

(c) voltage and current are in same phase (d) nothing can be said

15. Identify the graph which correctly represents the variation of capacitive reactance XC with
frequency

(a) (b) (c) (d)
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16. In an AC circuit, the impedance is 3 times the reactance, then the phase angle is

(a) 60° (b) 30°

(c) zero (d) None of these

17. Voltage applied to an AC circuit and current flowing in it is given by

V t= +





200 2
4

sin ω π
and i t= − +





2
4

cos ω π

Then, power consumed  in the circuit will be

(a) 200 W (b) 400 W

(c) 200 2 W (d) None of these

18. When 100 volt DC source is applied across a coil, a current of 1 A flows through it. When 100 V
AC source of 50 Hz is applied to the same coil, only 0.5 A current flows. Calculate the
inductance of the coil.

(a) ( / )π 3 H (b) ( / )3 π H

(c) ( / )2 π H (d) None of these

19. In the circuit shown in figure, the reading of the AC ammeter is

(a) 20 2 mA (b) 40 2 mA (c) 20 mA (d) 40 mA

20. An AC voltage is applied across a series combination of L Rand . If the voltage drop across the
resistor and inductor are 20 V and 15 V respectively, then applied peak voltage is

(a) 25 V (b) 35 V

(c) 25 2 V (d) 5 7 V

21. For wattless power in an AC circuit, the phase angle between the current and voltage is

(a) 0° (b) 90°

(c) 45° (d) Not possible

22. The correct variation of resistance R with frequency f is given by

(a) (b) (c) (d)

23. If L Rand be the inductance and resistance of the choke coil, then identify the correct
statement.

(a) L is very high compared to R (b) R is very high compared to L

(c) Both L and R are high (d) Both L and R are low
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24. When an AC signal of frequency 1 kHz is applied across a coil of resistance 100 Ω, then the
applied voltage leads the current by 45°. The inductance of the coil is

(a) 16 mH (b) 12 mH

(c) 8 mH (d) 4 mH

25. The frequency of an alternating current is 50 Hz. The minimum time taken by it in reaching
from zero to peak value is

(a) 5 ms (b) 10 ms

(c) 20 ms (d) 50 ms

26. An alternating voltage is applied across the R-L combination.V t= 220 120sin and the current
I t= − °4 120 60sin ( ) develops. The power consumption is

(a) zero (b) 100 W

(c) 220 W (d) 440 W

27. In the AC network shown in figure, the rms current flowing through the
inductor and capacitor are 0.6 A and 0.8 A, respectively. Then, the current
coming out of the source is

(a) 1.0 A

(b) 1.4 A

(c) 0.2 A

(d) None of the above

28. The figure represents the voltage applied across a pure inductor. The diagram which correctly
represents the variation of current i with time t is given by

(a) (b) (c) (d)

29. A steady current of magnitude I and an AC current of peak value I are allowed to pass through
identical resistors for the same time. The ratio of heat produced in the two resistors will be

(a) 2 : 1 (b) 1 : 2

(c) 1 : 1 (d) None of these

30. A 50 Hz AC source of 20 V is connected across R Cand as shown in figure.
The voltage across R is 12 V. The voltage across C is

(a) 8 V

(b) 16 V

(c) 10 V

(d) Not possible to determine unless value of R Cand are given
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Subjective Questions

Note You can take approximations in the answers.

1. A 300 Ω resistor, a 0.250 H inductor, and a 8.00 Fµ capacitor are in series with an AC source
with voltage amplitude 120 V and angular frequency 400 rad/ s.

(a) What is the current amplitude?

(b) What is the phase angle of the source voltage with respect to the current? Does the source voltage

lag or lead the current?

(c) What are the voltage amplitudes across the resistor, inductor, and capacitor?

2. A series circuit has an impedance of 60.0 Ω and a power factor of 0.720 at 50.0 Hz. The source
voltage lags the current.

(a) What circuit element, an inductor or a capacitor, should be placed in series with the circuit to

raise its power factor?

(b) What size element will raise the power factor to unity?

3. Voltage and current for a circuit with two elements in series are expressed as

V t t( ) sin ( / )= +170 6280 3π volt

i t t( ) sin ( / )= +8.5 amp6280 2π
(a) Plot the two waveforms.

(b) Determine the frequency in Hz.

(c) Determine the power factor stating its nature.

(d) What are the values of the elements?

4. A 5.00 H inductor with negligible resistance is connected across an AC source. Voltage
amplitude is kept constant at 60.0 V but whose frequency can be varied. Find the current
amplitude when the angular frequency is

(a) 100 rad/s

(b) 1000 rad/s

(c) 10000 rad/s

5. A 300 Ω resistor is connected in series with a 0.800 H inductor. The voltage across the resistor
as a function of time is V tR = ( ) cos2.50 V rad/ s[( ) ].950

(a) Derive an expression for the circuit current.

(b) Determine the inductive reactance of the inductor.

(c) Derive an expression for the voltage VL across the inductor.

6. An L-C-R series circuit with L R= =0.120 H, ,240 Ω and C = 7.30 Fµ carries an rms current of
0.450 A with a frequency of 400 Hz.

(a) What are the phase angle and power factor for this circuit?

(b) What is the impedance of the circuit?

(c) What is the rms voltage of the source?

(d) What average power is delivered by the source?

(e) What is the average rate at which electrical energy is converted to thermal energy in the

resistor?

(f) What is the average rate at which electrical energy is dissipated ( converted to other forms) in

the capacitor?

(g) In the inductor?
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LEVEL 2

Single Correct Option

1. A capacitor and resistor are connected with an AC source as shown in figure. Reactance of
capacitor is XC = 3 Ω and resistance of resistor is 4 Ω. Phase difference between current

I Iand 1 is tan− 





= °









1 3

4
37

(a) 90° (b) zero (c) 53° (d) 37°

2. A circuit contains resistance R and an inductance L in series. An alternating voltage
V V t= 0 sin ω is applied across it. The currents in R Land respectively will be

(a) I I t I I tR L= =0 0cos , cosω ω (b) I I t I I tR L= − =0 0sin , cosω ω
(c) I I t I I tR L= = −0 0sin , cosω ω (d) None of the above

3. In the circuit shown in figure, the AC source gives a voltage V t= 20 2000cos ( ). Neglecting
source resistance, the voltmeter and ammeter readings will be

(a) 0 V, 2.0 A (b) 0 V, 1.4 A (c) 5.6 V, 1.4 A (d) 8 V, 2.0 A

4. A signal generator supplies a sine wave of 200 V, 5 kHz to the circuit shown in the figure. Then,
choose the wrong statement.

(a) The current in the resistive branch is 0.2 A

(b) The current in the capacitive branch is 0.126 A

(c) Total line current is ≈ 0.283 A

(d) Current in both the branches is same

V = V t0 sin ω

I2

I1

I

XC = 3Ω

R = 4Ω

AC

R L

A

I1

I

50 Fµ4Ω5 mH,

6Ω

V

100 Ω

µF1
π

200 V, 5 kHz



5. A complex current wave is given by i t= +( sin )5 5 100 ω A. Its average value over one time
period is given as

(a) 10 A (b) 5 A

(c) 50 A (d) 0

6. An AC voltage V V= 0 sin 100 t is applied to the circuit, the phase difference between current
and voltage is found to be π/ 4, then

(a) R C= =100 1Ω, µF (b) R C= =1 10k FΩ, µ
(c) R L= =10 1k HΩ, (d) R L= =1 10k HΩ,

7. In series L-C-R circuit, voltage drop across resistance is 8 V, across inductor is 6 V and across
capacitor is 12 V. Then,

(a) voltage of the source will be leading in the circuit

(b) voltage drop across each element will be less than the applied voltage

(c) power factor of the circuit will be 3 /4

(d) None of the above

8. Consider an L-C-R circuit as shown in figure with an AC source of peak value V0

and angular frequency ω. Then, the peak value of current through the AC
source is

(a)
V

R
L

C

0

2

2
1 1+ −





ω
ω

(b) V
R

C
L

0 2

2
1 1+ −











ω
ω

(c)
V

R L
C

0

2

2
1+ −





ω
ω

(d) None of these

9. The adjoining figure shows an AC circuit with resistance R, inductance L and source voltage
Vs . Then,

(a) the source voltage Vs = 72.8 V

(b) the phase angle between current and source voltage is tan ( / )−1 7 2
(c) Both (a) and (b) are correct

(d) Both (a) and (b) are wrong
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10. When an alternating voltage of 220 V is applied across a device P, a current of 0.25 A flows

through the circuit and it leads the applied voltage by an angle π/ 2 radian. When the same

voltage source is connected across another device Q, the same current is observed in the circuit

but in phase with the applied voltage. What is the current when the same source is connected

across a series combination of P Qand ?

(a)
1

4 2
A lagging in phase by π/4 with voltage (b)

1

4 2
A leading in phase by π/4 with voltage

(c)
1

2
A leading in phase by π/4 with voltage (d)

1

4 2
A leading in phase by π/2 with voltage

11. In a parallel L-C-R circuit as shown in figure if I I I IR L C, , and represent the rms values of

current flowing through resistor, inductor, capacitor and the source, then choose the

appropriate correct answer.

(a) I I I IR L C= + + (b) I I I IR L C= + −
(c) IL or IC may be greater than I (d) None of these

12. In a series L-C-R circuit, current in the circuit is 11 A when the applied voltage is 220 V.

Voltage across the capacitor is 200 V. If the value of resistor is 20 Ω, then the voltage across the

unknown inductor is

(a) zero (b) 200 V

(c) 20 V (d) None of these

13. In the circuit shown in figure, the power consumed is

(a) zero (b)
V

R

0
2

2
(c)

V R

R L

0
2

2 2 22( )+ ω
(d) None of these

14. In a series L C- circuit, the applied voltage is V0. If ω is very low, then the
voltage drop across the inductor VL and capacitor VC are

(a) V
V

V
V

L C= =0 0

2 2
; (b) V V VL C= =0 0;

(c) V V VL C= =0 0; (d) V V
V

L C= − = 0

2
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15. A coil, a capacitor and an AC source of rms voltage 24 V are connected in series. By varying the
frequency of the source, a maximum rms current of 6 A is observed. If coil is connected to a DC
battery of emf 12 volt and internal resistance 4 Ω, then current through it in steady state is

(a) 2.4 A (b) 1.8 A

(c) 1.5 A (d) 1.2 A

16. In a series C R- circuit shown in figure, the applied voltage is 10 V and the voltage across
capacitor is found to be 8 V. The voltage across R, and the phase difference between current
and the applied voltage will respectively be

(a) 6 V, tan− 





1 4

3
(b) 3 V, tan− 





1 3

4

(c) 6
3

4

1V, tan− 





(d) None of these

17. An AC voltage source described byV t= 10 2cos ( / )π is connected to a1 µF capacitor as shown in
figure. The key K is closed at t = 0. The time ( )t > 0 after which the magnitude of current I
reaches its maximum value for the first time is

(a) 1 s (b) 2 s

(c) 3 s (d) 4 s

18. An AC voltage source V V t= 0 sin ω is connected across resistance R and capacitance C as

shown in figure. It is given that R C= 1/ω . The peak current is I0. If the angular frequency of the

voltage source is changed to ω/ 3, then the new peak current in the circuit is

(a)
I0

2
(b)

I0

2

(c)
I0

3
(d)

I0

3
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More than One Correct Options

1. In a R-L-C series circuit shown, the readings of voltmeters V V1 2and are 100 V and 120 V.

Choose the correct statement(s).

(a) Voltage across resistor, inductor and capacitor are 50 V, 86.6 V and 206.6 V respectively

(b) Voltage across resistor, inductor and capacitor are 10 V, 90 V and 30 V respectively

(c) Power factor of the circuit is
5

13

(d) Circuit is capacitive in nature

2. Current in an AC circuit is given by i t t= +3 4sin cos ,ω ω then

(a) rms value of current is 5 A

(b) mean value of this current in positive one-half period will be
6

π
(c) if voltage applied is V V tm= sin ω , then the circuit may contain resistance and capacitance

(d) if voltage applied is V V tm= cos ω , then the circuit may contain resistance and inductance only

3. A tube light of 60 V, 60 W rating is connected across an AC source of 100 V and 50 Hz frequency.

Then,

(a) an inductance of
2

5π
H may be connected in series

(b) a capacitor of
250

π
µF may be connected in series to it

(c) an inductor of
4

5π
H may be connected in series

(d) a resistance of 40 Ω may be connected in series

4. In an AC circuit, the power factor

(a) is unity when the circuit contains an ideal resistance only

(b) is unity when the circuit contains an ideal inductance only

(c) is zero when the circuit contains an ideal resistance only

(d) is zero when the circuit contains an ideal inductance only

5. In an AC series circuit, R XL= =10 20Ω, Ω and XC = 10 Ω. Then, choose the correct options

(a) Voltage function will lead the current function

(b) Total impedance of the circuit is 10 2 Ω
(c) Phase angle between voltage function and current function is 45°

(d) Power factor of circuit is
1

2
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6. In the above problem further choose the correct options.

(a) The given values are at frequency less than the resonance frequency

(b) The given values are at frequency more than the resonance frequency

(c) If frequency is increased from the given value, impedance of the circuit will increase

(d) If frequency is decreased from the given value, current in the circuit may increase or decrease

7. In the circuit shown in figure,

(a) VR = 80 V (b) XC = 50 Ω
(c) VL = 40 V (d) V0 100= V

8. In L-C-R series AC circuit,

(a) If R is increased, then current will decrease (b) If L is increased, then current will decrease

(c) If C is increased, then current will increase (d) If C is increased, then current will decrease

Comprehension Based Questions

Passage I (Q. No. 1 to 3)

A student in a lab took a coil and connected it to a 12 V DC source. He measures the steady state

current in the circuit to be 4 A. He then replaced the 12 V DC source by a 12 V, ( /ω = 50 rad s )AC

source and observes that the reading in the AC ammeter is 2.4 A. He then decides to connect a

2500 µF capacitor in series with the coil and calculate the average power developed in the

circuit. Further he also decides to study the variation in current in the circuit (with the capacitor
and the battery in series).

Based on the readings taken by the student, answer the following questions.

1. The value of resistance of the coil calculated by the student is

(a) 3 Ω (b) 4 Ω
(c) 5 Ω (d) 8 Ω

2. The power developed in the circuit when the capacitor of 2500µF is connected in series with the
coil is

(a) 28.8 W (b) 23.04 W

(c) 17.28 W (d) 9.6 W

3. Which of the following graph roughly matches the variations of current in the circuit (with the
coil and capacitor connected in the series) when the angular frequency is decreased from
50 rad/s to 25 rad/s?

(a) (b) (c) (d)
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Passage II (Q. No. 4 to 6)

It is known to all of you that the impedance of a circuit is dependent on the frequency of source.

In order to study the effect of frequency on the impedance, a student in a lab took 2 impedance
boxes P and Q and connected them in series with an AC source of variable frequency. The emf of

the source is constant at 10 V. Box P contains a capacitance of 1 µF in series with a resistance of

32 Ω. And the box Q has a coil of self-inductance 4.9 mH and a resistance of 68 Ω in series. He

adjusted the frequency so that the maximum current flows in P Qand . Based on his
experimental set up and the reading by him at various moment, answer the following questions.

4. The angular frequency for which he detects maximum current in the circuit is

(a) 10 75 / rad /s (b) 104 rad/s

(c) 105 rad/s (d) 10 74 / rad /s

5. Impedance of box P at the above frequency is

(a) 70 Ω (b) 77 Ω
(c) 90 Ω (d) 100 Ω

6. Power factor of the circuit at maximum current is

(a) 1/2 (b) 1

(c) 0 (d) 1/ 2

Match the Columns

1. Match the following two columns for a series AC circuit.

Column I Column II

(a) Only C in the circuit (p) current will lead

(b) Only L in the circuit (q) voltage will lead

(c) Only R in the circuit (r) φ = °90

(d) R Cand in the circuit (s) φ = °0

2. Applied AC voltage is given as

V V t= 0 sin ω

Corresponding to this voltage, match the following two columns.

Column I Column II

(a) I I t= 0 sin ω (p) only R circuit

(b) I I t= − 0 cos ω (q) only L circuit

(c) I I t= +0 6sin ( / )ω π (r) may be C-R circuit

(d) I I t= −0 6sin ( / )ω π (s) may be L-C-R circuit

3. For an L-C-R series AC circuit, match the following two columns.

Column I Column II

(a) If resistance is increased (p) current will increase

(b) If capacitance is increased (q) current will decrease

(c) If inductance is increased (r) current may increase or decrease

(d) If frequency is increased (s) power may decrease or increase
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4. In the circuit shown in figure, match the following two columns. In Column II, quantities are

given in SI units.

Column I Column II

(a) Value of resistance R (p) 60

(b) Potential difference across capacitor (q) 20

(c) Potential difference across inductor (r) 30

(d) Applied potential difference (s) None of the above

5. Corresponding to the figure shown, match the two columns.

Column I Column II

(a) Resistance (p) 4

(b) Capacitive reactance (q) 1

(c) Inductive reactance (r) 2

(d) Impedance (s) 3

Subjective Questions

Note Power factor leading means current is leading.

1. A coil is in series with a 20 µF capacitor across a 230 V, 50 Hz supply. The current taken by the
circuit is 8 A and the power consumed is 200 W. Calculate the inductance of the coil if the
current in the circuit is

(a)  leading (b)  lagging

2. The current in a certain circuit varies with time as shown in figure. Find the average current
and the rms current in terms of I0.

.

3. Two impedances Z1 and Z2 when connected separately across a 230 50V Hz, supply consume

100 W and 60 W at power factor of 0.5 lagging and 0.6 leading respectively. If these

impedances are now connected in series across the same supply, find

(a) total power absorbed and overall power factor

(b) the value of reactance to be added in series so as to raise the overall power factor to unity.
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4. In the figure shown, the reading of voltmeters are V V1 240 40= =V V, and V3 10= V. Find

(a) the peak value of current (b) the peak value of emf

(c) the value of L and C

5. In the circuit shown in figure power factor of box is 0.5 and power factor of circuit is 3 2/ .

Current leading the voltage. Find the effective resistance of the box.

6. A circuit element shown in the figure as a box is having either a capacitor or an inductor. The

power factor of the circuit is 0.8, while current lags behind the voltage. Find

(a) the source voltage V,

(b) the nature of the element in box and find its value.

7. The maximum values of the alternating voltages and current are 400 V and 20 A respectively

in a circuit connected to 50 Hz supply and these quantities are sinusoidal. The instantaneous

values of the voltage and current are 200 2 V and 10 A, respectively. At t = 0, both are

increasing positively.

(a) Write down the expression for voltage and current at time t.

(b) Determine the power consumed in the circuit.

8. An L-C circuit consists of an inductor coil with L = 5.00 mH and a 20.0 Fµ capacitor. There is

negligible resistance in the circuit. The circuit is driven by a voltage source with V V t= 0 cosω .

If V0 = 5.00 mV and the frequency is twice the resonance frequency, determine

(a) the maximum charge on the capacitor

(b) the maximum current in the circuit

(c) the phase relationship between the voltages across the inductor, the capacitor and the source.
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9. A coil having a resistance of 5 Ω and an inductance of 0.02 H is arranged in parallel with
another coil having a resistance of 1 Ω and an inductance of 0.08 H. Calculate the power
absorbed when a voltage of 100 V at 50 Hz is applied.

10. A circuit takes a current of 3 A at a power factor of 0.6 lagging when connected to a

115 50V Hz– supply. Another circuit takes a current of 5 A at a power factor of 0.707 leading

when connected to the same supply. If the two circuits are connected in series across a 230 V,

50 Hz supply, then calculate

(a) the current (b) the power consumed and (c) the power factor

Answers

Introductory Exercise 28.1
1. (a) 628 Ω (b) 6.37 mH (c) 1.59 kΩ (d) 1.59 mF 2. 0.036 H, 111.8 V 3. 7.7 H, 6 A

Introductory Exercise 28.2
1. 650 Hz, 0 2. 0.2

Exercises

LEVEL 1

Assertion and Reason

1. (a) 2. (b) 3. (a) 4. (b) 5. (a or b) 6. (b) 7. (a) 8. (a,b) 9. (b) 10. (b)

11. (c)

Objective Questions

1. (c) 2. (b) 3. (d) 4. (d) 5. (a) 6. (d) 7. (d) 8. (d) 9. (a) 10. (a)

11. (b) 12. (b) 13. (c) 14. (c) 15. (b) 16. (d) 17. (d) 18. (b) 19. (c) 20. (c)

21. (b) 22. (a) 23. (a) 24. (a) 25. (a) 26. (c) 27. (c) 28. (c) 29. (a) 30. (b)
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Subjective Questions
1. (a) 0.326 A (b) 35.3°, lagging (c) 97.8 V, 32.6 V, 102 V

2. (a) Inductor (b) 0.133 H

3. (b) 1000 Hz (c)
3

2
, leading (d) R = 17.32 Ω ,C = 15.92 Fµ

4. (a) 0.12 A (b) 1.2 10 A
–2× (c) 1.2 10 A

–3×
5. (a) (8.33 mA)cos (950 rad s/ ) t (b) 760 Ω (c) – (6.33 V) sin (950 rad s/ )t

6. (a) 45.8 ,° voltage leads the curren,t 0.697 (b) 343 Ω (c) 155 V (d) 48.6 W (e) 48.6 W (f) 0 (g) 0

LEVEL 2

Single Correct Option

1.(c) 2.(d) 3.(c) 4.(b) 5.(b) 6.(b) 7.(d) 8.(b) 9.(a) 10.(b)

11.(c) 12.(b) 13.(c) 14.(b) 15.(c) 16.(a) 17.(a) 18.(b)

More than One Correct Options

1.(a,c,d) 2.(c,d) 3.(c,d) 4.(a,d) 5.(a,b,c,d) 6.(b,c,d) 7.(a,b,c) 8.(a)

Comprehension Based Questions

1.(a) 2.(c) 3.(b) 4.(a) 5.(b) 6.(b)

Match the Columns
1. (a) → p,r (b) → q,r (c) → s (d) → p

2. (a) → p,s (b) → q (c) → r,s (d) → s

3. (a) → q,s (b) → r,s (c) → r,s (d) → r,s

4. (a) → q (b) → p (c) → r (d) → s

5. (a) → s (b) → p (c) → r (d) → q

Subjective Questions

1. (a) 0.416 H (b) 0.597 H 2. zero,
I0

3
3. (a) 99 W, 0.92 leading (b) 194.2 Ω

4. (a) 10 2A (b) 50 2V (c)
1

25π
H, (d)

1

100π
F 5. 5 Ω

6. (a) 100 V (b) inductor, L = 1.6
H

π
7. (a) V t i t= + = +400 100 4 20 100 6sin ( / ), sin ( / )π π π π (b) P = 3864 W

8. (a) 33.4 nC (b) 0.211 mA

(c) Source and inductor voltages in phase. Capacitor voltage lags by 180°.

9. 797 W 10. (a) 5.5 A (b) 1.188 kW (c) 0.939 lag
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23. Current Electricity

1. Q i
q

t

ne

t
= =

∴ n
it

e
= =

× −
( ) ( )0.7

1.6

1

10 19

= ×4.375 1018

2. Q q it=
= × ×( ) ( )3.6 3 60 60

= 38880 C

3. (a) Q q it= = =( ) ( )7.5 337.5 C45

(b) n
q

e
= =

× −
337.5

1.6 10 19

= ×2.1 1021

4. f
v

r
= = ×

× −2

106

π π
2.2

(2 ) (5.3 10 )11

= ×6.6 Hz1015

I qf=
= × ×−( ) ( )1.6 6.6 110 019 15

= × −1.0 A6 10 3

= 1.0 mA6

5. ∆q idt t dt= = +∫ ∫0

10

0

10
10 4( )

= 300 C

6. Current due to both is from left to right. So, the

two currents are additive.

1. False. Only under electrostatic conditions (when

i = 0 ) all points of a conductor are at same

potential.

1. i neAvd=
i.e. v id ∝
When current has increased from i = 1.2 A to

i = 6.0 A, i.e five times, then drift velocity will

also increase to five times.

2. From i neAvd=

We have v
i

neA
d =

or vd =
× × × ×− −

1

8 5 10 16 10 1028 19 4. .

= × −0 735 10 6. m/s

= 0 735. µ m/s

t
l

vd

=

= ×
× −

10 10

0 735 10

3

6.
s

= ×
× × × × ×−

10 10

10 60 60 24 365

3

60.735
yr

= 431.4 yr

1. R
l

A
= = ×

×

−

−ρ
π
( ) ( )

( / ) ( )

1.72

2.05

10 35

4 10

8

3 2
= 0.18 Ω

2. ρ
σ

= 1 ⇒ ρσ = constant

3. R
l

A
= ρ

∴ A
l

R
= ρ

m Vd= ( ), where V = volume and d = density

∴ m Ald= ( )

= ρl

R
d

2

= × ×−( ) ( ) ( )1.72 3.5 8.9

0.125

10 108 2 3

= × −15 10 3 kg

= 15 g

4. R
L

A

L

tL t
= = =ρ ρ ρ( )

i.e. R is independent of L.

Hence, the correct option is (c).

1. Copper is metal and germanium is semiconductor.

Resistance of a metal decreases and that of a

semiconductor increases with decrease in

temperature.

∴ Correct option is (d).
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2. 4.1 4.0[ ( )]1 10 203+ × −− θ

= + × −−3 9 1 10 203. [ ( )]5.0 θ

Solving we get,

θ ≈ °85 C

1. PD across each resistance is 10 V.

∴ i2
10

2
5Ω = = A

i4
10

4
Ω = = 2.5A

2. VA = 0 V (as it is earthed)

V VC A− = 5 V

∴ VC = 5 V

V VB A− = 2 V

∴ VB = 2 V

V VD C− =10 V

∴ V VD C= + =10 15 V

i
V VC B

1
1

3Ω = − = A from C to B as V VC B>

i
V VD A

2
2

Ω = − = 7.5A from D to A as V VD A>

3. V VA B=

∴ VAB = 0

or E ir− = 0

∴ E
E− +



 =15

8
2 0( )

Solving this equation, we get

E = 5 V

4. Net emf = −( )n m E2

= − ×( ) ( )10 2 2 1

= 6 V

i = Net emf

Net resistance

=
+

=6

10 2
0.5 A

5. VR 1
0=

∴ iR 1
0=

V VR R2 3
10= = V

∴ i iR R2 3

0

10
1= = 1 = A

1. Applying loop law equation in upper loop, we

have

E ir+ − − =12 1 0 …(i)

Applying loop law equation in lower loop, we

have where

i = + =1 2 3A

E + − =6 1 0 …(ii)

Solving these two equations, we get

E = − 5 V and r = 2Ω
2. Power delivered by a battery = Ei

= ×12 3

= 36 W

Power dissipated in resistance

= =i R2 23 2( ) ( )

= 12 W

1. (a) Equivalent emf (V) of the battery

PD across the terminals of the battery is equal to

its emf when current drawn from the battery is

zero. In the given circuit,

Current in the internal circuit,

i
V V

r r
= = +

+
Net emf

Total resistance

1 2

1 2

Therefore, potential difference between A and

B would be

V V V irA B− = −1 1

∴ V V V
V V

r r
r

V r V r

r r
A B− = − +

+






= −
+1

1 2

1 2
1

1 2 2 1

1 2

So, the equivalent emf of the battery is

V
V r V r

r r
= −

+
1 2 2 1

1 2

Note that if V r V r V1 2 2 1 0= =:
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r

i

V1

V2

r

i = 0

A

i = 0

B

2

1



If V r V r V VA B1 2 2 1> − =: Positive i.e. A side of

the equivalent battery will become the positive

terminal and vice-versa.

(b) Internal resistance (r) of the battery

r r1 2and are in parallel. Therefore, the internal

resistance r will be given by

1 1 11 2/ / /r r r= +

or r
r r

r r
=

+
1 2

1 2

2.

E
E r

r
= = −

+
=Σ

Σ
( / )

( / )

( / ) ( / )

( / ) ( / )1

6 1 2 1

1 1 1 1
2 V

Now, net emf of E and 4 V is 2V as they are

oppositely connected.

3. E
E r

r
eq = Σ

Σ
( / )

( / )1

= + +
+ +

( / ) ( / ) ( / )

( / ) ( / ) ( / )

10 1 4 2 6 2

1 1 1 2 1 2

= 7.5V

1 1

1

1

2

1

2r
= + +

∴ r = 0.5 Ω

1. V i G Rg= +( )

∴ R
V

i
G

g

= − = series resistance connected with

galvanometer

=
×







 −−

5

5 10
1

3
= 999 Ω

2.

i

i i

S

G

g

g−
=

∴ S
i

i i
G

g

g

=
−











= ×
× − ×











−

− −
( )

( )
( )

50 10

5 10 50 10
100

6

3 6
≈ 1.0 Ω

3. V i Gg=

∴ i
V

G
g =

Now, nV i G R
V

G
G Rg= + = +( ) ( )

∴ R n G= −( )1

1. r R
l

l
= −







1

2

1

= −



5 1

0.52

0.4

= 1.5 Ω

2. (a) V
E

AJ =
2

or emf of lower battery

∴ i R
E

AJ =
2

or
E

r r

r
l

E

15

15

600 2+










 =( )

Solving this equation, we get

l = 320 cm

(b) Resistance of 560
15

600
560cm =

r



 ( )

= 14r

Now the circuit is as under,

Applying loop law in upper loop

we have,

E r i i i r i r− − − − =14 01 2 1 1( ) …(i)

Applying loop law in lower law loop

we have,

− − + − =E
i r i i r

2
14 02 1 2( ) ( ) …(ii)

Solving these two equations

we get, i
E

r
2

3

22
=
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4 V
0.5 Ω E r
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G

i i– g

ig

S

INTRODUCTORY EXERCISE 23.10

G

r

i
1

i
2

E

E/2
r

i
1
–i

2

14r r



1. R > 2 Ω ⇒ 100 − >x x

Applying
P

Q

R

S
=

We have
2

100R

x

x
=

−
…(i)

R x

x2

20

80
= +

−
…(ii)

Solving Eqs. (i) and (ii), we get R = 3 Ω
∴ Correct option is (a).

2. Using the concept of balanced, Wheatstone bridge,

we have,

P

Q

R

S
= ⇒ X

( ) ( )52 1

10

48 2+
=

+

∴ X = × =10 53

50
10.6 Ω

∴ Correct option is (b).

3. Slide wire bridge is most sensitive when the
resistance of all the four arms of bridge is same.

Hence, B is the most accurate answer.

1.
P

Q

R

X
= ⇒ X

Q

P
R R= 



 = 





1

10

R lies between 142 Ω and 143 Ω.

Therefore, the unknown resistance X lies between

14.2 Ω and 14.3 Ω.

2. Experiment can be done in similar manner but now

K2 should be pressed first then K1.

3. BC, CD and BA are known resistances.

The unknown resistance is connected between A

and D.

1. Yellow → 4

Red → 2

Orange → 103

Gold → 5

∴ R = × ±( %)4.2 10 53 Ω

2. 2 → Red

4 → Yellow

106 → Blue

5% → Gold

Exercises

LEVEL 1

Assertion and Reason

1. If PD between two terminals of a resistance is

zero, then current through resistance is zero, this is

confirmed. But PD between any two points of a

circuit is zero, this does not mean current is zero.

2. In parallel, V = constant

∴ From the equation

P
V

R
=

2

⇒ P
R

∝ 1

3. R
l

A
= ρ

or
R

l
= resistance per unit length = ∝ρ

A A

1

Near A, area of cross-section is less. Therefore,

resistance per unit length will be more. Hence

from the equation, H i Rt= 2 , heat generation near

A will be more.

Current density, J
i

A
= or J

A
∝ 1

(as i is same)

4. Since net resistance decreases, therefore main

current increases. Hence, net potential difference

across voltmeter also increases.
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5. Even if ammeter is non-ideal, its resistance should

be small and net parallel resistance is less than the

smallest individual resistance.

∴ Rnet < resistance of ammeter in the changed

situation. Hence, net resistance of the circuit will

decrease. So, main current will increase. But

maximum percentage of main current will pass

through ammeter (in parallel combination) as its

resistance is less. Hence, reading of ammeter will

increase.

Initial voltmeter reading = emf of battery

Final voltmeter reading = emf of battery

− potential drop across shown resistance.

Hence, voltmeter reading will decrease.

6. If current flows from a to b, then equation will

become

V ir E Va b− − = or V V E ira b− = +
So, V Va b− is always positive. Hence, Va is always

greater than Vb.

7. Current in the circuit will be maximum when

R = 0.

8. Resistance will increase with temperature on

heating. Hence current will decrease.

Further P
V

R
=

2

or P
R

∝ 1

Resistance is increasing. Hence, power consumed

across R should decrease.

V IR= is just an equation between P D across a

resistance current passing through it and its

resistance. This is not Ohm’s law.

9. Electrons get accelerated by the electric. Then,

suddenly collision takes place. Then, again

accelerated and so on.

11. E
E r E r

r r
eq = +

+
1 1 2 2

1 21 1

/ /

( / ) ( / )

= +
+









E

r E E r

r r
1

1 2 1 2

1 2

1 1

1 1

( / ) ( / ) ( / )

( / ) ( / )

So, Eeq may be greater than E1 also, if E E2 1 1/ >
r1 and r2 are in parallel. Hence, req is less than both

r1 and r2 individually.

Objective Questions

3. H I Rt= 2

∴ [ ]R
H

I t
= 



2

=








 =

−
− −ML T

I T
ML T I ]

2 2

2

2 3 2[

4. R
l

A
=

σ

∴ σ = = = − −l

RA

m

ohm - m
ohm -m

2

1 1

6. 0 5. =
+

E

r 3.75
…(i)

0.4
4.75

=
+

E

r
…(ii)

Solving these two equations, we get

E = 2V

7. In parallel current distributes in increase ratio of

resistance

∴ I

I

S

G

G

S

=

∴ G
I

I
SS

G

=






( )

= −





50 20

20
12( )

= 18 Ω

8.
I

I

S

G

G

S

=

∴ S
I

I
GG

S

=






= 



 =2

98 49
G

G

9. P
V

R
=

2

or P
R

∝ 1

P

P

R

R

l

l

2

1

1

2

1

2

= = (as R l∝ )

∴ P
l

l
P2

1

2
1=







= 





l
P

0.9 l
1 = 1.11 P1

So, power will increase by 11%.

10. By symmetry, V VA B=
or VAB = 0

11. r R
l

l
= −







1

2

1 = −



10

75

60
1

= 2.5 Ω
12. Let V V0 =

Now, I I IAO BO OC+ =

∴ 6

6

3

3

2

2

− + − = −V V V

Solving this equation, we get

V = 3 V
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13. v
i

neA

i

ne r
d = =

( )π 2
⇒ v

i

r
d ∝

2

14. For making voltmeter of higher range, more

resistance is required.

15. V V20Ω = Total

∴ ( ) ( ) ( ) ( )20 0.3 0.8Total= R

∴ RTotal = 30

4
Ω

∴ 4

30

1 1

20

1

151

= + +
R

Solving we get R1 60= Ω
16. Net resistance will decrease by increasing the

parallel resistors. Therefore, main current i will

increase, further,

( ) ( )PD PDVoltmeter Total Ammeter= −V

= −V iTotal (resistance of ammeter)

Since, i has increased. Hence, PD across voltmeter

will decrease.

17. P
V

R
=

2

or P
R

∝ 1
…(i)

Resistor is cut in n equal parts. Therefore, each

resistance will become
R

n
. Now, these are

connected in parallel. Therefore, net resistance will

become
1

n
times

R

n
. or

R

n2
.

Now, from Eq. (i), power will become n2 times.

18. If A is fused, then complete circuit is broken.

19. E ir− = 0

∴ 3
3 15

1 2
1 0− +

+ +






=
R

( )

Solving this equation, we get

R = 3Ω

20. 100 5
2500

2500
=

+








( )

( )R

R

Solving this equation, we get

R = 20Ω
21. Five parallel combination, each of value

R R R

10 10 5
+ =

22.
P

Q
=

−
20

100 20
or Q P= 4 …(i)

∴ P Q<

Now,
P

Q

+ =
−

15 40

100 40

or
P

Q

+ =15 2

3
…(ii)

Solving these two equations, we get

P = 9Ω
23. Total potential of 10V equally distributes between

50 Ω and other parallel combination of 100 Ω and

voltmeter. Hence, their net resistance should be

same. Or

100

100
50

×
+

=R

R

∴ R = =100 Ω resistance of voltmeter

24. V VAC DE=

i R EAC( ) = =1.2

∴ 2

4 1

4

100+






×



 =l 1.2

Solving this equation, we get

l = 75 cm

25.

V VA B− × − − × + − × =3 2 3 1 4 2 1 6

∴ V VA B− =17 V

26.

Equivalent simple circuit is given as

maximum power across R is obtained

When R r= = 0.5 Ω

i
R r

= 2
+

= 2A

∴ = = =i R2 22 2( ) ( )0.5 W
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G

2V 1Ω

i iC

i

A B

D E

1.2V

IG =0

4Ω

6A

1Ω1Ω

4A2 Ω2 Ω

3A A
3V 2V

2A1A

B

0.5Ω2V

R



27. r R
E

V
= −



1 = −



5 1

2.2

1.8
= 10

9
Ω

28. i = −
+ +

=10 5

40

1

92.5 2.5
A (clockwise)

V i i VB A− − =15 25

∴ V V iA B− = = −40
40

9
V

29. Potential drop across potentiometer wire

= × =−( ) ( )0.2 0.02 V10 1003

Now given resistance and potentiometer wire are

in series with given battery. So, potential will drop

in direct ratio of resistance.

∴ 0.02

0.022 490−
= R

∴ R = 4.9Ω
30. When K is open

R Rnet = 3 2/

∴ i E R
E

R
1 3 2

2

3
= =/( / )

When K is closed

R
R R

R R
Rnet = ×

+








 =2

2

2

4

3

∴ i E R
E

R
2 4 3

3

4
= =/ ( / )

∴ i

i

1

2

8

9
=

31.
I

I

S

G

G

S

=

∴ S
I

I
GG

S

=






= ×( / )

( / )

1 34

33 34
3663 = 111 Ω

32. Simple series and parallel grouping of resistors.

33. Two balanced Wheatstone bridges in parallel.

34. Rab = ×
+

=( )3 15

3 15
2.5 Ω

As R60

18

360
60° =

°




 °( ) = 3Ω

35. RAB = 2 [Net resistance of infinite series] + 1

In parallel net resistance is always less than the
smallest one. Hence, net resistance of infinite
series is less than 1Ω.

∴ 1 3Ω Ω< <RAB

36. R R R
R R R

R R R
AB0

0

0

= = + +
+ +

( )

( )

Solving this equation, we get R
R= 0

3

37. Simple circuit is as shown in figure,

Each → R

38. Wheatstone (balanced) between A and B. So,

resistance between C and D can removed.

39.

R
r

r= 



 =4

2
2

4

π π
( )

Now 2 2Ω Ω, and R are in parallel.

40.

41.

Connection can be removed from centre. 3R and

3R from two sides of AB are in parallel.
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Q

B

C D

A

R
BA

2R

2R

R

R

R/2

R/2 R/2

R/2

DC

A B
R

R/2 R/2

A B

⇐

R R

R
R

R R

RRR

R

A

B
RR



Subjective Questions

1. Under electrostatic conditions (when no current

flows), E = 0. When current is non-zero, then

electric field is also non-zero.

2. There is random or thermal motion of free

electrons in the absence of potential difference.

3. i qf q
v

R
= = 



2π

= × ×
×

−

−
( ) ( )

( ) ( )

1.6 2.210 10

2 5 10

1 9 6

11π

= × −1.12 A10 3 = 1.12 mA

4. P
V

R
=

2

∴ R
V

P
=

2

R1

2120

40
360= =( ) Ω

R2

2120

60
240= =( ) Ω

R3

2120

75
192= =( ) Ω

Now, all these resistors are in parallel.

5. (a) i = −
+

=12 6

4 8
0.5 A

(b) P i RR1

2
1 1= = W

⇒ P i RR2

2
2 2= = W

(c) Power supplied by E E i1 1 6= = W

and power consumed by E E i2 2 3= = W

6.
8

12 40
=

−
l

l

Solving this equation, we get

l = 16 cm

7. (a) Ideal voltmeter means infinite resistance.

∴ i = 0

(b) V E= (if i = 0)

= 5 V

(c) Reading of voltmeter = =E 5 V

8. (a) E E1 2>
Therefore, net current is anti-clockwise or
from B to A.

(b) Current through E1 is normal. Hence, it is
doing the positive work.

(c) Current flows from B to A

∴ V VB A>

9. i = −
+

=150 50

2 3
20 A (anti-clockwise)

V VQ P+ − × =150 20 2

∴ V VQ P= −110 = −10 V

10. ρ = ×8.89 kg/m3103

Mass of 1 103 3m 8.89 kg= ×

= × = ×8.89 kg 8.89 g10 103 6

∴ Number of gram moles = ×8.8

63.54

9 106

= ×1.4 105

Number of atoms = × × ×1.4 6.0210 105 23

= ×8.42 1028

One atom emits one conduction electron.

Therefore, number of free electrons in unit volume

(or 1 3m volume)

n = ×8.42 per m1028 3

Now, i neA vd=

∴ v
i

neA

i

ne r
d = =

π 2

=
× × ×− −

2 0

10 10 1028 19 3 2

.

( ) ( )( ) ( )8.42 1.6 0.5π

= × −1.9 m/s10 4

11. (a) In 1 m, potentials difference,

V iR= ∴ =0.49 V

∴ i
R

A

l
= =0.4 0.499 ( )

ρ

= ×
×

−

−
( ) ( / ) ( )

( ) ( )

0.49 0.84

2.75

π 4 10

10 1

3 2

8

= 9.9 A

(b) PD between two points, 12 m apart

( )= 0.49 V/m m( )12 = 5.88 V

(c) R
V

i
= = =5 88

9 9

.

.
0.6 Ω

12. Radius at distance x from end P,

r a
b a

l
x= + −





Resistance of element of thickness dx is
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b

Q

P

l

dx

x

a



dR
dx

r
= ρ

π
( )

2
(Using R

l

A
= ρ

)

∴ R dR
X

X l
=

=

=

∫ 0

13. i
E

R r
=

+
⇒ P R= power across = i R2

P
E

R r
R=

+






2

…(i)

For power to be maximum,

dP

dR
= 0

By putting
dP

dR
= 0 we get, R r=

Further, by putting R r= in Eq. (i)

We get, P
E

r
max =

2

4

14. As derived in the above question,

P
E

r
max =

2

4

Here, E = net emf= + =2 2 4 V

and r = net internal resistance

= + =1 1 2Ω

∴ Pmax

( )

( ) ( )
= =4

4 2
2

2

W

15. In series,

α α α
eq = +

+
R R

R R

01 1 02 2

01 02

= +
+

( ) ( ) ( ) ( )600 300

600 300

0.001 0.004

= °0.002 per C

Now, R Rt = +0 1[ ]α θ∆
= + + × =( ) [ ]600 300 1 30 9540.002 Ω

16. In parallel current distributes in inverse ratio of

resistance 1→ Aluminium 2 → Copper

R

R

i

i

1

2

2

1

=

ρ
ρ

1 1 1

2 2 2 3

l A

l A

/

/
= 2

∴ ρ
ρ

1 1 2
2

2 2 1
2

2

3

l d

l d
=

∴ d
l

l
d2

2 2

1 1
1

2

3
=









ρ
ρ

= × ×
× ×









2 7 6

3 0 028
1

0.01

7.5
mm

.
( )

= 0.569 mm

17. (a) E
V

l
= = =0.938

0.75
1.2 V/m5

(b) E J= ρ

∴ ρ = =
×

E

J

1.25

4.4 107

= × −2.84 10 8 Ω-m

18. (a) J
i

A

V

RA

V

l

A
A

= = =






ρ

J
V

l
=

ρ
…(i)

or J
l

∝ 1

l dmin .= So, J is maximum. Hence, potential

difference should be applied across the face

( )2 3d d×
From Eq. (i),

J
V

d
max =

ρ

(b) i
V

R

V

l A

VA

l
= = =

( / )ρ ρ

or i
A

l
∝

Across face ( ),2 3d d× area of cross-section is

maximum and l is minimum. Hence, current is

maximum.

i
V d d

d
max

( )

( )
= ×2 3

ρ
= 6Vd

ρ

19. (a) ρ π= = × −RA

l

( ) ( / ) ( )0.1 2.504 4 10

14

3 2

= × −3.65 10 8 Ω-m

(b) V El= = × =1.28 17.9214 V

∴ i
V

R
= = =17.92

0.104
172.3 A

(c) v
i

neA
d =

=
× × 



 ×− −

172 3

10 10
4

1028 19 3 2

.

( ) ( ) ( )8.5 1.6 2.5
π

= × −2.58 m/s10 3
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20. R R1 2 20+ = …(i)

α α α
eq = +

+
R R

R R

1 1 2 2

1 2

(in series)

0
10 10

20

1
3

2
3

= − × + ×− −R R( ) ( )0.5 5.0

∴ R R1 210= …(ii)

Solving Eqs. (i) and (ii), we get

R R2 = Fe = 20

11
Ω

= 1.82Ω
R R1 = Cu

= 10 2R

= 18.18 Ω
21. 8Ω and 12Ω resistors are in parallel.

∴ Rnet 4.8= ×
+

=8 12

8 12
Ω

∴ i = 24

4.8

= 5A

22. All four resistors are in parallel

∴ 1 1

8

1

4

1

6

1

12R
= + + +

R = 8

5
Ω

∴ i = 24

8 5/

= 15 A

23. All these resistors are in parallel.

24. The given network is as shown below.

The simple circuit is as shown below.

Now, this is a balanced Wheatstone bridge in

parallel with 12 Ω resistance.

25. First case

i = +
+ +

=12 6

1 2 3
3A (clockwise)

Now, V VA G− =12 V

∴ VA = 12 V, as VG = 0

V VA B− = × =1 3 3 V

∴ V VB A= − =3 9 V

V VB C− = × =2 3 6 V

∴ V VC B= − =6 3 V

V VG D− = 6 V

∴ VD = − 6 V, as VG = 0

In the second case,

i = −
+ +

=12 6

1 2 3
1 A

Rest procedure is same.

26. i =
+ +

=200

5 10 25
5 A (anti-clockwise)

V VG3 25 5 125− = × =
∴ V3 125= Vas VG = 0

V VG − = × =2 10 5 50

∴ V2 50= − V

V V2 1 5 5 25− = × = V

∴ V V1 2 25 75= − = − V

Now, V V V3 2 3 2− = −

27. (a)

Rnet 1.0 2.0= + + ×
+

50 200

50 200

= 43 Ω

∴ i = =4.3
0.1 A

43

= Readings of ammeter

Readings of voltmeter

= (i) net resistance of 50 Ω and 200 Ω

= ×
+







( )0.1
50 200

50 200

= 4 V
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V
1 V

3

V
2

V
4
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6

2

3

4

6

6 3V3

4 2V4
V1

V2

12

50Ω 2.0Ω

200Ω

1.0Ω4.3V



(b)

Rnet 1.0= + ×
+

52 200

52 200
= 42.27 Ω

∴ i = ≈4.3

42.27
0.1 A

Now
i

i

1

2

200

52
=

∴ i1
200

252
= 



 ( )0.1 = 0.08 A

= Reading of ammeter

∴ Reading to voltmeter

= Potential difference across 50 Ω and 2.0 Ω
= ×0.08 52 ≈ 4.2 V

28.

Loop 1

− − − − − =42 6 5 01 2 1 1( )i i i i …(i)

Loop 2

− − − − + − =4 10 8 6 02 2 3 1 2i i i i i( ) ( ) …(ii)

Loop 3

8 16 4 02 3 3( )i i i− = − + = …(iii)

Solving these equations, we get

i i1 24= =A 1.0 A, and i3 = 0.5 A

29. Net resistance of voltmeter ( )R = 400 Ω and 400 Ω
will be 200 Ω. Now, we are getting a balanced

Wheatstone bridge with 100 Ω and 200 Ω resistors

on each side. Potential difference across each side

will be 10 V which will distribute in direct ratio of

resistors 100 Ω and 200 Ω.

∴
V

V

100

200

100

200

1

2

Ω

Ω
= =

or V200

2

3
10

20

3
Ω = 



 =( ) V

30. (a) (i) When switch S is open, V1 and V2 are in

series, connected to 200 V battery. Potential will

drop in direct ratio of their resistors.

∴ V V R RV V1 2 1 2
3000 2000: : := =

= 3 2:

∴ V1

3

5
200 120= × = V

V2

2

5
200 80= × = V

(ii) When S is closed then V1 and R1 are in

parallel. Similarly, V2 and R2 are also in

parallel. Now, they are in series and they come

out to be equal. So, 200 Vwill equally

distribute between them.

∴ V V1 2

200

2
100= = = Veach

(b) i2
100

2000

1

20
= = A

i4
100

3000

1

30
= = A

If we apply junction law at P, then current through

switch

= − =i i2 4

1

60
A in upward direction.

31. Power absorbed by resistor is i R2 or 2W.

Therefore, remaining 3W is absorbed by the

battery ( )= Ei . Hence, E is 3 V and current of 1 A

enters from the position terminal as shown below.

V E irAB = +
= +E iR (Here, r R= )

= +3 1 2( ) ( ) = 5 V

32. 8.4 1.5= −E r …(i)

9 4. = +E r3.5 …(ii)

Solving these two equations, we get

r = 0.2 Ω and E = 8.7 V
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6Ω

5Ω 4Ω

1Ω 8Ω

i
2

42V

A

B

D

CE

i1

i i2 3–

4V

16Ω
i3

10V

(3)

(2)(1)

i i1 2–

V1 V2

i2

i3

i4

2000 Ω 3000 ΩP

3000 Ω 2000 Ω

100V 100V

i1

2 Ω BA 3V

1A

50Ω 2.0 Ω

1.0Ω4.3V

200 Ω

i1
i2

i



33. During charging,

V E ir= + = +2 5( ) ( )0.1 = 2.5 V

34. Simple circuit is as shown below

By symmetry, currents on two sides will be same

(let i)

Now if we apply loop law in any of the closed

loop, we will get i = 0.

35. Net resistance should remain unchanged.

∴ R G R
GS

G S
+ = ′ +

+

∴ ′ − = −
+

=
+

R R G
GS

G S

G

G S

2

36. Current through voltmeter

= = =V

R

100

2500
0.04 A

In parallel current distribution in inverse ratio of

resistors. Hence,

4.96

0.04
= 2500

r

∴ r = 20.16 Ω
37. Voltmeter reads 30 V, half of 60 V. Hence,

resistance of 400 Ω and voltmeter is also equal to

300 Ω.

∴ 300
400

400
= ×

+






R

R

where, R = resistance of voltmeter.

Solving the above equation, we get

R = 1200 Ω
In the new situation,

Rnet = +
+

400
300 1200

300 1200

( ) ( ) = 640 Ω

∴ i = =60

640
0.09375 A

Now voltage drop across

Voltmeter = −60 potential drop across 400 Ω
resistor

= −60 400( ) i

= −60 400 5( ) ( )0.0937

= 22.5 V

38. Rnet = +
+

60
60 120

60 120

( ) ( ) = 100 Ω

∴ i = =120

100
1.2 A

Now, reading of voltmeter

= −120 potential drop across R1

= −120 60( ) ( )1.2 = 48 V

39. In parallel current distributes in inverse ratio of

resistance.

∴
i i

i

G R

S

g

g

−







 = +

∴ R
i i

i
S G

g

g

=
−







 −

= 



 −−

20

10
20

3
( )0.005 = 80 Ω

Note In calculations, we have taken i i ig− ≈ .

40.
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4Ω
2i

2V

2V 2V

i i

4Ω4Ω

r

4.96A

V
0.04A 2500Ω

5A

300 Ω 400 Ω

60 V

i

V

120 Ω

G
ig

i i– g

S

R

100Ω

V

A 2Ω

3.4V 3Ω



Reading of voltmeter = −3.4 Voltage drop across

ammeter and 3Ω resistance

= − × − ×( )3.4 0.0 0.044 2 3

= 3.2 V

Now, 3.2 V
0.04=

+
( ) ( )

( )

100

100

R

R

where, R = resistance of voltmeter

∴ R = 400 Ω
If voltmeter is ideal, then

i =
+ +

=3.4
0.03238 A

2 100 3

Reading of voltmeter = 100i = 3.238 V

41. (a) V E ir= −

= −
+







E
E

r R
r

V

V
ER

r R

V

V

=
+







…(i)

(b) V
E=

100

Substituting in Eq. (i), we get

RV = × −4.5 10 3 Ω

(c) V E
r

RV

=
+

1

1

If RV is increased from this value, V will

increase.

42. (a) I
R R r

A
A

=
+ +

ε

∴ ε = + +( )R R r IA A

Now, ′ =
+

I
R r

A

ε
…(i)

Substituting the value of ε, we get

I I
R

R r
A A

A

A

′ = +
+







1

If R I IA A A→ ′ →0,

(b) In Eq. (i) substituting

I IA A= ′0.99 and the given values, we get

RA = 0.0045 Ω

(c) I
I

R

R r

I

r

R

A
A

A

A

A

A

= ′

+
+

= ′

+
+

1 1
1

1

If RA is decreased from this value, then IA will

increase from 99% of I A′ .

43. P i R= 2

∴ i
P

R
max

max= = =36
15

2.4
A

Total maximum power = 



( )maxi

R2 3

2

= ( ) ( ) ( )15 1.5 2.4 = 54 W

44. V E ir= −

∴ r
E V

i
= − = −2.6 2

1

= 0.6 Ω
Now, power generated in the battery

P i r= 2

= ( ) ( )1 2 0.6 = 0.6 W

Power supplied by the battery = Ei

= 2.6 W

∴ Net power supplied for external circuit

= − =2.6 0.6 2.0 W

45.

Loop equation in loop (1)

+ − − − =7 2 3 01 1 2i i i( ) …(i)

Loop equation in loop (2)

− + − − =1 3 2 01 2 2( )i i i …(ii)

Solving Eqs. (i) and (ii), we get

i1 2= A and i2 1= A

Power supplied by E E i1 1 1 14= = W

But power consumed by E E i2 2 2 1= = W

46. (a) i =
+

=12

5 1
2 A

⇒ P Ei1 24= = W

(b) P i r2
2 22 1 4= = =( ) ( ) W

(c) P P P= − =1 2 20 W

47. (b) i
V

R
= in each resistance

(e) P
V

R
=

2

in each resistance
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R/2 R

imax

3Ω

i
1

1V7V

2Ω 2Ω

i i
1 2
–

i
2

(1) (2)



(f) P
V

R
=

2

or P
R

∝ 1
(as V is same)

48. (a) P
V

R
=

2

∴ V PR= = × ×5 15 103 = 273.8 V

(b) P
V

R
= =

×

2 2

3

120

9 10

( ) = 1.6 W

49. (a)

(b) A balanced Wheatstone bridge in parallel

with R.

(c)

(d)

(e)

Let us take a current of 10 A between A and B

Loop equation in loop (1)

− − − + − =2 2 4 10 01 1 2 1i i i i( ) ( ) …(i)

Loop equation in loop (2)

− + − + − =8 10 10 2 02 2 1 2i i i i( ) ( ) …(ii)

Solving these two equations, we get

i1 = 6.53 A and i2 = 6.11 A

Now let us find VAB across path ACB,

V i iAB = + =2 81 2 61.94 V

Now, V i R RAB = =net net net( )10

∴ 61.9 net4 10= R

or Rnet 6.194= Ω
(f) Two resistors in vertical middle wire can be

removed.

(g) Now balanced Wheatstone bridge, in parallel

with 1Ω resistance between points A and B.

The encircled resistance of 2Ω can be removed

from the Wheatstone bridge.

One resistor of 2Ω has already removed from the

original circuit given the question. As its two ends

will be the same potential (by symmetry).

50. R Ri + 5

If connected by two equal resistors between B and D

and between C and E, the combination is a balanced

Wheatstone bridge and two resistors in series.

∴ R R R R R Rf i= + + = =3 0.6

51.

52. (b) Three resistors are in parallel. Then, one resistor

in series with this combination.

(c) Balanced Wheatstone bridge.  Hence, two

resistors in vertical wire can be removed.

(d) All four resistors are in parallel

(e) A balanced Wheatstone bridge.

53. (a) A balanced Wheatstone bridge with one

resistance in parallel.

(b)
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2Ω
3Ω

4Ω

5Ω 5Ω

5Ω 5Ω
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A

B
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LEVEL 2

Single Correct Option

1. No current will flow through voltmeter. As it is

ideal (infinite resistance). Current through two

batteries

i
r r r r

= −
+

=
+

1.5 1.3 0.2

1 2 1 2

Now, V E ir= −2 2

∴ 1.45 1.5
0.2= −
+





r r

r
1 2

2( )

Solving this equation, we get

r r1 23=
2. In series, PD distributes in direct ratio of

resistance.

In first case,

1
−

=98

198

900

1V RAB

…(i)

In second case,
180

180

900

2 1V RAB −
= …(ii)

Solving these two equations, we get

VAB = 220 V

3. Maximum current will pass through A.

P i R= 2

or P i∝ 2 (R is same)

4. 4 20( )R RA+ = V

∴ R RA= −5

where, RA = resistance of ammeter

5. r R
l

l
= −







1

2

1 = −



132.4

70

60
1 ≈ 22.1 Ω

6. Initial current, i
E E

R r r
1

1 2

1 2

= +
+ +

Final current, when second battery is short

circuited is

i
E

R r
2

1

1

=
+

i i2 1> if
E

R r

E E

R r r

1

1

1 2

1 2+
> +

+ +
or E R E r E r E R1 1 1 1 2 1+ + >

+ + +E r E R E r1 1 2 2 1

or E r E R r1 2 2 1> +( )

7. B and C are in parallel

∴ V VB C=

Further R RA =

R
R R

R R
RBC =

+
=( ) ( )1.5

1.5

3

3

or R RA BC=
∴ V VA BC=
Because iR iRA BC=

8.

Applying loop equation in closed loop we have,

+ − − − =100 30 35 2 0R

∴ 2 35R = V = VR

V5 7 5 35Ω = × = V

∴ V

VR

5 1Ω =

9. r R
l

l
= −







1

2

1

= −



 = −



R

y

x

y x

x
R1

10. Let R at b= +

At t R= =10 20s, Ω
∴ 20 10= +a b …(i)

At t a b= +30 …(ii)

Solving these two equations, we get

a = 1.0 sΩ /

and b = 10 Ω
∴ R t= +( )10

i
E

R t
= =

+
10

10

∆q idt= ∫10

30

=
+





∫

10

1010

30

t
dt

= 10 2log ( )e

11. Suppose n ( )< 1 fraction of length is stretched to m

times.

Then, ( ) ( )1 − + =n l nl m l1.5

or nm n− = 0.5 …(i)
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R
l

A
= ρ = ρl

V l( / )
(V = volume)

= ρl

V

2

or R l∝ 2 (if V = constant)

Now, the second condition is

( ) ( )1 43− + =n R nR m R

∴ nm n2 3− = …(iii)

Solving these two equations, we get

n = 1

8

12. Initially,
l

l

X

R

1

1100

2

3−
= =

∴ l
1

2

5
100= ×

= 40 cm

Finally,
l

l

X

R

2

2100

12

8

3

2−
=

′
= =

∴ l2
3

5
100= ×

= 60 cm

∴ J is displaced by

l l2 1 20− = cm

13. In parallel, current distributes in inverse ratio of

resistance.

∴ 0.0

0.01

0.1

0.9

1

9I −
=

+
Solving we get, I = 1 A

14. Equivalent emf of two batteries ε1 and ε2 is

ε ε ε= +
+

1 1 2 2

1 21 1

/ /

/ /

r r

r r
= +

+
( / ) ( / )

( / ) ( / )

2 2 4 6

1 2 1 6

= 2.5 V

Now, VAN = ε
∴ ( ) ( )I RAN AN = ε

or
12

4 4 4
4

+ ×






=( ) ( )l 2.5

Solving this equation, we get

l = 25

24
m

15. When K1 and K2 both are closed R1 is

short-circuited,

R rnet = +( )50 Ω
When K1 is open and K2 is closed, current remains

half.

Therefore, net resistance of the circuit becomes

two times.

or ( ) ( )50 2 501+ + = +r R r

Of the given options, the above equation is

satisfied if

r = 0 and R1 50= Ω
16. 100 25Ω Ω, and 20 Ω are in parallel.

Their, net resistance is 10 Ω
∴ Rnet = + + =4 10 6 20Ω Ω Ω Ω

V i R= =net V80

17. All these resistors are in parallel.

∴ R
R

rnet = + =
3

4 Ω

Hence, the main current

i
E

R
= =

net

A1

Current through either of the resistance

is
i

3
or

1

3
A

∴ V iR= = 1



 =

3
9 3( ) V

18.

In parallel, current distributers in inverse ratio of

resistance.

0.03 − = = =I

I

G

S

r

r

G

G ( / )4
4

Solving this equation, we get

IG = 0.006 A

19.
8

6

4

3

Ω
Ω

Ω
Ω

=

∴ V VA B=
or VAB = 0

20. V iR=
∴ V R∝ (as i = constant)

∴ V

V

l

r

r

l

A

B

A

A

B

B

=
















ρ
π

π
ρ2

2
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( – 0.01)AI

9Ω 0.9Ω

I

G
IG

S

0.03 – IG



or
r

r

V

V

l

l

B

A

A

B

B

A

= ×

= ×3

2

1

6
= 1

2

21. Current decreases
20

30
times or

2

3
times. Therefore,

net resistance should become
3

2
times.

∴ R + = +50
3

2
2950 50( )

Solving we get, R = 4450Ω

22. E V i RAC AC AC0 = = ( ) ( )

= 



 ×





E

10

10

1
0.2

= E

5
…(i)

In second case,

E
E

x
0

10

10

1
=

+






×



0.3 …(ii)

Solving Eqs. (i) and (ii), we get

x = 5Ω
23. V and V0 are oppositely connected.

24. Balanced Wheatstone bridge. Hence, 1.5 Ω
resistance can be removed from the circuit.

i

i

1

2

50 10

20 4 1
= +

+
= 2.5

∴ i1
1

=
+







2.5

2.5
1.4( ) = 1 A

25. Resistance between A and B can be removed due

to balanced Wheatstone bridge concept. Now, RDE

and RGH are in series and they are connected in

parallel with 10 V battery.

∴ I
R R

DE
DE HG

=
+

=
+

10 10

2 2

= 2.5 A

26. Net resistance of 3kΩ and voltmeter is also 2kΩ.

Now, the applied 10 V is equally distributed

between 2kΩ and 2kΩ. Hence, reading of

voltmeter

= =10

2
5 V

27. R R2 3= as P
V

R
=

2

and in parallel V is same.

Hence, P PR R2 3
=

If R R2 3=
Now current through R1 is double so R1 should be
1

4
th of R2 or R3 for same power. As P i R= 2 .

More Than One Correct Options

1. H
V

R
t=

2

1
1 ⇒ R

V t

H
1

2
1=

Similarly, R
V t

H
2

2
2=

In series, H
V

R R
t=

+








2

1 2

t
H R R

V
= +( )1 2

2

Substituting the values of R1 and R2, we get

t t t= +1 2

In parallel, H
V

R
t=

2

net

= +






V t
R R

2

1 2

1 1

= +






V t

H

V t

H

V t

2

2
1

2
2

Solving we get, t
t t

t t
=

+
1 2

1 2

2.

i = −
+

=6 5

2 3
0.2 A

V E ir1 1 1 6 2= − = − ×0.2

= 5.6 V
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4 Ω

i2

50 Ω 10 Ω

20 Ω

1.4 A

i1

i

R1

R2

R3

i /2

i /2

6 V

5 V 3 Ω

2 Ω i



3. (a) In series, current is same.

∴ I IA B=
(b) V V VA B C+ =

∴ I R I R I RA A B B C C+ =
(d) In parallel, current distributes in inverse ratio

of resistance.

∴ I

I

I

I

R

R R

B

C

A

C

C

A B

= =
+

4. Same as above.

5. (a) V iR=
In series i is same. Hence, V is also same as R

is given same.

(b) R
l

A
= ρ

R is same. Hence, A should be smaller in first

wire. Secondly, v
i

ne A
d = or v

A
d ∝ 1

A of first wire is less. Hence, its drift velocity

should be more.

(c) E
V

l
= or E

l
∝ 1

(V → same)

7. If switch S is open,

i l E1 2λ =
where, i1 = current in upper circuit and λ is

resistance per unit length of potentiometer wire.

∴ Null point length, l
E

i
= 2

1λ
(a) If jockey is shifted towards right, resistance in

upper circuit will increase. So, current i1 will
decrease. Hence, l will increase.

(b) If E1 is increased, i1 will also increase. So, l

will decrease.

(c) l E∝ 2

(d) If switch is closed, then null point will be
obtained corresponding to

V E i r2 2 2 2= −
which is less than E2. Hence, null point length

will decrease.

8. By closing S1, net external resistance will

decrease. So, main current will increase.

By closing S2, net emf will remain unchanged but
net internal resistance will decrease. Hence, main
current will increase.

9.

V i Vb a+ − =10 2

V V ib a− = − =2 10 2 V

∴ i = 6A

Now, V VC a− = × =2 6 12 V

10. Between a and c, balanced Wheatstone bridge is

formed. Across all other points simple series and
parallel grouping of resistors.

Comprehension Based Questions

1 and 2. r R
l

l
= −







1

2

1

∴ 10
500

490
1= −



R

Solving this equation, we get

R = 490 Ω

Further r R
E

V
= −



1

or 10 490
2

1= −



V

Solving, we get V = 1.96 V

Match the Columns

1. Let potential of point e is V volts. Then,

I I I Iae be ce de+ + + = 0

∴ 2

1

4

2

6

1

4

2
0

−



 + −



 + −



 + −



 =V V V V

or V = 4 V

Now current through any wire can be obtained by
the equation,

I
R

= PD

2. i i1 2= or i is same at both sections.

A A1 2<

(a) Current density = ∝i

A A

1

(c)
Resistance

length
= ∝ρ

A A

1

(d) and (b) E or potential difference per unit

length = ( )i (Resistance per unit length)

= 



( )i

A

ρ ∝ 1

A

3. By introducing parallel resistance R3 in the circuit,

total resistance of the circuit will decrease. Hence,

main current i will increase.

Now, V E V E iRR R1 22
= − = −

Since, i is increasing, so VR2
will increase. Hence,

VR1
or current passing through R1 will decrease.
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a b
2Ω

c i

10 V



4. (a) R
H

i t
=

2

∴ [ ] [ ]R = −ML T2 2 / [ ]A T2 = − −[ ]ML T A2 3 2

(b) V iR=
∴ [ ] [ ][ ]V A ML T A= − −2 3 2 = − −[ ]ML T A2 3 1

(c) ρ = RA

l

∴ [ ]
[ ][ ]

[ ]
ρ =

− −ML T A L

L

2 3 2 2

= − −[ ]ML T A3 3 2

(d) [ ] [ ]σ
ρ

= 





= − −1 1 3 3 2M L T A

5. i = −
+ +

=4 1

1 1 1
1A (anti-clockwise)

(a) V E irA = − = − × =4 1 1 3 V

(b) V E irB = + = + × =1 1 1 2 V

(c) | |P Ei i rA = − 2 = × −( ) ( ) ( )4 1 1 12 = 3W

(d) | |P Ei i rB = + 2 = +( ) ( ) ( ) ( )1 1 1 12 = 2W

Subjective Questions

1. (a) Points D and E are symmetrically located with

respect to points A and C. The circuit can be

redrawn as shown in figure.

This is a combination of a balanced Wheatstone

bridge in parallel with a resistance R. So, the

resistance between B and D (or E) can be

removed.

1 1 1

2 2

1

2R R R R RAC

= +
+

+

or R
R

AC = 2

5
Ans.

(b) With respect to D and E, points A, B and C all are

symmetrically located. Hence, the simplified

circuit can be drawn as shown in figure.

∴ R
R R R

DE = + =
3 3

2

3
Ans.

2. (a) Due to symmetry about the shaded plane, current

distribution on either side of the plane will be

identical and points E and F will be at same

potential and no current will flow through it.

∴ R

r r

r r

rAD =
×

+
=

2

3

8

3
2

3

8

3

8

15
Ans.

(b) Redrawing the given arrangement for

resistance across AB. Potentials V VD E=

V VC F=
∴ No current flows through DE and CF.

∴ R

r r

r r

rAB =
×

+
=

3

2
3

2

3

5
Ans.

3. (a) Current flowing through resistance 5Ω is 11 A

Power dissipated = i R2

= =( )121 5 605 W

(b) V V V V V V VB C+ + + − − =8 3 12 12 5

V V V VB C+ − =11 5

6V V VC B= −
(c) Both batteries are being charged. Ans.
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A C

R R

R

D, E
R/2 R/2

R/2

B

R

D E

R

R

R

R

R
A, B, C

i1i

A

B

i3

i2

i3F

E

i1

D

i2

C

A

B F

E

D

C

A

E

D

F

B

C



4. (a) V VA B− = 6 V

Since, VB = 0

∴ VA = 6 V

V VA C− = 4 V ⇒ V VC A= − =4 2 V

(b) V V V VA D A C− = − = 4 V

From unitary method, we can find that,

AD = 



 =100

6
4( ) 66.67 cm

(c) Since, they are at same potential, no current

will flow through it.

(d) V VA B− is still 6 V ∴ VA = 6 V

Further, V VA C− = 7.5 V

∴ VC = −1.5 V

Since, EMF of the battery in lower circuit is

more than the EMF of the battery in upper

circuit. No such point will exist.

5. (a) There are no positive and negative terminals
on the galvanometer because only zero
deflection is needed.

(b)

(c) AJ = 60 cm ⇒ BJ = 40 cm

If no deflection is taking place. Then, the

Wheatstone bridge is said to be balanced.

Hence,

X R

R

BJ

AJ12
= or

X

12

40

60

2

3
= =

or X = Ω8 Ans.

6. For ammeter 99 1I I Ig g= ( – )

or I Ig= 100 …(i)

Ig is the full scale deflection current of the

galvanometer and I the range of ammeter.

For the circuit in Fig.1, given in the question

12

2
99 1

99 1

3
V

A

+ + ×
+

=
r

⇒ r = Ω1.01 Ans.

For voltmeter, range

V Ig= +( )99 101

V Ig= 200 …(ii)

Also resistance of the voltmeter

= + = Ω99 101 200

In Fig. 2, resistance across the terminals of the

battery

R r1

200 2

200 2
= + ×

+
= Ω2.99

∴ Current drawn from the battery,

I1

12= =
2.99

4.01 A

∴ Voltmeter reading

4

5
12 1V I r= – = ×12 – 4.01 1.01

V = × =7.96 9.95 V
5

4
Ans.

Using Eq. (ii), Ig = =9.95

200
0.05 A

Using Eq.(i), range of the ammeter

I Ig= =100 5 A Ans.

7. Applying Kirchhoff’s laws in two loops we have,

10 6 3 01 2− − + =i R i …(i)

6 6 3 01 2 2− + − =( )i i i …(ii)

Solving these two equations, we get

i
R

1

6

2
=

+
Power developed in R,

P i R
R

R= =
+1

2

2

36

2( )
…(iii)
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12 ΩX

A BJ C D

G

G
I

1 Ω

Ig

99 Ω

G

99 Ω
Ig 101 Ω

V

1

2i i
1 2

+

6 V

i
2

3 Ω

R 10 V

i
1

6 Ω



For power to be maximum,

dP

dR
= 0

∴ ( ) ( ) ( )( )( )R R R+ − + =2 36 36 2 2 02

or R R+ − =2 2 0

∴ R = 2 Ω Ans.

For maximum power from Eq. (iii), we have

Pmax = 4.5 W Ans.

8. Applying loop law in loops 1, 2 and 3, we have

E1 12 24 0− − =
∴ E1 36= V

− + + =E2 24 30 0 or E2 54= V

− − + =2 01 2R E E

or R
E E= −2 1

2

= 9 Ω
9. Using the loop current method,

(a) − − + =2 15 01 2( )i i …(i)

− + − − − −4 20 2 152 2 1 2i i i i( )

− − + − =10 2 6 02 3( )i i

or 2 9 2 11 01 2 3i i i− − − = …(ii)

− + − =2 6 02 3( )i i

or i i2 3 3 0+ + = …(iii)

Solving these equations, we get

i1 = 9.5 A, i2 2= A and i3 5= − A

Ammeter A1 A2 A3 A4

Reading (amp) 9.5 9.5 2 5

PD across switch = + = +10 1 10 2 122( )i = V Ans.

(b)

When switch is closed

− − + =2 15 01 2( )i i …(i)

2 9 2 11 01 2 3 4i i i i− − + =– …(ii)

i i2 3 3 0+ + = …(iii)

10 04 2− − =( )i i …(iv)

Solving these four equation, we get

i1 = 12.5 A, i2 = 5.0 A , i3 = −8.0 A

i4 = 15 A

Ammeter A1 A2 A3 A4

Reading (amp) 12.5 2.5 10 7

And the current through switch is 15 A. Ans.

10.

Potential gradient across wire,

AB = 2

10
= 0.2 V/m

Now, VAC = 1.5 V or (0.2) 1.5( )AC =
∴ AC = 7.5 m Ans.

(a) V
R

R
AB

AB

AB

=
+







 ×

5
2 =

+






 ×30

30 5
2 = 12

7
V
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3

1 2

3 A

4 Ω

1 A
E

1
E

2

3 Ω

8 A

5 A

6 Ω

7A

R2 A

A6

A1

A2

i1

A3

i3

A5

A4

i2

S

1Ω 10V

20 V 4Ω

2 Ω

2 Ω15 V

6 V

A6

A1

A2

i1

A3

i3

A5

A4

i2

1Ω 10 V

20 V 4 Ω

2 Ω

2 Ω15 V

6 V

i4

2V

A B
C

1Ω

1.5V

G

AB = 10 m

RAB = 30 Ω

2 V

A B
C1

1Ω

1.5 V

G

5 Ω



∴ Potential gradient across

AB = 12

70
V/m

Now, VAC = 1.5 V

∴ 12

70
1





 =( )AC 1.5

∴ AC1 = 8.75 m Ans.

(b) V VAC2
=

or (0.2) (1.5)( )AC2

5

5 1
=

+








or AC2 = 6.25 m Ans.

11. V = constant

V

R

R

R

R

V

x

x

x

x

1

30

30

30

30
20

= +

+
+



















=
+









30

50 600

R

R
Vx

x

∴ Power generated in Rx is

P
V

Rx

= 1
2

=
+

900

50 600

2

2

R V

R

x

x( )

For P to be constant,

dP

dRx

= 0

or

( ) ( )

( )

(

50 600 900

1800 50 50 600

50 600

2 2

2

R V

R V R

R

x

x x

x

+

− × × +
+ )4

0=

or 50 600 100 0R Rx x+ − =
∴ Rx = 12 Ω Ans.

12. The two batteries are in parallel. Thermal power

generated in R will be maximum when,

total internal resistance = total external resistance

or R
R R

R R
=

+
1 2

1 2

E

E

R

E

R

R R

eq =
+









+








1

1

2

2

1 2

1 1

= +
+









E R E R

R R

1 2 2 1

1 2

R
R R

R R
net =

+
2 1 2

1 2

∴ i
E

R
= eq

net

= +E R E R

R R

1 2 2 1

1 22

Maximum power through R

P i R
E R E R

R R R R
max

( )

( )
= = +

+
2 1 2 2 1

2

1 2 1 24
Ans.

13.
V

R
k T T C

dT

dt

2

0= − + 



( )

or
dT

V

R
k T T

dt

C2

0− −
=

( )

or
dT

V

R
k T T

dt

CT

T t

2

0

00

− −
=∫ ∫

( )

(at t = 0, temperature of conductor T T= 0)

Solving this equation, we get

T T
V

kR
e kt C= + − −

0

2

1( )/ Ans.
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2 V

A B
C2

1Ω1.5 V

5 Ω

i

Rx

V

20 Ω

30 Ω

⇒
V

20 Ω

30

30+

R

R

x

x
V1



24. Electrostatics

1. Due to induction effect, a charged body can attract

a neutral body as shown below.

Body-1 is positively charged and body-2 is

neutral. But we can see that due to distance factor

attraction is more than the repulsion.

4. Number of atoms in 3 gram-mole of hydrogen

atom = number of electrons in it

= 3 0N = × ×( )3 6.02 1023

where, N 0 = Avogadro number

∴ Total charge

= − × × ×−( ) ( )1.6 10 6.02 102319 3

= − ×2.89 105C

1. F
q q

r
e = 1

4 0

1 2
2π ε

and F G
m m

r
g = 1 2

2

∴ F

F

q q

G m m

e

g

= ( / )1 4 0 1 2

1 2

π ε

= × ×
× ×

+ −

− −
( ) ( )

( ) ( ) (

9 10 9 19 2

11 31

1.6 10

6.67 10 9.11 10 1.67 × −10 27 )

= ×2.27 1039

2. F
q q

r
= 1

4 0

1 2
2π ε

∴ ε
π0

1 2
24

= q q

Fr

Units and dimensions can be found by above

equation.

3.

F = Force between two point charges

=








×





1

4 0
2πε

q q

a

F F F FFnet = + + °2 2 2 60cos

= 3F

=






 





3

4 0

2

πε
q

a

4.

Net force on − q from the charges at B and D is

zero.

So, net force on − q is only due to the charge at A.

F
q q

r
=









×1

4 0
2π ε

where, r
a= 2

2
= a

2

∴ F
q

a
=









1

4 20

2

2π ε ( / )

=






 





1

2 0

2

π ε
q

a

5. The charged body attracts the natural body

because attraction (due to the distance factor) is

more than the repulsion.

7. F
q q

r
= ⋅1

4 0

1 2
2π ε

( ) ( )min minq q1 2= = e2

∴ F
e

r
min = 1

4 0

2

2π ε

9. Two forces are equal and opposite.

1. Electric field lines are not parallel and equidistant.

2. Electric lines flow higher potential to lower

potential.

∴ V VA B>

+

+

+

+
+ +

+

+

+

+

1

–

–

–
+

+

+

2

a

q

a

q
a

60°
F

√3 =F F
net

F

q

B

CD

A

qq

q

O

– q

Fr
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3. If charged particle is positive, and at rest. Electric

field lines are straight then only it will move in the

direction of electric field.

4. See the hint of above question.

5. Electric field lines start from positive charge and

terminate on negative charge.

6. In case of five charges at five vertices of regular

pentagon net electric field at centre is zero.

Because five vectors of equal magnitudes from a

closed regular pentagon as shown in Fig. (i).

Where one charge is removed. Then, one vector

(let AB) is deceased hence the net resultant is

equal to magnitude of one vector

= | |BA = 1

4 0
2πε

q

a

7. E r r=






 



 −1

4 0
3πε

q

r
p q( )

Here, r = + =( ) ( )3 4 52 2 m

∴ E i j= × − × +
−( ) ( )

( )
( $ $)

9 10 2 10

5
3 4

9 6

3

= − ×( $ $)4.32 5.76 N/Ci + j 102

1. K U K Ui i f f+ = +

∴ 1

4

1

2

1

40

1 2 2

0

1 2

πε πε
q q

r
mv

q q

ri f

= +

∴ v
m

q q
r ri f

=






 −











2 1

4

1 1

0
1 2πε

( )

= × − × −



−

−2

10
9 10 2 10

1 1
4

9 12( ) ( )
1.0 0.5

= 18.97 m/s

2. Work done by electrostatic forces

= − ∆U

= −U Ui f

=






 −











1

4

1 1

0
1 2π ε

( )q q
r ri f

= × − × −





−( ) ( )9 10 2 10
1 19 12

1.0 2.0

= − × −9 10 3J

= − 9 mJ

3. Work done by electrostatic forces

W U U Ui f= − = −∆
∴ U U Wf i= −

= − × − ×− −( ) ( )6.4 10 4.2 108 8

= − × −10.6 10 8 J

4. U ∞ = 0

U
q q

r
r = ⋅1

4 0

1 2

π ε
(For two charges)

U Ur ≠ ∞
For r ≠ ∞

U
q q

r

q q

r

q q

r
r = + +











1

4 0

1 2

12

2 3

23

3 1

31πε

Now,U r can be equal toU ∞ for finite value of r.

1. W U U U q V V q Vab a b b a b a ba= = − = − =−∆ ( )

∴ V
W

q
ba

ab= = −
12

10 2
= 1200 V

2. (a) α λ= = =
x

C/m

m

C

m2

(b)

dV
dq

x d
= ⋅

+
1

4 0πε

=








+








1

4 0πε
λdx

x d

=








+








1

4 0πε
αx dx

x d

∴ V dV L d
L

dx

x L
= = − +









=

=

∫ 0
04

1
α
πε

ln

3.
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CD

E B

A

(i)

CD

E B

A

(ii)

INTRODUCTORY EXERCISE 24.4

INTRODUCTORY EXERCISE 24.5

dq

dxx d= –

A

x = 0

x

x d+

d

P

r

dq

x l= – x = 0
x

dx
x l=



dq
q

l
dx= 



2

At point P,

dV
dq

r
=







 





1

4 0πε

=








⋅

+

















1

4

2

0
2 2π ε

q

l
dx

d x

∴ V dV
x

x l
=

=

=

∫2
0

4.

W U U U= − = − ∞∆ apex

∴ W qV= apex …(i)

as U ∝ = 0

V
apex

r

x

R

L
=

∴ r
R

L
x= 





Surface charge density,

σ
π

= Q

Rl

dq dA= ( ) ( )σ

= 





Q

Rl
r dx

π
π( )2

= 











θ
π

π
RL

R

L
x dx( )2

= 





2
2

Q

L
x dx

Now, dV
dq

x
=







 





1

4 0πε

=








2

4 0
2

Q

L
dx

πε

∴ V dV
L

= ∫0
= Q

L2 0πε

Substituting in Eq. (i), we have

W
Qq

L
=

2 0πε

1. (a) E i + j= −










∂
∂

∂
∂

V

x

V

y

$ $

= − − = − −a x y a x y[( ) $ ( ) $ ] [ $ $ ]2 2 2i j i j

(b) Again

E i + j= −










∂
∂

∂
∂

V

x

V

y

$ $

= − a y x[ $ $ ]i + j

2. E
dV

dx
= − = −Slope of V -x graph.

From x = − 2m to x = 0, slope = + 5 V/m

∴ E = − 5 V/m

From x = 0 to x = 2m, slope = 0,

∴ E = 0

From x = 2m to x = 4m, slope = + 5V/m,

∴ E = − 5 V/m

From x = 4 m to x = 8m, slope = − 5 V/ m

∴ E = + 5 V/m

Corresponding E-x graph is as shown in answer.

3.
∂
∂
V

x
= − = −50

5
10 V/m

Now, | |E = 



 +







 + 





∂
∂

∂
∂

∂
∂

V

x

V

y

V

z

2 2 2

No information is given about
∂
∂
V

y
and

∂
∂
V

z
. Hence,

| |E ≥ ∂
∂
V

x
or | |E ≥ 10 V/m

4. V VA D= and V VB C= as the points A and D or B

and C are lying on same equipotential surface (⊥ to

electric field lines). Further, VA or V VD B> or VC as

electric lines always flow from higher potential to

lower potential

V V V V EdA B D C− = − =
= ( ) ( )20 1 = 20 V

1. (a) Given surface is a closed surface. Therefore, we

can directly apply the result.
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r

R

dq

dx

x

INTRODUCTORY EXERCISE 24.6

INTRODUCTORY EXERCISE 24.7



φ
ε

= =qin

0

0 as qin = 0

(b) Again given surface is a closed surface.

Hence, we can directly apply the result.

φ
ε ε

= =q qin

0 0

as q qin =

(c) Given surface is not closed surface. Hence, we

cannot apply the direct result of Gauss’s

theorem. If we draw a complete sphere, then

φ through complete sphere = q

ε0

∴ φ through hemisphere =








1

2 0

q

ε

2. Net charge from any closed surface in uniform

electric field = 0

∴ Net charge inside any closed surface in

uniform electric field = 0

3. (a)

Net flux entering from AB = net flux entering

from BC .

(b)

φ π= =ES E R( )2

4. Given electric field is uniform electric field. Net

flux from any closed surface in uniform electric

field = 0.

Exercises

LEVEL 1

Assertion and Reason

1. An independent negative charge moves from lower
potential to higher potential. In this process,
electrostatic potential energy decreases and kinetic
energy increases.

2. Two unlike charges come together when left

freely.

3. E i + j k= − +








∂
∂

∂
∂

∂
∂

V

x

V

y

V

z

$ $ $

∴ | |E = 



 +







 + 





∂
∂

∂
∂

∂
∂

V

x

V

y

V

z

2 2 2

∴ | |E ≥ ∂
∂
V

x

or = 10 V/m

4. V
kq

R
= or kq VR=

For inside points ( )r R≤ ,

E
kq

R
r=

3

or E r∝

At distance r
R=
2

,

E
VR

R

R V

R
= 



 =( )

3 2 2

6. V V dA B
B

A
− = − ⋅∫ E r

= − + ⋅ +∫( , )

( , )
( $ $) ( $ $)

0 4

4 0
4 4i j i jdx dy

= − + =∫( , )

( , )
( )

0 4

4 0
4 4 0dx dy

∴ V VA B=
7. At stable equilibrium position, potential energy is

minimum.

8. In uniform electric field, net force on an electric

dipole = 0

Therefore, no work is done in translational motion

of the dipole.

Electric lines also flow from higher potential to

lower potential. Electrostatical force on positive

charge acts in the direction of electric field.

Therefore, work done is positive.

9. Charge on shell does not contribute in electric field

just inside the shell. But it contributes in the

electric field just outside it. So, there is sudden

change in electric field just inside and just outside

it. Hence, it is discontinuous.

10. | |E = 0 minimum at centre and | |V
q

R
= ⋅1

4 0πε
is

maximum at centre.

Chapter 24 Electrostatics � 635

A C

B

S



Objective Questions

1. φ = → 



 →ES

V

m
m volt-m( )2

2. g g
qE

m
e = − 





or ge will decrease. Hence, T
l

ge

= 2π will

increase.

3. Electric lines terminate on negative charge.

4. W U i= ∆
= −U Uf i

= ⋅








 − ⋅









3

1

4 2
3

1

40 0πε πε
qq

l

qq

l

= −



 ⋅









3

2

1

4 0

2

2πε
q

l
l = − 3

2
Fl

5. v
qV

m
= 2

v
eV

m
p = 2

v
e V

m
d = 2 2

2

( )

v
e V

m
α = 2 2 4

4

( ) ( )

The ratio is 1 1 2: : .

6. V
q

r
= ⋅1

4 0πε

′ =






 



 =V

q

r

V1

4

2

4 20πε

7.

W U U Uf i= = −∆

= 1

4 0πε
− − + + − −














q

a

q

a

q

a

q

a

q

a

q

a

2 2 2 2 2 2

2 2

− − + − − + −













q

a

q

a

q

a

q

a

q

a

q

a

2 2 2 2 2 2

2 2

= −q

a

2

04
4 2 2

πε
[ ]

8. V
q

R

q

R
= ⋅ + ⋅1

4 3

1

4 30

1

0

2

πε πε

= q

R

net

0(4 ) (3 )πε

∴ R
q

V
=







 





1

4 0πε
net

3

= × × −( ) ( )

( ) ( )

9 10 3 10

3 9000

9 6

= 1 m

9.

r R= 3

V
k q

r

k q

R
p = =net ( )3

3
= k q

R

10.
1

4 0

2

2πε
θq

r
mg= sin

∴ r
q

mg
=

















1

4 0

2

πε θsin

= × ×
°

−( ) ( )

( ) ( . ) sin

9 10

9 8 30

9 6 22.0 10

0.1

= × −27 10 2m

= 27 cm

11.

Q Q1 2 2 1= −( )

F1 = Force between Q1 and Q1 at distance a

F2 = Force between Q1 and Q1 at distance 2a

F3 = Force between Q1 and q at distance
a

2

For F3 to be in the shown direction, q and Q1

should have opposite signs. For net charge to be

zero on Q1 placed at P.

| |F3 = Resultant of F F1 2, and F1

636 � Electricity and Magnetism

–q q

q –q

–q q

–q q

⇐

R
r

P
2√2R

F
3 P

F
1

F
2F

1

Q
1

Q
1

Q
1 Q

1

q

a

a



∴ k Q q

a
F F1

2 1 2
2

2
( / )

= +

= 





+2
2

1 1
2

1 1
2

k Q Q

a

k Q Q

a( )

∴ | |q
Q

Q= +





= +





1

1
2

2
1

2

2 2 1

4

= +





 −2 2 1

4
2 2 1( )Q

= 7

4
Q or q Q= − 7

4

12. | |a
qE

m

q

m
= = σ

ε2 0

t
s

a

s m

q
= =2 4 0ε

σ| | | |

= × × × × ×
× × ×

− −

− −
4 12 27

19 9

0.1 8.86 10 1.67 10

1.6 10 2.21 10

= × −4 10 6 s

13.

Between A and B two forces on third charge will

act in same direction. So, this charge cannot

remain in equilibrium.

To the right of B or left of A forces are in opposite

directions but their magnitudes are different.

Because charges have equals magnitudes but

distances are different.

14. Between 2q and − q, two electric fields are in same

direction. So their resultant can’t be zero. To the

right of 2q left of − q they are in opposite

directions. So, net field will be zero nearer to

charge having small magnitude.

15.

E1 and E4 are cancelled.

E2 and E5 are cancelled.

∴ E E
q

a
net = = ⋅3

0
2

1

4 2πε ( )
= q

a16 0
2πε

16. F
k q q

r
1

1 2
2

= k =








1

4 0πε

F
k q q

r
2

1 2
2

= ′ ′

where, ′ = ′ = +
q q

q q
1 2

1 2

2

∴ F
k q q

r
2

1 2
2

2

2= +( / )

q q
q q1 2

2

1 2
2

+



 >

This is because,

( ) ( )q q q q q q1 2
2

1 2
2

1 24+ = − +

or ( )q q q q1 2
2

1 24+ >

or
q q

q q1 2

2

1 2
2

+



 >

∴ F F2 1>

17.

18. 1000
4

3

4

3

3 3π πr R




 = ⇒ R r= 10

i.e. radius  has become 10 times.

Charge will become 1000 times.

V = ⋅1

4 0πε
( )Charge

(Radius)
or V ∝ Charge

Radius

Hence, potential will become 100 times.

19. PD
4

in

0

= −





q

R Rπε
1 1

2
or PD in∝ q

20.

The desired ratio is − = −3

2

3

2

Q

Q
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A

+q

B

–q

q q

q q

q

E
1

E
2

E
3

E
4

E
5

1

2
3

4

5

2a

4Q

–4Q

+2Q

–2Q

+8Q

Q

–Q

3Q
–3Q

+2Q



21. S i= ( ) $1 ⇒ φ = ⋅ =B S 5 V-m

22.

F2 = Force between q and q

= 1 ×
4 20

2πε
q q

a( )

F1 = Force between Q and q. For net force on q to

be zero .

F F2 12=

∴ 1

4 2
2

1

40

2

2
0

2πε πε
q

a

qQ

a
= ⋅











∴ | |q Q= 2 2

with sign, q Q= − 2 2

23. VB = 0

∴ kq

r

kq

r

A

B

B

B

+ = 0

∴ q q qB A= − = −
Charge distribution is as shown below.

From Gauss’s theorem, electric field at any point

is given by

E
kq

r
= in

2

qin inside A and outside B is zero. Therefore, E = 0

24.
kq

r

kq

R
= 





3

2
2 or r R= 4

3

∴ Distance from surface = =r R

= R

3

25. φ
ε

=
q in

0

qin = 0

∴ φ = 0

26.

T qEsin θ =

or T
qE=

sin θ
Similarly, T mgcos θ =

27. E = σ
ε0

E E1 2=
∴ σ σ1 = 2

V
R= σ

ε0

or V R∝ (as σ → same)

∴ V

V

R

R

a

b

1

2

1

2

= =

28.

Potential is zero at infinite and at origin.

Therefore, PD = 0. Hence, the work done asked in

part (c) is also zero.

29. According to principle of generator PD in this case

only depends on the charge on inner shell.

30. 500
2

= k q

r

| |
…(i)

− = −
3000

k q

r

( )
…(ii)

Solving these two equations, we get

r = 6 m

∴ | |q
r

k
= 500 2

=
×

( ) ( )500 6

9 10

2

9

= × −2 10 6C

= 2 µC

31.
1

4

1

40

1 2

1
2

0

1 2

2
2πε πε

⋅ = ⋅q q

r k

q q

r

∴ r
r

k
2

1= = 50

5

= 22.36 m
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q Q

Q
q

F
1

F
1

F
2

√2F
1

–q
q

θ
θT

mg

qE

+ –
q q

x

y
E

E



32. W q V VA B B A→ = −( )

= −



∫q Edr

A

B
= ∫q E dr

B

A

= = 



∫q

r
dr

q

a

a

2
0 02 2

1

2

λ
πε

λ
πε

ln

33.

Negative charge of dipole is near to positively

charge line charge. Hence, attraction is more.

34. r = − + − + −( ) ( ) ( )4 1 2 2 0 42 2 2

= 5 m

V
q

r
= ⋅1

4 0πε

= × × −( ) ( )9 10 2 10

5

9 8

= 36 V

Field is in the direction of r r r= −p q

35. V
kq

R
=

∴ kq VR=

E
Kq

r

VR

r
= =

2 2

36. W Fs qEs= =cos cosθ θ

∴ E
W

qs
=

cos θ

=
× × °

4

0.2 2 cos 60

= 20 N/C

37.

V
kQ

R

kQ

R d
C1 2 2

= −
+

V
kQ

R d

kQ

R
C2 2 2

=
+

−

∴ V V
Q

R R d
C C1 2 2

1 1

0
2 2

− = −
+











πε

38. E = 0, inside a hallow charged spherical

conducting shell.

39. W = ⋅F r

= ⋅( )QE r = ⋅Q ( )E r

= +Q E a E b( )1 2

Subjective Questions

1. F
kq Q q

r
= −( )

2
where, k =









1

4 0πε

For F to be maximum,
dF

dq
= 0

By putting
dF

dq
= 0, we get

q
Q=
2

3. E = σ
ε2 0

∴ σ ε= ( )2 0E

= × × × −2 3 0 12. 8.86 10

= × −5.31 10 C/m211

4.

If loop is complete, then net electric field at centre

C is zero. Because equal and opposite pair of

electric field vectors are cancelled.

If PQ portion is removed as shown in figure, then

electric field due to portion RS is not cancelled.

Hence, electric field is only due to the option RS .

∴ E
q

R

RS= 1

4 0
2πε

=








1

4

2

0
2πε

π( / )q R x

R

= qx

R8 2
0

3π ε

5. Let q1 and q2 are the initial charges. After they are

connected by a conducting wire, final charge on

them become.

′ = ′ = +



q q

q q
1 2

1 2

2

Now, given that

0.108 =
(9 10 ) ( ) )

(0.5)

9

2

× q q1 2(
…(i)
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+–

p

+λ

C1 C2d

Q –Q

k =
1

4πε0

C

(i)

C

(ii)

E

PR

QS



0.036 =

(9 10 )

0.5

9× +





q q1 2

2

2

2

( )
…(ii)

Solving Eqs. (i) and (ii), we can find q1 and q2.

6. Since, net force on electric dipole in uniform

electric field is zero. Hence, torque can be

calculated about point. This comes out to be a

constant quantity given by

τ = ×p E

7.

E1 = Electric field at P due to q

=








1

4 0
2πε

q

r

E2 = Electric field at P due to − 2q

=








1

4

2

0
2πε
q

y

∴ Net electric field at P,

E E E= +2 1 2cos θ

=






 









 +














2

1

4

1

4

2

0
2

0
2πε πε

q

r

y

r

q

y 


= 





+










2

4

1

0
3 2

q y

r yπε

=
+

+










2

4

1

0
2 2 3 2 2

q y

a y yπε ( ) /

= + +






 +













−
2

4
1

1

0
3

2

2

3 2

2

q y

y

a

y yπε

/

Applying binomial expression for
a

y

2

2
1< <

we get,

E
q a

y
= −









2

4

3

20

3

4πε

= − 3

4

2

0
4

qa

yπε

or E j= − 3

4

2

0
4

qa

yπε
$

8. If we make a bigger cube comprising of eight

small cubes of size given in the question with

charge at centre (or at D).

Then, total flux through large closed cube = q

ε0

.

There are 24 symmetrical faces like EFGH on

outermost surface of this bigger cube.

Total flux from these 24 faces is
q

ε0

. Hence, flux

from anyone force =








1

24 0

q

ε
.

Electric lines are tangential to face AEHD. Hence,

flux is zero.

9. (a)

q1 and q2 should be of same sign.

Further,
Kq Q

a

Kq Q

a

1
2

2
23 2 2( / ) ( / )

=

∴ q q1 29=

(b)

Therefore, q1 and q2 should be of opposite

signs. Further,

kq Q

a

kq Q

a

1
2

2
25 2 2( / ) ( / )

=

Or magnitude wise q q1 225= with sign

q q1 225= −

10.

x y L+ = …(i)

Let force on − Q charge should be zero.

∴ kQ q

x

kQ q

y

. ( )
2 2

4=

∴ x

y
= 1

2
…(ii)

From Eqs. (i) and (ii), we get

x
L=
3

and y
L= 2

3

Net force on 4q should be zero.

∴ k Q q

L

kq q

L

| | ( )

( / )

( )4

2 3

4
2 2

=
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+q –Q

x

+4q

y

q1 q2QO

–a +a

a

2
+

q1 Qq2O

–a +a

3
2
a+

E
2

E
1

E
1 θ θ

θ θ rr

q –2q q

P

aa

y

Net = E

P
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∴ | |Q q= 4

9

With sign,

Q q= − 4

9

Similarly net force on q should be zero.

∴ k Q q

L

kq q

L

| |

( / )

( )

3

4
2 2

= or | |Q q= 4

9

If we, sightly displace − Q towards 4q, attraction

between these charges will increase, hence − Q

will move towards + 4q and it will not return back.

Hence, equilibrium is unstable.

11.

Using Lami’s theorem, we have

mg F

sin ( ) sin ( )90 30 90 60° + °
=

° + °

∴ F
mg=

3
or

1

4 30
2πε

( )( )q q

R

mg=

∴ q
mg R= 4

3

0
2π ε

12.

F = Electrostatic force between two charged balls.

3F = Resultant of electrostatic force on any one

ball from rest two balls.

a l= ° =cos 60 10 cm

r a= °2 30cos

=






( ) ( )2 10

3

2
= 10 3 cm

Now, applying Lami’s theorem for the equilibrium

of ball we have

mg F

sin ( ) sin ( )90 30

3

90 60° + °
=

° + °

F
mg=
3

= =1

4 30
2πε

( ) ( )q q

r

mg

∴ q
mgr=

2

03 1 4( / )πε

= × ×
× ×

− −( ) ( ) ( )0.1 9.810 10 3 10

3 9 10

3 2 2

9

= × −3.3 10 C8

13.

E1 = Electric field due to charge q at distance a

=






 





1

4 0
2πε

q

a

E2 = Electric field due to charge at distance 2a

=






 =1

4 2 20
2

1

πε
q

a

E

( )

Net electric field at P,

E E
E

net = +2
2

1
2 (In the direction of E2)

= +2
2

1
1E

E

= +



2

1

2
1E

= +( )2 2 1

8 0
2

q

aπε

14. E r r= −1

4 0
3πε

q

r
p q( )

r = + =( ) ( . )1.2 m2 216 2

∴ E i i= × − × −
−( ) ( )

( )
( $ $)

9 10 8 10

2

9 9

3
1.2 10.8

= −( $ $)14.4 10.8 N/ Cj j

E
2

E
1

E
1

a

a
q

q

q
p

mg

30°

30°
T

√3F

30°

l

30°

60°

r

a

F

mg

60°
30°

N



15.

E dEnet =
°

∫2
0

90
sin θ

=






 





°

∫2
1

40

90

0
2πε

θdq

R
sin

=






 



 =

°

∫2
1

4 20

90

0
2

0π ε
λ θ θ λ

πε
Rd

R R
sin

16.

E dE s
x

x L

net =
=

=

∫2
0

2/
cos θ

=






 



 ⋅ 



∫2

1

40

2

0
2

L dq

r

a

r

/

πε

=








⋅

+















 +

∫2
1

40

2

0
2 2 2 2

L

Q

L
dx

a x

a

a x

/

πε

Solving this integration, we find the result.

17. (a)

(b)

(c)

18. Six vectors of equal magnitudes are as shown in

figure.

Now, resultant of two vectors of equal magnitudes

( )= E say at 120° is also E and passing through

their bisector line.

So, resultant of 1 and 5 is also E in the direction of

3. Similarly, resultant of 2 and 6 is also E in the

direction of 4.

Finally, resultant of 2E in the direction of 3 and 2E

in the direction of 4 passes through the bisector

line of 3 and 4 (or 9.30)

19. T
u

g
= = × × °2 2 25 45

10

sin sinθ = 5

2
s

R S u T a Tx x x= = + 1

2

2

= ° + 



( cos ) ( )u T

qE

m
T45

1

2

2
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dE

E
net

–dq

dq

dE

1
2

3

4

5
6

–12q

–q

–2q

–3q

–4q

–5q

–6q

–7q

–8q

–9q

–10q

–11q

y

dE

Enet

x

dq

−dq

θ
θ

θ
θθ

θ

y

dE

dE

x
E

net

+dq

+dq

O

Enet

dEdE θ θ

θ θ r

a

dq dq
x

dx

dq dq

dE dE
E

net

θ
θ θ

θ

dθ



= 











+ × × ×







−
( )25

1

2

5

2

2 10 2 10

1

6 7 5

2

2





= 62.5 + 250 = 312.5 m

20. (a) g g
qE

m
e = +

= + ×
×

−

−10
72019

27

( ) ( )1.6 10

1.67 10

≈ ×6.9 10 m/s10 2

Now, R
u

ge

=
2 2sin θ

∴ ( )
( ) sin

.
1.27 10

9.55× = ×
×

− 3
3 2

10

10 2

6 9 10

θ

Solving this equation, we get

θ = °37 and 53°

(b) Apply T
u

ge

= 2 sin θ

21. (a) a
E= q

m
= − ×

×

−

−
( ) ( $)

( . )

1.6 10 19

31

120

91 10

j

= − ×( $)2.1 10 m/s13
j

2

(b) t
X

vx

= = ×
×

= ×
−

−2 10

15 10

4

3
10

2

5

7

.
s

v u a= + t

= × + ×( $ . $)1.5 105
i j3 0 106

− × × ×





−2.1 10
4

3
1013 7 $j

= + ×( $ $)1.5 m/si j2 105

22.
kq

r

k q

r

1

1

2

2

= | |

∴ r

r

q

q

1

2

1

2

2

3
= =

| |

where, r1 = distance from q1 and

r2 = distance from q2

First point is at x = 40 cm where,
r

r

1

2

2

3
=

Second point is at x = − 200 cm, where
r

r

1

2

2

3
= .

23.

dq dx= λ
Potential at C , due to charge dq is

dV
k dq

r
= ( )

Q k =








1

4 0πε

∴ Total potential =
=

=

∫6
0

2

x

x a
dV

/

24. (a) ∆ ∆U q V= − ( )

= − × −( ) ( )12 10 506

= − × −6.0 10 4J

(b) ∆ ∆V Ed E x= = ( )

= ( ) ( )250 0.2

= 50 V

25. k U k UA A B B+ = +

∴ 1

2

1

2

2 2mv qV mv qVA A B B+ = +

∴ v v
m

q V VB A A B= + −2 2
( )

= + × − ×
×

−
−

−( )
( )

( )5
2 5 10

2 10
200 8002

6

4

= 7.42 m/s

v vB A− as the negative charge is moving (freely)

from lower potential at A to higher potential at B.

So, its electrostatic PE will decrease and kinetic

energy will increase.

26. (a) V
k q

R
C = . net =









−





1

4

5

0πε
Q

R

(b) V
k q

r
p = net

where, r = distance of P from any point on

circumference

=








−

+













1

4

5

0
2 2πε

Q

R z

27. W U= − ∆ = −U Ui f = −q V q Vi f2 2

=






 −









q

kq

r
q

kq

ri f
2

1
2

1
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r a

2 3√

C

xdx

( /2)a

dq

P q
1

200 cm

q
2

100 cm

x = –200 cm x = 0

q
1 P

40 cm

q
2

60 cm

x = 0 x = 40 cm



= − 1







kq q

r ri f
1 2

1

= × × − ×−( ) ( ) ( )9 109 2.4 10 4.3 106 6

1 1

0 25 20.15
−



.

= − 0.356 J

28. (a) U k
q q

r

q q

r

q q

r
= + +







1 2

12

1 3

13

2 3

23

…(i)

where, k = 1

4 0πε
(b) Suppose q3 is placed at coordinate x (> 0.2 m

or 20 cm), then in Eq. (i) of part (a), put

U = 0, r r x12 13= =0.2 m,

and r x23 0 2= −( . )

Now, solving Eq. (i) we get the desired value of x.

29. U = 0

∴ k
q q

a

q Q

a

q Q

a

× + × + ×



 =0

or Q
q= −
2

30. Apply V V dB A
A

B
− = − ⋅∫ E r …(i)

E is given in the question.

and d dx dyr i + j= $ $

∴ E r⋅ = −d dx dy( )5 3

∴ − ⋅ = −∫ E rd y x( )3 5

With limits answer comes out to be

V V y y x xB A f i f i− = − − −3 5( ) ( )

31. Procedure is same as work done in the above

question. The only difference is, electric field is

E j= ( $)400 V/m

∴ V V d y yB A
A

B

f i− = − ⋅ = − −∫ E r 400 ( )

32. Similar to above two problems. But electric field

here is

E j= ( $)20 N/C

∴ V V d x xB A
A

B

f i− = − ⋅ = − −∫ E r 20 ( )

33. (a) [ ]
[ ]

[ ]
A

V

xy
= =

− −[ ]

[ ][ ]

ML T A

L L

2 3 1

= − −[ ]MT A3 1

(b) E i + j k= − +










∂
∂

∂
∂

∂
∂

V

x

V

y

V

z

$ $ $

(c) Substituting, A x y= = =10 1 1, , and z = 1in the
expression of part (b) we have

E i j k= − − −( $ $ $ )20 20 20 N/C

∴ | | ( ) ( ) ( )E = − + − + −20 20 202 2 2

= 20 3 N/C

34. See the hints of Q No. 31 to Q No. 33.

V V V V x x y yf i B A f i f i− = − = − − − −20 30( ) ( )

or V f = − − − −20 2 0 30 2 0( ) ( )

= −100 V ( )as Vi = 0

35. (a) E i j k= − + +








∂
∂

∂
∂

∂
∂

V

x

V

y

V

z

$ $ $

= − − + +[( ) $ ( )$ ]Ay Bx Ax C2 i j

∴ E Ay Bxx = − +( )2

and E Ax Cy = − −( )

(b) E = 0 if Ex and Ey are separately zero.

Q − + =Ay Bx2 0 …(i)

and − − =Ax C 0 …(ii)

Solving these two equations

We get

x
C

A
= − and y

BC

A
= − 2

2

36. Sphere is a closed surface. Therefore, Gauss’s

theorem can be applied directly on this

∴ φ
εtotal
in

0

= q

or qin total= ( ) ( )φ ε0

= × −( ) ( )360 128.86 10

= × −3.19 10 C9

= 3.19 Cn

37. (a) φ
εtotal
in

0

= q

(b) qin total= ( ) ( )φ ε0

38. S i= ( . ) $0 2

∴ φ = ⋅ = 



B S 0.2

3

5
E0

= × × ×0.2 0.6 2 103

= 240 2N-m /C

39. Electric flux enters from the surface parallel to

y - z plane at x =0. But E = 0 at x = 0.

Hence, flux entering the cube = 0.

Flux leaves the cube from the surface parallel to

y z- plane at x a= .
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Flux leaving the cube = ES

= 





E x

l
a0 2( ) = 





E a

l
a0 2( ) (at x a= )

Substituting the values, we get

φ = ×
×

−

−
( ) ( )

( )

5 10 10

2 10

3 2 3

2

= × −2.5 10 1

= 0.25 N-m /C2

At all other four surfaces, electric lines are

tangential. Hence, flux is zero.

∴ φ
εnet
in

0

0.25 N - m /C= =( ) 2 q

∴ qin 0.25=( ) ( )ε0

= × −( ) ( . )0.25 8 86 10 12

= × −2.2 10 C12

40. See the hint of Example-1 of section solved

examples for miscellaneous examples. We have

φ θ
ε

= −( cos )1

2 0

Q

But,
Q

ε
φ

0

= total

∴ φ φ θ= −



( )

cos
total

1

2
...(i)

Given that φ φ= 1

4
( )total

Substituting in Eq. (i),

we get, θ = °60

R

b
= °=tan 60 3

∴ R b= 3

41. (a) S jj = −( ) ( $ )L2

∴ φ s CL1
2= ⋅ =−E S j

Similarly, we can find flux from other surfaces.

Note Take area vector in outward direction of the

cube.

(b) Total flux from any closed surface in uniform

electric field is zero.

42. We have

φ θ
ε

= −q ( cos )1

2 0

Here, flux due to + q and − q are in same direction.

∴ φ φ θ
εtotal = = −

2
1

0

q ( cos )

= −
+













q l

R lε0
2 2

1

43.

Flux passing through hemisphere = flux passing

through circular surface of the hemisphere.

For finding flux through circular surface of

hemisphere we can again use the concept used in

above problem.

φ θ
ε

= −q ( cos )1

2 0

= − °q

2
1 45

0ε
( cos )

= −





q

2
1

1

20ε

44.

σ π π( )4 42 2r R Q+ =
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a

a
45°

q

R

l

θ

q

R

l
2

2

+

√

Cq
O

y

x

C a= ( , 0, 0)

r

C
A

R

B

σ
σ

R

b
60°



∴ σ
π

=
+

Q

r R4 2 2( )

Potential at centre

= potential due to A + potential due to B

= +σ
ε

σ
ε

r R

0 0

= +σ
ε0

( )r R

=








+
+









Q r R

r R4 0
2 2πε

45.

Charge on arc PQ of ring = q0

3

This is also the charge lying inside the closed

sphere.

∴ φ through closed sphere = qin

0ε

= =( / )q q0

0

0

0

3

3ε ε

46.

If outermost shell is earthed. Then, charge on

outer surface of outermost shell in this case is

always zero.

47. (a) V
a b c

A = − +σ
ε

σ
ε

σ
ε0 0 0

= − +σ
ε0

( )a b c

V
a a

b

b c
B =







 



 − +σ

ε
σ
ε

σ
ε0 0 0

= − +










σ
ε0

2a

b
b c

V
a a

c

b b

c

c
C =







 



 −







 



 +σ

ε
σ
ε

σ
ε0 0 0

= − +








σ
ε0

2 2a

c

b

c
c

(c) WA C→ = 0

∴ V VA C=

or ( )a b c
a b

c
c− + = −






 +

2 2

or a b c+ =

48. (a)

σ
πi

Q

a
= −

4 2
and σ

π0 24
= Q

a

(b)

σ
πi

Q

a
= −

4 2

and σ
π0 24

= +( )Q q

a

(c) According to Gauss’s theorem,

E
q

r
= 1

4 0
2πε
in

For x R≤ , q Qin =

and r x= both cases.

∴ E
Q

x
= 1

4 0
2πε

49. Let Q is the charge on shell B (which comes from

earth)

VB = 0

∴ kq

b

kQ

b

kq

c
+ − = 0

∴ Q
b

c
q= −



1
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Q

–Q

+Q

Q

–Q

Q q+

C
2

C
1

P

Sphere

Ring

(Total charge = )q
0

Q

120°

+q

–qA
B

2q

–2q

zero



Charges appearing on different faces are as shown

below.

Q q
b

c
q+ = 





50.

Total charge on A C+ is 3q

∴ q q q q1 2 3 3− + = …(i)

VB = 0

∴ kq

R
k

q q

R
k

q q

R

1 2 1 3 2

2 2 3
0+ −



 + −



 = …(ii)

V VA C=

∴ kq

R
k

q q

R
k

q q

R

1 2 1 3 2

2 3
+ −



 + −





= + −



 + −





kq

R
k

q q

R
k

q q

R

1 2 1 3 2

3 3 3
…(iii)

In the above equations, k = 1

4 0πε
.

Solving these three equations, we can find the

asked charges.

51.

Total charge on A C+ is 3q. Therefore,

− + − + =q q q q q1 2 3 3 …(i)

VB = 0

∴ k
q q

R
k

q q

R
k

q q

R

1 2 1 3 2

2 2 3
0

−



 + −



 + −



 =

…(ii)

V VA C=

∴ k
q q

R
k

q q

R
k

q q

R

1 2 1 3 2

2 3

−



 + −



 + −





= −



 + −



 + −



k

q q

R
k

q q

R
k

q q

R

1 2 1 3 2

3 3 3
…(iii)

In the above equations,

k = 1

4 0πε
Solving above there equations, we can find q q1 2,

and q3.

52. (a) From Gauss’s theorem

E
q

r
=







 





1

4 0
2πε
in =







 





1

4

2

0
2πε
Q

r

= Q

r2 0
2πε

(b) According to principle of generator, potential

difference depends only on qin .

∴ PD = −





2

4

1 1

30

θ
πε R R

= Q

R3 0πε
(c) According to principle of generator, whole

inner charge transfers to outer sphere.

(d) Vin = 0

∴ k q

R

kQ

R

in − =
3

0 ⇒ q
Q

in =
3

53. (a) At r R= ,

V
Q

R

Q

R

Q

R
= − +





1

4

2

2

3

30πε

=






 





1

4 0πε
Q

R

At r R= 3

V
Q

R

Q

R

Q

R
= − +





1

4 3

2

3

3

30πε
= Q

R6 0πε

(b) E
q

r
=







 





1

4 0
2πε
in

=








−









1

4

2

5 20πε
Q Q

R( / )
= −Q

R25 0
2πε
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A

B
q

1

–q
1

q
2

–q
2

q
3

C

O

q

–q
A

B
q

1 –q
1

q
2

–q
2

q
3

C

q

–q

Q +q

–( )Q +q

Q



Minus sign implies that this electric field is

radially towards centre.

(c)

U U U UT = + +1 2 3

where, U
Q

C
1

2

1

1

2
=

where, C
R R

1 04
1 1

2
= −



πε

U
Q

C
2

2

2

1

2
=

where , C
R R

2 04
1

2

1

3
= −



πε

and U
Q

C
3

2

3

1

2

2= ( )

where, C
R

3 04
1

3

1= −
∞





πε

(d)

Total charge on ( )A C+ is 3 4Q Q Q+ = .

Now, V VA C=

∴ kq

R

k Q

R

k Q q

R
− + −( ) ( )2

2

4

3

= − +k Q Q Q

R

( )2 3

3
…(i)

Solving this equation, we get

q
Q=
2

Now, q q
Q

A = =
2

q Q q QC = − =4
7

2

(e) E
q

r
= ⋅1

4 0
2πε
in = −









1

4

2

5 20
2πε

q Q

R( / )
= − 3

50 0
2

Q

Rπε

Minus sign indicates that electric field is

radially inwards.

LEVEL 2

Single Correct Option

1. Let us conserve angular momentum of + 2q about

the point at + Q.

mv r mv r1 1 1 2 2 2sin sinθ θ=
( )( )( )sinm v R 150°

= 





°m
v

r
3

90min sin

∴ r Rmin = 3

2

2. ( )v vA y = ⇒ ( ) sinv v vB y = ° =2 30

Since, y -component of velocity remains

unchanged. Hence electric field is along ( $)− i

direction. Work done by electrostatic force in

moving from A to B = change in its kinetic energy

∴ ( ) ( ) ( )eE a a m v v2
1

2
4 2 2− = −

E
mv

ea
=

2

2

or E i= − 3

2

2mv

ea

$

Rate of doing work done = power

= Fv cos θ

=






 °3

2
2 30

2
2

mv

ea
e v( ) ( ) cos

= 3 3

2

2mv

a

3.

Just to the right of a, electric field is along ab

(∴ positive) and tending to infinite. Similarly,
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A

B

q

–q

–2 +Q q

2 –Q q

2Q

C

Q

–Q

–Q

+Q

+2Q

U
1

U
2

U
3

E

a b
x

+q –q



electric field just to the left of b electric field is

again along ab (∴ positive) and tending to infinite.

4.

E E E E
P

x
= = = =







 



1 2 3

0
3

1

4πε

=








1

4

2

0
3πε

Qa

x

Resultant of E1 and E3 is also equal to E along E2

∴ E Enet = 2 (along E2)

= Qa

xπε0
3

5. From centre to the surface of inner shell, potential

will remain constant = 10 V(given).

6. By closing the switch whole inner charge transfers

to outer shell.

Heat produced = −U Ui f

= + −( )U U U1 2 2

=U 1 = 1

2

2q

C

where, C
a a

a=
−

=4

1 1 2
80

0

πε πε
( / / )

∴ Heat = =q

a

kq

a

2

0

2

16 4πε

7.

Let Q charge comes on shell-C from earth. Then,

VC = 0

∴ kq

a

kQ

a

kq

a3 3 4
0+ − =

Solving, we get

Q
q= −
4

Now, V
kq

a

kq

a

kq

a

kq

a
A = − − =

2

4

3 4 6

/

and VC = 0

∴ V V
kq

a
A C− =

6

8. ρ
π

= q

R( / )4 3 3

∴ q R= 4

3
πρ 3

V V
q

R

q

R
C S− = ⋅







 − ⋅3

2

1

4

1

40 0πε πε

= q

R8 0πε
Substituting the value of q , we have

V V
R

C S− = ρ
ε

3

06

9.

Hence, in between A and C there is a point B,

where speed of the particle should be maximum.

F mg1 = = constant

F2 = electrostatic repulsion (which increases as the

particle moves down)

From A to B kinetic energy of the particle

increases and potential energy decreases. Then,

from B to C kinetic energy decreases and potential

energy increases.

10. Over Q1, potential is + α. Hence, Q1 is positive.

VA = 0 and A point is nearer to Q2. Therefore, Q2

should be negative and | | | |Q Q1 2> .

At A and B, potential is zero, not the force.

Equilibrium at C will depend on the nature of

charge which is kept at C .
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q

A

B

C

D

–q

Q –Q

Q –Q

–Q

E
1

E
3

5

E
2

Q

60°

60°

U
2

U
1 q

–q q
U

2 q
⇐

F2

F1

A

v

v
A

C

= 0
= 0

B

C



11. V1 is positive and V2 is negative. Hence at all

points,

V V1 2>
12. Just to the right of q1, electric field is + α or in

positive direction (away from q1). Hence, q1 is

positive. Just to the left of q2, electric field is − α
or towards left (or away from q2). Hence, q2 is also

positive.

Further E = 0 near q1. Hence,

q q1 2<
13. Electric lines of forces of q will not penetrate the

conductor.

14. E i j= ° + °400 45 400 45cos $ sin $

V V dA B
B

A
− = − ⋅∫ E r

where, d dx dyr i j= +$ $

15. qA will remain unchanged.

Hence, according to principle of generator

potential difference will remain unchanged.

′ − ′ = −V V V VA B A B

or ′ = −V V VA A B (as ′ =VB 0 )

16. WT = 0

W FF ee
= ( ) (displacement in the direction of force)

= Kinetic energy of the particle.

∴ 1

2 2 2
602mv qE

l l= − °





cos

∴ v
qEl

m
=

17. L mv r= ⊥ = m at x( ) ( )0

= 



m

qE

m
t x0

0( ) or L t∝

18. U K U Ki i f f+ = +

or qV mv qVi f+ = +1

2
02

min

or q
Q

R
mv q

Q

R

1

4

1

2

3

2 40

2

0πε πε






 



 + + ×









min

From here, we can find vmin .

19.

k U k UC C C C1 1 2 2
+ = +

k qV qVC Cmin + = +
1 2

0 …(i)

V
Q

R

Q

R
C1

1

4 20

= −



πε

V
Q

R

Q

R
C2

1

4 20

= −



πε

Substituting these values in Eq. (i), we can find

Kmin .

20. E i j= +E Ex y
$ $

Now we can use, dV d∫ ∫= − ⋅E r

two times and can find values of Ex and Ey.

21. Let P x y= ( , )

r x a y` ( )1
2 23= + +

r x a y2
2 23= − +( )

V
Q

r

Q

r
p = −









 =1

4

2
0

0 2 1πε
…(i)

Substituting values of r1 and r2 in Eq. (i), we can

see that equation is of a circle of radius 4a and

centre at 5a.

22. Fx = 0

∴ ax = 0

F qEy =

∴ a
qE

m
y =

x vt= and

y a t
qE

m
ty= = 





1

2

1

2

2 2

Substituting t
x

v
= in expression of y , we get

y
qEx

mv
=









1

2

2

2

KE = +1

2

2 2m v vx y( )

where, v vx = and v a t
qE

m
ty y= =
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C

X a= 5

V = 0

X a= 9X a=

R a= 4

C
2

C
1

2R

+Q

–Q

K
min



23. qE
mv

r
=

2

q
r

mv

r

λ
πε2 0

2





 =

∴ v
g

m

kq

m
= =λ

πε
λ

2

2

0

Now, T
r

v
= 2π

24.

T qEsin α =
T mgcos α =

∴ α =






−tan 1 qE

mg

Minimum tension will be obtained at α π+ .

25. Energy required = ∆U = −U Uf i

= 1

4 0πε
q

a

q

a

q

a

q

a

q

a

q

a

q

a

2 2 2 2 2 2

2 2







 − − − − − +



















= +q

a

2

04
2 1

πε
[ ]

26. On both sides of the positive charge V = + ∝ just

over the charge.

27. U
q

a
= ⋅1

4 0

2

πε
(a = side of triangle)

W U Uf i= − =






 −3

1

4 0

2

πε
q

a
U

= − =3 2U U U

28. U K U Ki i f f+ = +

0
1

2

1

4
02

0

+ = ⋅ +mv
Qq

rπε
or r

v
∝ 1

2

If v is doubled, the minimum distance r will

remain
1

4
th.

29. See the hint of Sample Example 24.9

K =
−
ρ

ρ σ
=

−
=1.6

1.6 0.8
2

30. V
q

a

q

b a
p =







 − ⋅

+













2
1

4
2

1

40 0
2 2πε πε

= − +




















−
q

a

b

a4
2 2 1

0

2

2

1 2

πε

/

Since, b a< < , we can apply binomial expansion

∴ V
q

a

b

a
p = − −



















4
2 2 1

20

2

2πε

= qb

a

2

0
34πε

31. Let E = magnitude of electric field at origin due to

charge ± q. Then,

(i)

E E E E1
2 25 5 5 2= + =( ) ( )

(ii)

E2 is again 5 2E.

Similarly, we can find E3 and E4 also.

32. U E= 1

2
0

2ε =








1

2

1

4
0

0
2

2

ε
πε

q

R

=
× × ×















−
1

2

9 10
1

9
10

1
0

9 9

2

2

ε
( )

= ε0 3

2
J/m

33.

They have a common potential in the beginning.

This implies that only B has the charge in the

beginning.

Chapter 24 Electrostatics � 651

α T

C
π

T
min

Tmax

qE

mg E1
5E

5E

E2
5E

5E

A

B



∴ V
kq

b

B= or kq VbB =

Now, suppose qA charge is given to A. Then,

V
kq

a

kq

b
A

A B= + = 0

or kq a
kq

b
aVA

B= − 



 = −

Now, V
kq

b

kq

b
B

A B= +

= − + = −





a

b
V V V

a

b
1

34. Let E i j k= + +E E Ex y z
$ $ $

Apply dV d∫ ∫= − ⋅E v

three times and find values of E Ex y, and Ez. Then,

again apply the same equation for given point.

35.

Let charge on B is q′
VB = 0

∴ ( ( / ))k q

d

kq

r

2
0+ ′ =

∴ ′ = −q
qr

d2

36.

The induced charges on conducting sphere due to

+ q charge at P are as shown in figure.

Now, net charge inside the closed dotted surface is

negative. Hence, according to Gauss’s theorem net

flux is zero.

37.

Since | |Q QB A> , electric field outside sphere B is

inwards (say negative). From A to B enclosed

charge is positive. Hence, electic field is radially

outwards (positive).

38. E i j= − +










∂
∂

∂
∂

V

x

V

y

$ $ = − − −[( ) $ $ ]ky kxi + ( ) j

∴ | | ( ) ( )E = +ky kx2 2

= +k x y2 2 = kr

∴ | |E ∝ r

More than One Correct Options

1. (a) V V
kq

R

kq

R
A

A B= = +2
2

V V
kq

R

kq

R
B

A B= = +3

2 2 2

Solving these two equations, we get

q

q

A

B

= 1

2

(b)

′
′

=
−

= −q

q

q

q

A

B

A

A

1

(c) & (d) Potential difference between A and B

will remain unchanged as by earthing B,

charge on will not changed.

∴ ′ − ′ = −V V V VA B A B

= − =2
3

2 2
V V

V

∴ ′ =V
V

A
2

as ′ =VB 0

2. T
u

g

y= = × =
2 2 10

10
2 s

H
u

g

y= = =
2 2

2

10

20

( )
5 m

R a T
qE

m
Tx= = 





1

2

1

2

2 2
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E = 0

+QA

–QB

–

–

–

–

–
–

++q

P

+

+

+

+

A q ′

q

2

B

q
A

– =q q
A B



= ×







−1

2

10 10

2
2

3 4
2( )

= 10 m

3. 100
1

4
= ⋅

+πε0

q

R( )0.05
…(i)

75
1

4 0

= ⋅
+πε
q

R( )0.1
…(ii)

Solving these equations, we get

q = × −5

3
10 9 C

and R = 0.1 m

(a) V
q

R
= ⋅1

4 0πε

=
× ×





−( )9 10
5

3
109 9

0.1

= 150 V

(c) E
q

R

V

R
= ⋅ = =1

4

150

0
2πε 0.1

= 1500 V/m

(d) V Vcentre surface= 15.

5. Electric field at any point depends on both charges

Q1 and Q2. But electric flux passing from any

closed surface depends on the charged enclosed by

that closed surface only.

6. Flux from any closed surface = qin

0ε
,

qin = 0, due to a dipole.

8. E
k q

r
= in

2
Here, k =









1

4πε0

∴ E EA c= = 0

but, EB ≠ 0

V
kq

R
= ( )r R≤

V
kq

r
= ( )r R≥

9.

Higher force = 2qE (towards left)

If we displace the rod, τ τ1 2= or τ net = 0 in

displaced position too. Hence, equilibrium is

neutral.

10. Along the line AB, charge q is at unstable

equilibrium position at B (When displaced from B

along AB, net force on it is away from B, whereas

force at B is zero). Hence, potential energy at B is

maximum.

Along CD equilibrium of q is stable. Hence,

potential energy at B is minimum along CD.

Comprehension Based Questions

1. Vouter = 0

∴ kQ

r

kQ

r2 2
01+ =

∴ Q Q1 = − =charge on outer shell

2. Vinner = 0

∴ kQ

r

kQ

r

2 1

2
0+ =

∴ Q
Q Q

2
1

2 2
= − = =charge on inner shell

Charge flown through S2 = initial charge on inner

shell − final charge on it

= − =Q Q
Q

2
2

3. After two steps charge on inner shell remains
Q

2
or

half.

So, after n-times

q
Q

nin =
( )2

Now, according to the principle of generator,

potential difference depends on the inner

charge only.

∴ PD
4

in

0

= −





q

r rπε
1 1

2

=








+

1

2 41
0

n

Q

rπε
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qE

qE

T1

T2

Hinge force

F qEe =

F qE
e

=



4. According to Gauss’s theorem,

E
q

r
=







 





1

4 0
2πε
in …(i)

For r R≤

q r dr
r

in = ⋅ ⋅∫0

24( )π ρ

= −



∫0

2
04 1

r
r

r

R
dr( ) ( )π ρ

= −






4

3 4

3 4

πρ0
r r

R

Substituting in Eq. (i), we get

E
r r

r
= −











ρ
ε
0

2

3 4

5. For outside the ball,

E
q

r
= 1

4 0
2πε

total …(i)

where, q r
r

R
dr

R

total = −



∫0

2
04 1( ) ( )π ρ

Substituting this value in Eq. (i), we get

E
R

r
= ρ

ε
0

3

212

6. For outside the ball, electric field will

continuously decrease.

Hence, it will be maximum somewhere inside the

ball. For maximum value,

dE

dr
= 0

∴ d

dr

r r

R

ρ
ε
0

2

3 4
0−

















 =

Solving, we get r
R= 2

3

7. Submitting r
R= 2

3
in the same expression of

electric field, we get its maximum value.

8. Potential difference in such situation depends on

inner charge only. So, potential difference will

remain unchanged. Hence,

∆V V Va b= −

9.

Vinner = 0 when solid sphere is earthed

Q

kq

a

kQ

b

2 0− =

Q q Q
a

b
2 = 





10. Whole inner charge transfers to shell.

∴ Total charge on shell = −q Q2

= −



Q

a

b
1

Match the Columns

1. (a) EC and EF are cancelled. EE and ED at 60°

(b) EB and EE are cancelled. EF and ED at 120°.

(c) EB and EE are cancelled. Similar, EF and EC

are cancelled.

(d) EF and ED at 120°. So, their resultant is E in

the direction of EE. Hence, net is 2E.

2. dV d∫ ∫= − ⋅E r

∴ V V dA B
B

A
− = − ⋅∫ E r

3. V
kq

R
= ⇒ kq VR=

(a) V
kq

R
R r= −

3

2( )1.5 0.5 2

= − 















VR

R
R

R
3

2
2

3

2

1

2 2

= 11

8
V

(b) V
kq

r

VR

R

V= = =
2 2

(c) E
kq

R
r= ⋅

3

= 





( )

( )

V

R

RR
3 2

= =V

R

V

2 2
(if R = 1 m)

(d) E
kq

r

VR

R
= =

2 22( )

= V

R4
= V

4
for R = 1 m
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Q
–Q

q
1

= 0

(i)

q
2 –Q

(ii)



Subjective Questions

1. (a) By comparing this problem with spring-block

system problem suspended vertically.

Here, mg qE≡ = × × × =−50 10 5 10 256 5 N

X max = 2 mg/K

Here, X qE Kmax = = × =2
2 25

100
/ 0.5 m

or = 50 cm Ans.

(b) Equilibrium position will be at x mg= /K.

Here, it will be at x qE K= = =/
25

100
0.25 m

or 25 cm Ans.

(c) Force QE is constant force, which does not

affect the period of oscillation of SHM.

∴ T
m

K
= =2 2

4

100
π π

= =2

5

π
s 1.26 s Ans.

(d) µmg = × ×0.2 4 10 = 8 N

Therefore, here constant force will be

qE mg− = − = =µ 25 8 17 N F (say)

X
F

K
max = = ×2 2 7

100

= 0.34 m Ans.

2. Total charge on ring = =λ π( )2 a q (say)

Electric field at distance x from the centre of ring.

E
qx

a x

ax

a x
=

ε +
=

ε +
1

4 20
2 2 3 2

0
2 2 3 2π
λ

.
( ) ( )/ /

Restoring force on − Q charge in this position

would be

F QE
aQx

a x
= − = −

ε +










λ
2 0

2 2 3 2( ) /

For x a<< ,

F
aQ

a
x

Q

a
x= −

ε








 = −

ε










λ λ
2 20

3
0

2

Comparing with F kx= − ,

k
Q

a
=

ε
λ

2 0
2

T
m

k

ma

Q
= = ε

2 2
2 0

2

π π
λ

Ans.

3. q q
q

Q1 6
2

3= = =net

q Q q Q2 1 2= − = −

q q Q3 2 2= − = +
q Q q4 32 0= − =

q q5 4 0= − =

4.

(a) Net torque on the rod about O = 0

1

4

2

2 20
2πε







+ −





.
( )Q q

h

L
w

L
x

=
ε







1

4 20
2π

.
.Q q

h

L

x
L Qq

wh
= +

ε










2
1

4 0
2( )π

Ans.

(b) There will be no force from the bearing it,

w = net electrostatic repulsion from both the

charges.

∴ w
Q q

h
=

ε
1

4

3

0
2π

.
( )

or h
Qq

w
=

ε
3

4 0π
Ans.

5. E i j i j= − ∂
∂

+ ∂
∂







 = − +V

x

V

y

$ $ ( $ $)3 4 N/C

a
E= q

m

= − −
−10

10
3 4

6

( $ $)i j

= − × − ×− −( $ $)3 10 4 107 7
i j m/s2

When  particle crosses x-axis, y = 0.

Initial y- coordinate was 3.2 m.

and ay = − × −4 10 7 2m/s

∴ y = 0 at time t = ×
×

=−
2

4 10
4000

7

3.2
s
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1 2 3 4 5 6

Q 2Q 3Q

q

x

h

Q Q

h

O

w

2q



At this instant x-coordinate will be

x x a ti x= + 1

2

2

= + − × −2
1

2
3 10 40007 2( )( ) = − 0.4 m

Now, Vi = × + × =( ) ( .3 2 4 18 83.2) V

V f = − = −( ( )3) 0.4 1.2 V

∆V = 2 V0

∴ Speed, v
q V

m
= 2 ∆

= × ×−2 10 20

10

6

= ×2.0 10 m/s–3 Ans.

6. From work-energy theorem,

1

2
1 60 602 2m v u mgl qE l( – ) – ( sin ) cos= + ° + °

Substituting the values, we get

u v2 2– = 32.32 …(i)

Further, at C tension in the string is zero.

Hence,
mv

l
mg qE

2

60 60= ° °sin – cos

or v2 = 3.66 …(ii)

From Eqs. (i) and (ii), we get

u = 6 m/s Ans.

7. There are total 28 pairs of charges.

12 pairs → Q and − →Q distance L

12 pairs → (Q and Q ) or (− Q and −Q )→ 2L

4 pairs → Q and − →Q L3

∴ U
Q

L

Q

L
=

ε








−





 +

ε






12

1

4
12

1

4 20

2

0

2

π π
.

+
ε









−





4

1

4 30

2

π
Q

L

= −
ε

+ −







Q

L

2

0

3 6 2 3 3

6π

with decrease in L, potential energy will decrease.

Therefore, cube should shrink as the conservative

forces act in the direction of decreasing potential

energy.

Increase in KE of the system = decrease in PE

or 8
1

2

2mv U Ui f






= −

=
ε

+ −





 −





Q

nL L

2

0

3 6 2 3 3

6

1 1

π

or v
Q n

nm L
= − + −

ε

2

0

1 3 6 2 3 3

4 6

( )( )

π
Ans.

8. Let charge q1 comes from the earth on outer shell

.

Vouter = 0

1

4 2 2
0

0

1

πε
Q

r

q

r
+





=

or q Q1 = −
When S2 is closed and opened,

Vinner = 0

∴ 1

4 2
0

0

1

πε
q

r

Q

r

′
−









 =

or q
Q

1
2

′ =

Proceeding in the similar manner after n such

operations we get,

Charge on the inner shell,

q
Q

n n
′ =

( )2
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60°
qE

v
C

60°

mg
l

l

O

u

E

–Q

–Q

Q

Q

–Q

Q

–Q

Q

Q

q Q1 = – –Q

q1
′

⇒



and the potential difference between the shells,

∆ = −





′
V

q

r r

n

4

1 1

20πε

∆ =





+V
Q

rn

1

2 41
0( ) πε

Ans.

9. (a) Over charge Q2, field intensity is infinite along

negative x-axis. Therefore, Q2 is negative.

Beyond x l a> +( ), field intensity is positive.

Therefore, Q1 is positive.

(b) At x l a= + , field intensity is zero.

∴ kQ

l a

kQ

a

1
2

2
2( )+

= or
Q

Q

l a

a

1

2

2

 


 = +





(c) Intensity at distance x from charge 2 would be

E
kQ

x l

kQ

x
=

+
−1

2
2

2( )

For E to be maximum
dE

dx
= 0

or −
+

+ =2 2
01

3
2

3

kQ

x l

kQ

x( )

or 1

3

1

2

2

+





= = +





l

x

Q

Q

l a

a

or 1

2 3

+ = +





l

x

l a

a

/

or x
l

l a

a

=
+





−
2 3

1

/

or b
l

l a

a

=
+





−
2 3

1

/
Ans.

10. Capacities of conducting spheres are in the ratio of
their radii. Let C1 and C2 be the capacities of S1

and S2, then

C

C

R

r

2

1

=

(a) Charges are distributed in the ratio of their
capacities. Let in the first contact, charge
acquired by S2, is q1. Therefore, charge on S1

will be Q q− 1. Say it is q1
′ .

∴ q

q

q

Q q

C

C

R

r

1

1

1

1

2

1
′

=
−

= =

It implies that Q charge is to be distributed in

S2 and S1 in the ratio of R/r.

∴ q Q
R

R r
1 =

+






 …(i)

In the second contact, S1 again acquires the

same charge Q.

Therefore, total charge in S1 and S2 will be

Q q Q
R

R r
+ = +

+






1 1

This charge is again distributed in the same

ratio. Therefore, charge on S2 in second

contact,

q Q
R

R r

R

R r
2 1= +

+






 +









=
+

+
+





















Q
R

R r

R

R r

2

Similarly,

q Q
R

R r

R

R r

R

R r
3

2 3

=
+

+
+







 +

+




















and

q Q
R

R r

R

R r

R

R r
n

n

=
+

+
+







 + … +

+




















2

or q Q
R

r

R

R r
n

n

= −
+





















1 …(ii)

S
a r

r
n

n

= −
−











( )

( )

1

1

Therefore, electrostatic energy of S2 after n

such contacts

U
a

C
n

n=
2

2
= q

R

n
2

02 4( )πε
or U

q

R
n

n=
2

08πε

where, qn can be written from Eq. (ii).

(b) q
QR

R r

R

R r

R

R r
n

n

=
+

+
+

+…+…+
+





















−

1

1

as n → ∞

q
QR

R r
R

R r
∞ =

+ −
+













1

1

=
+

+





=QR

R r

R r

r
Q

R

r
S

a

r
∞ =

−





1

∴ U
q

C

Q R r

R
∞

∞= =
2 2 2 2

02 8

/

πε

or U
Q R

r
∞ =

2

0
28πε

Ans.
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11. v v
qV

m
x = = 





2
, t

l

v
l

m

qVx

= =
2

a
qE

m

qat

m

dv

dt
y

y= = =

Integrating both sides, we get

v
qat

m
y =

2

2

or v
qa

m
l

m

qV

al

V
y = 











 =

2 2 4

2
2

Now, angle of deviation

θ =






 =







− −tan tan /1 1

2

4

2v

v

al

V

qV

m

y

x

=






−tan 1

2

4 2

al

V

m

eV
Ans.

12. From energy conservation,

U K U KC C D D+ = +

or 2
9 10 5 10 5 10

5
4

9 5 5× × × − ×







 +

− −( )( )

= × × × − ×







 +

− −
2

9 10 5 10 5 10
0

9 5 5( )( )

AD

Solving we get AD = 9 m

∴ Maximum distance,

OD = −( ) ( )9 32 2

= 72 m Ans.

13. From conservation of energy,

U K U Ki i f f+ = +
or qV K qV Ki i f f+ = +

or q
Q

r
mv

4

1

20

2

πε






 +

=
ε







 −







 +q

Q

R
R

R

4
15 0 5

4
0

0
3

2
2

π
. .

or
1

2

11

3 4

2

0 0

mv
Qq

R

Qq

r
=

ε
−

επ π

or v
Qq

mR

r R

r
=

ε
− +



2

3

80π
Ans.

14. From energy conservation principle,

K U K Ui i f f+ = +

or
1

2
02mv q V q Vi f+ + = + +( ) ( )

or v
q

m
V Vi f= − +2

( )

= − + + −



 ε

2

10

8

5

8

4

1

4 0

q

m

Q

R

Q

R

Q

R

Q

R π

=
ε

−







Qq

mR2

3 10 5

5 100π
Ans.

15. (a) E
kQx

R x
=

+( )
,

/2 2 3 2

dE

dx
kQ

R x x R x x

R x
=

+ − +

+










( ) . ( ) ( )

( )

/ /2 2 3 2 2 2 1 2

2 2 3

3

2
2







or
dE

dx
kQ

R x x

R x
= + −

+










2 2 2

2 2 5 2

3

( ) /

or dE
Q R x

R x
dx=

ε
−

+










4

2

0

2 2

2 2 5 2π ( ) /

∴ | |
( ) /

∆ ∆E
Q R x

R x
x=

ε
−

+










4

2

0

2 2

2 2 5 2π
Ans.

Here, ∆ =x a2

∴ F q E
Qqa R x

R x
= ∆ = −

+








| |

( ) /2

2

0

2 2

2 2 5 2πε

(b) W U Uf i= −

= − ° + °pE pEcos cos180 0 = 2pE

=
ε +









2 2

1

4 0
2 2 3 2

( )( )
( ) /

q a
Qx

R xπ

=
ε +

aqQx

R xπ 0
2 2 3 2( ) /

Ans.

16. From conservation of mechanical energy and

conservation of angular momentum about point O,

we have

1

2

1

4

1

2

1

4
1
2

0 1
2
2

0 2

mv
Qq

r
mv

Q q

r
−

ε
= −

επ π
. .

.
…(i)
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+

E

v

y

x

–

+

v1

r1r2

v2

B
O

+Q
A



and mv r mv r1 1 2 290 90sin sin° = °
or v r v r1 1 2 2= …(ii)

Solving these two equations, we have

v
Qqr

mr r r
1

2

0 1 1 22
=

ε +π ( )

and
Qqr

mr r r
v1

0 2 1 2
2

2πε +
=

( )
Ans.

17. Let q q1 2: and q3 be the respective charges. Then,

10
9 10

10 1 2 4

9

2
1 2 3= × + +



−

q q q

0
9 10

10 2 2 4

9

2
1 2 3= × + +



−

q q q

and 40
9 10

10 4 4 4

9

2
1 2 3= × + +



−

q q q

Solving these equations, we get

q1
12200

9
10= + × − C, q2

12200 10= − × − C and

q3
123200

9
10= × − C

(a) At r = 1.25 cm

V = ×
× − ×

+ ×−

− −

9 10

10

200 9 10 200 10

2

3200 9 1

9

2

12 12( / )

( / )

1.25

0

4

12−



















= 6 V Ans.

(b) Potential at r = 2.5 cm

V = ×
× − ×

+ ×−

− −

9 10

10

200 9 10 200 10

3200 9

9

2

12 12( / )

( / )

2.5 2.5

10

4

12−



















= 16 V Ans.

(c) Electric field at r = 1.25 cm will be due to

charge q1 only.

∴ E
q

r
=

ε
1

4 0

1
2π

.

= × × ×
×

−

−
9 10 200 9 10

125 10

9 12

2 2

( / )

( . )

= ×1.28 10 V/m3 Ans.

18. (a) F Fnet = 2 cos θ

=
+ +

2

2
0
2 2

0

2
0
2

kQ q

R x

x

R x

.

( )
. Here, k =

ε








1

4 0π

=
+

2 0
2

0
2 3 2

kQqx

R x( ) /

We can generalised the force by putting x x0 = ,

we have

F
kQqx

R x
= −

+
2
2 2 3 2( ) /

Ans.

(b) Motion of bead will be periodic between

x x= ± 0 Ans.

(c) For
x

R
<<1, R x R2 2 2+ ≈

or F
kQq

R
x= − 





2
3

or a
F

m

kQq

mR
x= = − 





2
3

Since a ∝ − x, motion will be simple harmonic

in nature.

Comparing with a x= − ω2 , ω = 2
3

kQq

mR

x x t= 0 cos ω (as the particle starts from

extreme position)

v
dx

dt
x t= = − ω ω0 sin Ans.

(d) Velocity will become zero at t T= =/2 π/ω

or t
mR

kQq
= π

3

2
Ans.
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q
1

q2
q

3

θ
θ

F

x0

+Q

R F

–q

+Q

√R x
2
+ 0

2

v = 0 v = 0

x x= – 0 x x= 0



19. Net charge between r a= to r r= would be

Q r dr
C

r
r dr

a

r

a

r
= =∫ ∫ρ π π( ) ( )4 42 2

Q C r a= −2 2 2π ( )

E
k Q q

r

k C r a q

r
r = + = − +( ) [ ( ) ]

2

2 2

2

2π

From this expression, we can see that it we put

C
q

a
=

2 2π

E
kq

a
r = =

2
constant Ans.

20. dF Rd E= λ θ( ) 0

Perpendicular distance between two equal and

opposite pairs of dF will be

r R⊥ = 2 sin θ
∴ d dFr R E dτ λ θ θ= =⊥ 2 2

0 sin

∴ τ τ λ
π /

= =∫ d R E
0

2
2

02 (clockwise)

These pairs of forces will not provide net force.

Let force of friction on ring is f in forward

direction.

For pure rolling to take place,

a R= α

or
f

m
R

fR

mR
= −





τ
2

or f
R

f= −τ

or f
R

RE= =τ λ
2

0 Ans.

21. Two forces will act on the tank.

(a) Electrostatic force,

(b) Thrust force.

Let v be the velocity at any instant. Then,

F QE mnvnet = −

or ( )m mnt
dv

dt
QE mnv0 + = −

or
dv

QE mnv

dt

m mnt

v t

−
=

+∫ ∫0
0

0

or ln ln
QE

QE mnv

m mnt

m−






 = +






0

0

or
QE

QE mnv

m mnt

m−
= +0

0

or v QE
t

m mnt
=

+








0

Ans.

22. qE = 30 N, vertical component of electric force

= ° =30 30 15sin N and horizontal component of

electric force = ° =30 30 15 3cos N

a
mg

m
y = − = − =15 30 15

3
5 m/s2 (downwards)

ax = =15 3

3
5 3 2m/s

T
u

a

y

y
1

2 2 20 30

5
4= = × ° =sin

s

T eT2 1 2= = s

Horizontal velocity after first drop

= ° +( cos )20 30 1a Tx

= +( ) ( )10 3 5 3 4

= 30 3 m/s

∴ Horizontal distance travelled between first drop

and second drop

= +( )30 3
1

2
2 2

2T a Tx

= +( )( ) ( )( )30 3 2
1

2
5 3 2 2

= 70 3 m Ans.
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25. Capacitors

1. U
q

C
= 1

2

2

∴ [ ]C
q

U
=









 =









−

2 A T

ML T

2 2

2 2

= − −[M L T A ]1 2 4 2

2. Charge does not flow if their potentials are same.

3. q C V1 1 1 10= = µC

q C V2 2 2 40= = − µC

(a) V
q

C
= = − = −Total

Total

C

F
volt

30

3
10

µ
µ

(b) q C V q C V1 1 2 2′ = ′ =and

(c) ∆U
C C

C C
V V=

+
−1 2

1 2
1 2

2

2( )
( )

1. q CV=

2. (a) V
q

C
=

(b) C
A

d
= ε0

∴ A
Cd=
ε0

(c) σ = q

A

3. (a) K
E

E
= = ×

×
0

52 50 10

3.20 105

.

= 1.28

(b) σ σi
K

= −



0 1

1

= −



( )E

K
0 0 1

1ε

= × × −





−( ) ( . )3.20 10
1.28

5 8 86 10 1
112

= × −6.2 10 C/ m27

1. C q CVnet F C= = = × =2 2 15 30µ µ,

Now, this q will be distributed between 4 µF and

2 µF in direct ratio of their capacities.

2. C q CVnet F C= = = × =3 3 40 120µ µ, .

Now, this q will be distributed between 9 µF and

3 µF in the direct ratio of their capacities.

Exercises

LEVEL 1

Assertion and Reason

1. Capacitance of conductor depends on the

dimension of the conductor and the medium in

which this conductor is kept.

3. Energy supplied by the battery is

∆qV CV V CV= =( )( ) 2.

Energy stored in the capacitor is
1

2

2CV .

4. In graph-1, discharging is slow.

Hence, τ τC C1 2
>

Further,

τC CR=
∴ τ C R∝ (as C = constant)

5. Charges are same, if initially the capacitors are

uncharged.

Further, V
q

C
=

Hence, V
C

∝ 1

if q is same.

6. Charge (or current) will not flow in the circuit as
they have already the same potential, which is a
condition of parallel grouping.

Further,

q

q

C V

C V

C

C

1

2

1

2

1

2

1

2
= = =

7. Capacitor and R2 are short-circuited. Hence,

current through R2 is zero and capacitor is not

charged.

INTRODUCTORY EXERCISE 25.1

INTRODUCTORY EXERCISE 25.2

INTRODUCTORY EXERCISE 25.3



8. Capacitor and resistance in its own wire are

directly connected with the battery. Hence, time

constant during charging is CR.

9. U
q

C
= 1

2

2

or U
C

∝ 1
as q is same in capacitors

(if initially they are uncharged)

10. By inserting dielectric slab, value of C2 will

increase. In series, potential difference distributes

in inverse ratio of capacitance. If capacitance C2 is

increased PD across C2 will decrease. If C2 is

increased, charge on capacitors will also increase.

So, positive charge or current flows in clockwise

direction.

Objective Questions

1. F qE q q
q

A
= =







 =









σ
ε ε2 20 0

q will not change.

∴ F = constant

3. C C C= +1 2

= +( ) ( )4 40 0πε πεa b

= +4 0πε ( )a b

4. V V Vnet = + + …1 2 (in series)

= + + …V V

= nV

5. V V32 5 6= = V

∴ q CV5 30= = µC

q32

3 2

3 2
6= ×

+






 × = 7.2 Cµ

∴ q

q

5

2

30=
7.2

6.

7. Q qE mg=

q
V

d
r g





 = 





4

3

3π ρ

V
r

q
∝

3

8. ⇒ E = =σ
ε0

constant

9. At t = 0, when capacitor is under charged,

equivalent resistance of capacitor = 0

In this case, 6 Ω and 3 Ω are parallel

(equivalent = 2Ω)

∴ Rnet ( )1 2 3+ =Ω Ω

∴ Current from battery = =12

3
4A

= Current through 1Ω resistor

10. Final potential difference = E

∴ Final charge = EC

11.

V
i

R iR Va b− − =
4

∴ V V iRa b− = =5

4
10 …(i)

R R
R R

R R
net = +

+
( ) ( )

( )

3

3

= 7

4
R

∴ i
E

R

E

R
= = 



( / )7 4

4

7

Substituting in Eq. (i), we have

5

4

4

7
10











 × =E

R
R

∴ E = 14 V

12. All capacitors have equal capacitance. Hence,

equal potential drop ( )= 2.5 V will take place

across all capacitors.

V VN B− = 2.5 V

0 − =VB 2.5 V

∴ VB = − 2.5 V

Further, V VA N− = 3 ( )2.5 V

= 7.5 V

∴ VA = + 7.5 V (as VN = 0)

13. q CV= = 200 µC

In parallel, the common potential is given by

662 � Electricity and Magnetism

A

B

30 V60 V
15 V

15 V

E
0

E = 0 E = 0

+σ –σ

E

i

i
3 /4i

i/4

i/4 a b



Chapter 25 Capacitors � 663

V = Total charge

Total capacity

=
+

=200

2 2
50

µ
µ
C

V
( ) F

Heat loss = −U Ui f

= × − ×− −1

2
2 10 100

1

2
4 10 506 2 6 2( ) ( ) ( ) ( )

= × −5 10 3J

= 5 mJ

14. P i R i e Rt= = −2
0

2( )/ η

= −( ) /i R e t
0
2 2 η

= −P e t
0

2/ ( / )η

Hence, the time constant is
η
2

.

15. Common potential in parallel grouping

= Total charge

Total capacity

= =EC

C

E

2 2

16. V VA B− − × + − × =6 3 2
9

1
3 3

∴ V VA B− =12 V

17. In steady state condition, current flows from

outermost loop.

i =
+

=12

6 2
1.5 A

Now, V V iRC = =6Ω

= ×1.5 6 = 9 V

∴ q CVC= =18 µC

19. Horizontal range,

R
u u

g
l

x y=
×

=
2

…(i)

Maximum height, H
u

g
d

y= =
2

2
…(ii)

Dividing Eq. (ii) by Eq. (i), we have

1

4

u

u

d

l

y

x







 =

or
u

u

u

u

y

x

= sin

cos

θ
θ

= =tan θ 4d

l

20. V Ed d= =








σ
ε2 0

∴ d
V= 2 0ε

σ

= × −

−2
5

10

12

7

( ) ( )8.86 10

= × −0.88 10 3m

= 0.88 mm

21. Three capacitors (consisting of two loops are

short-circuited).

22. The equivalent circuit is as shown below.

23. C C C1 = +RHS LHS

= +K A

d

K A

d

2 0 1 02 2ε ε( / ) ( / )

= + =ε ε0
1 2

0

2

5

2

A

d
K K

A

d
( )

C
A

d d d
d

K

d

K

2
0

1 2

2 2
2 2

=
− − + +

ε

/ /
/ /

=
+









2 0 1 2

1 2

ε A

d

K K

K K

= 12

5

0ε A

d

∴ C

C

1

2

25

24
=

24. A balanced Wheatstone bridge is parallel with C .

25. First three circuits are balanced Wheatstone bridge

circuits.

26. C C C= +LHS RHS

= +
− − + +

K A

d

A

d d d
d

K

d

K

1 0 0

2 3

2 2

2 2
2 2

ε ε( / ) ( / )

/ /
/ /

= +
+











ε0 1 2 3

2 32

A

d

K K K

K K

1 Fµ

1 Fµ

1 Fµ

2 Fµ

X Y



27.

C
A

d
= =ε µ0 7 F

The equivalent circuit is as shown in figure.

C CAB = =11

7

11

7
7( )µF

= 11µF

Subjective Questions

1. Charge on outermost surfaces

= = −qtotal

2

10 4

2

( ) µC

= 3 µC

Hence, charges are as shown below.

2. Charge on outermost surfaces

= = − = −q q q qtotal

2

2 3

2 2

Hence, charge on different faces are as shown

below.

Electric field and hence potential difference

between the two plates is due to ± 2.5 q.

PD = Ed

=








σ
ε0

d =








2.5 q d

Aε0

Capacitance, C
A

d
= ε0

3. All three capacitors are in parallel with the battery.

PD across each of them is 10 V. So, apply q CV=
for all of them.

4. Capacitor and resistor both are in parallel with the

battery. PD across capacitor is 10 V. Now, apply

q CV= .

5. In steady state, current flows in lower loop of the

circuit.

i =
+

=30

6 4
3A

Now, potential difference across capacitor =
potential difference across 4 Ω resistance.

= iR

= =( ) ( )3 4 12 V

∴ q CV= = ( ) ( )2 12µF V

=24 µC

6. (a) C
C C

C C
net =

+
=1 2

1 2

2

3
µF

q C Vnet net=

= 





2

3
1200µF V( )

= 800 µC

In series, q remains same.

∴ q q1 2 800= = µC

V
q

C
1

1

1

800= = V

and V
q

C
2

2

2

400= = V

(b) Now, total charge will become 1600 µC. This

will now distribute in direct ratio of capacity.

∴ q

q

C

C

1

2

1

2

1

2
= =

q1

1

3
1600

1600

3
= 



 =( ) µC

q2

2

3
1600

3200

3
= 



 = 



( ) µC

They will have a common potential (in

parallel) given by

V = Total charge

Total capacity
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3 Cµ 7 Cµ 3 Cµ–7 Cµ

q

2
–

2.5q

–2.5q

q

2
–

A B

V
2

V
1

V
3

V
2

C

C
V

1
V

3

V
1

V
4

V
4

V
3

C C/2

C
V

1
V

2

C

C

C

C/2

C

V
1

V
3

V
4

V
3

V
2

V
2

B

A

V
1

V
1
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= 1600

3

µ
µ

C

F

= 1600

3
V

7. Charge, q CV= =104 µC

In parallel, common potential is given by

V = Total charge

Total capacity

20
10

100

4

=
+

( )

( )

µ
µ

C

CC

Solving this equation, we get

C = 400 µF

8. Charge supplied by the battery,

q CV=
Energy supplied by the battery,

E qV CV= = 2

Energy stored in the capacitor,

U CV= 1

2

2

∴ Energy dissipated across R in the form of heat

= −E U = =1

2

2CV U

9. i i e t C= −
0

/ τ

Putting i
i= 0

2
, we get

t C C= =(ln ) ( )2 τ τ0.693

10. Both capacitors have equal capacitance. Hence,

half-half charge distribute over both the capacitors.

q q
q

1 2
0

2
= =

q1 decreases exponentially from q0 to
q0

2
while q2

increases exponentially from 0 to
q0

2
.

Corresponding graphs and equation are given in

the answer.

Time constant of two exponential equations

will be

τC C= ( )net

R
C

R
CR= 



 =

2 2

11. q qi = 0

q ECf =
Now, charge on capacitor changes from qi to qf

exponentially.

∴ q q EC q e t C= + − − −
0 0 1( ) ( )/ τ

= − +− −EC e q et tC C( )/ /1 0
τ τ

Here, τC CR=
12. (a) Immediately after the switch is closed whole

current passes through C1.

∴ i E R= / 1

(b) Long after switch is closed no current will pass

through C1 and C2.

∴ i
E

R R
=

+1 3

13. (a) At t = 0 equivalent resistance of capacitor is

zero. R1 and R2 are in parallel across the battery

PD across each is E.

∴ i E RR1 1= /

i E RR2 2= /

(b) In steady state, no current flow through

capacitor wire. PD across R1 is E.

∴ i E RR1 1= / and iR2
0=

(c) In steady state, potential difference across

capacitor is E.

∴ U CV CE= =1

2

1

2

2 2

(d) When switch is opened, capacitor is discharged

through resistors R1 and R2.

τC CR= net

= +C R R( )1 2

14. (a) Simple circuit is as shown below.

(b) The simple circuit is as shown below.

t

q

q
0

EC

( – )EC q
0

A B

A B



(c) Let C xAB = . Then,

Now, C C
C x

C x
AB = +

+
( ) ( )2

2

or x C
Cx

C x
= +

+
2

2

Solving this equation, we get

x C= 2

15. (a) V = 660 V across each capacitor

Now, q CV= for both

(b) q q qnet = +1 2

= − ×(3.96 2.64) 103 C

= × −1.32 10 3C

Now, common potential

V = Total charge

Total capacity
= ×

×

−

−
13.2 10 3

610 10

= 132 V

Now, apply q CV= for both capacitors.

16. u E= 1

2
0

2ε

= 





1

2
0

2

ε V

d

17. d
V

E
= max

max

C
K A

d
= ε0

∴ A
dC

K
=

ε0

= ( ) ( )

( ) ( ) ( )

max

max

V C

K E ε0

18. 0.1 =
1

2
( ) ( )C C1 2

22+ …(i)

1.6 10× =
+







− 2 1 2

1 2

21

2
2

C C

C C
( ) …(ii)

Solving these two equations, we can find C1

and C2.

19.

q shown in figure is in µC.

Now, V
q q

VA B− + − =
1

10
2

or V V
q

A B− = − =3

2
10 5

∴ q = 10 µC

Now, V
q

C
= across each capacitor.

20. See the answer.

21. In series, potential difference distributes in inverse

ratio of capacitance.

∴ V

V

C

C

C

C

A

B

B

A

= = = =2

1

60

40

3

2

∴ C C2 1= 1.5 …(i)

Now,
′
′

= ′
′

V

V

C

C

A

B

B

A

or
10

90 2

2

1

=
+

C

C( )

or C C1 22 9+ = …(ii)

Solving Eqs. (i) and (ii), we get

C1 = 0.16 µF

and C2 = 0.24 Fµ
22. (a) q CV=

(b) C
A

d
= ε0 or C

d
∝ 1

If d is doubled, C will remain half. Hence, q

will also remain half.

(c) q CV= = 





ε0A

d
V = ε π0

3( )R V

d

or q R∝ 2

R is doubled. Hence, q will become four times

or 480 µC.

23. Energy lost = energy stored = 1

2

2CV

24. (a) C
A

d
= ε0

(b) q CV=

(c) E
V

d
=

25. (a)
1 1 1 1

Cnet 8.4 8.2 4.2
= + +

∴ Cnet 2.09 F= µ
q C Vnet net=

= ( ( )2.09) 36

= ≈75.14 C Cµ µ76

In series, charge remains same in all

capacitors.
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A B

q q
–+ –+

10 V

A

B

xC

2C
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(b) U C Vtotal net= 1

2

2

(c) qtotal C C= =( ) ( )3 76 288µ µ
Now common potential in parallel,

V
q

C
= =total

total

C

8.4 + 8.2 + 4.2

228 µ
µ( ) F

(d) U C Vtotal net= 1

2

2

26.

If we see the charge on positive plate of 6 µF

capacitor, then

q q q q2 1 4 3= − − −( ) …(i)

Now, applying three loop equations, we have

5
3 6

01 2− + =q q
…(ii)

10
6 2

02 3− − =q q
…(iii)

5
2 4

03 4− − =q q
…(iv)

Solving these four equations, we can find q q q1 2 3, ,

and q4.

27. (a) Simple series and parallel grouping of

capacitors.

(b) q C Vnet net=
= × −( ) ( )2.5 10 6 220

= × −5.5 10 C4

C C1 5, and equivalent of other three capacitors

are in series. Hence, charges across them are

same.

qtotal will distribute between C2 and C34 in

direct ratio of capacitance.

∴ q

q

2

34

4 2 2

1
= =.

2.1

∴ q2
42

3
= × −( )5.5 10 = × −3.7 10 C4

q34
41

3
= × −( )5.5 10 = × −1.8 10 C4

For finding PD across any capacitor, use the

equation

C
q

V
=

28. In series, potential difference distributes in inverse

ratio of capacitance.

∴ V

V

C

C

A

B

= 2

1

or
130

100

2

1

= C

C

or C
C

CA1
2= =

1.3

K is made 2.5 times. Therefore, C1 will also
become 2.5 times.

′ = =C C
C

1 1
22.5

2.5

1.3

or
′ =C

C

1

2

25

13

Now,
′
′

=
′

=V

V

C

C

A

B

2

1

13

25

or ′ =
+







 =VA

13

13 25
230( ) 78.68 V

′ = − ′ =V VB B230 151.32 V

29. C23

2 3

2 3
= ×

+
= 1.2 Fµ

q C Vtotal 110 C= =1 µ
Common potential in parallel is given by

V = Total charge

Total capacity

=
+

=110

1
50

1.2
V

q C V23 23 60= =( ) µC

So, this much charge flows through the switch.

30. (a) Simple circuit is as shown below.

C
34C

2
4.2 Fµ

2.1 Fµ

+ –

+

–

–

+

+

–
q

2
q

3
q

4

q
1

5V

3 Fµ

–

+
q

1

q
1

5 V 6 Fµ 2 Fµ 4 Fµ

– +
10 Vq q

4 3
– q q

4 3
–

2 Fµ

3 Fµ C1 = 3 Fµ

C2 = 2 Fµ
4 Fµ

4 Fµ
20 V

C
3

⇒

6 Fµ , V1

20 V

6 Fµ , V2



(b) q C Vnet net V= =( ) ( ) ( )34 20µF = 60 µC

(c) Upper network and lower network both have

same capacitance = 6 µF

V V1 2

20

2
10− = = V

VC1
10= V

∴ q C VC C1 11 30= =( )( ) µC

(d) VC2
10= V, ∴ q C VC C2 22 20= =( )( ) µC

(e) VC3
5= V, ∴ q C VC C3 33= ( )( ) = 20 µC

31. (a)

C13

1 3

1 3

3

4
= ×

+
= µF

C24

2 4

2 4

4

3
= ×

+
= µF

V VC C C C1 3 2 4
12= = V

∴ q q C VC C1 3 13 1 3

3

4
12 9= = = × =( ) ( ) µC

q q C VC C2 4 24 2 4

4

3
12 16= = = × =( ) ( ) µC

(b)

C12

1 2

1 2

2

3
= ×

+
= µF

C34

3 4

3 4

12

7
= ×

+
= µF

V

V

C

C

1

2

34

12

12 7

2 3

18

7
= = =/

/

∴ V1

18

25
12= 



 =( ) 8.64 V

V2 12= − 8.64 = 3.36 V

Now, we can apply q CV= for finding charge on

different capacitors.

32. q C Vtotal = 1 0

After switch is thrown towards right, C23 and C1

are in parallel. The common potential is

V = Total charge

Total capacity
=

+
+









C V

C
C C

C C

1 0

1
2 3

2 3

Now, q C V
C V

C
C C

C C

C1 1
1
2

0

1
2 3

2 3

= =
+

+








This is the same result as given in the answer.

q q C VC C2 3 23= =

=
+







 +

+















C C

C C

C V

C
C C

C C

2 3

2 3

1 0

1
2 3

2 3

33. (a) q C V
A

d
Vi= = 





ε0

V
q

C

AV d

A d
Vf

f

= = =( / )

( / )

ε
ε

0

0 2
2

(b) U C Vi i= 1

2

2 = 





1

2

0 2ε A

d
V

U C Vf f f= 1

2

2 = 





1

2 2
20 2ε A

d
V( )

= 





ε0 2A

d
V

(c) W U U
A

d
Vf i= − = 





1

2

0 2ε

34. (a) After long time, capacitor gets fully charged
by E1.

∴ iC = 0

and i i
E

R R
R R1 2

1

1 2

= =
+

=
×
20

20 103

= −10 3 A = 1 mA

(b) In steady state (with E1).

V V VC R R= =
2 1

= =E1

2
10 V

Now, when the switch is shifted to position B,

capacitor (at t = 0) behaves like a battery of

10 V.
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C1

C2

C3

C4

V1 V2

12 V

C1 C3

C2 C4

12 V



The circuit in that case is as shown below.

Now, with the help of Kirchhoff’s laws we can

find different currents. Final currents are

shown in the diagram.

35. (a) Va = 18 VandVb = 0as no current flow through

the resistors.

∴ V Va b− =10 V

(b) V Va b− = + ve .

Hence, V Va b>
(c) Current flows through two resistors,

i = −
+

=18 0

6 3
2A

∴ V iRb − = = ×0 2 3

or Vb = 6V

(d) Initially, V V3 6 18µ µF F= = V

∴ q3 54µ µF = C (q CV= )

and q6 108µ µF = C

Finally,

V V iR6 6µF = =Ω

= × =2 6 12 V

∴ q6 72µ µF = C

V V3 3 6µF V= =Ω

∴ q3 18µ µF = C

∆q q qf i= − = − 36 µC on both capacitors.

36. (a) In resistors (in series) potential drops in direct

ratio of resistance and in capacitors (in series)

potential drops in inverse ratio of capacitance.

18
6

6 3
18− =

+






Va ( )

∴ Va = 6 V

18
3

6 3
18− =

+






Vb ( )

Vb = 12 V

(c) V V iR3 3

18 0

6 3
3 6µF V= = = −

+






 =Ω ( )

∴ Vb − =0 6 V

∴ Vb = 6 V

(d) Initially,

q C V= =net F( ) ( )2 18µ
= 36 µC

Finally,

q1 72= µC

q2 18= µC

Charge flow from S = (Final charge on plates p

and r) − (Initial charges on plates p and r)

= − + − − +( ) ( )72 18 36 36

= − 54 µC

37. (a) In steady state,

V
V

C =
2

∴ Steady state charge,

q CV
CV

C0
2

= =

For equivalent value of τC : We short circuit

the battery and find the value of Rnet across

capacitors and then

R
R

net = 3

2

∴ τC CR
RC= =net

3

2

Now, q q e t C= − −
0 1( )/ τ
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R R

R

q

q

+

–

+

–

r

p
18 V

q
1

+

–

+

–

r

p
12 V

q
2 6 V

10 V

10 V

R1
R2

1 mA

3 mA

2 mA



(b) At t = 0, capacitor offers zero resistance.

R
R

net = 3

2

∴ i
V

R

V

R
= =

3 2

2

3/

i i
V

R
C AB= = =1

2 3

At t = ∞,  capacitor offers infinite resistance. So,

iC = 0.

∴ i i
V

R
ABbattery = =

2

Now, current through AB increases exponentially

from
V

R3
to

V

R2
with same time constant.

( )i t- graph is as shown below.

( )i t- equation corresponding to this graph is

i
V

R

V

R
e t C= + − −

3 6
1( )/ τ

LEVEL 2

Single Correct Option

1.

E E1
0 0 0

3
2

3

2

2= + = =σ
ε

σ
ε

σ
ε

E2
0 0 0

3

2 2
= − =σ

ε
σ
ε

σ
ε

E1 and E2 are in the negative direction and E3 in

positive direction.

2. Let E be the external field (toward right). Then,

E − =σ
ε2

8
0

…(i)

E + =σ
ε2

12
0

…(ii)

Solving these equations, we get σ ε= 4 0

3. At t = 0 when capacitors are initially uncharged,

their equivalent resistance is zero. Hence, whole

current passes through these capacitors.

4. Changing current is given by

i i e t C= −
0

/ τ

or i
V

R
e t CR= − /

If we have take log on both sides, we have

ln ( ) lni
V

R CR
t= 



 − 





1

Hence, ln ( )i versus t graph is a straight line with

slope −





1

CR
and intercept + 



ln

V

R
.

Intercepts are same, but | | | |slope slope1 2> .

5. During charging of a capacitor 50% of the energy

supplied by the battery is lost and only 50% is

stored.

∴ Total energy lost =
1

2

q

C

2

= =1

2

2

8

2 2( / )EC

C

E C

Now, this total loss is in direct ratio r r: 2 or 1 2:

∴ Energy lost in battery is
1

3
rd of

E C2

8
.

6. Equal and opposite charges should transfer from

two terminals of a battery. For charging of a

capacitor, it should lie on a closed loop.

7.

i
E E

R R
= −

+
[ ]0

0

Now, V E E iR Va b− + + =0 0

∴ V V E E iRa b− = − −( )0 0

= − −
+









( )E E

R

R R
0

0

0

1

= −
+

R E E

R R

( )

0

∴ q C V V
CR E E

R R
a b= − = −

+
( )

( )0

0
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a bE

E R

C

E0 R0

i

E
2

+σ +3σ

E
1

E
3

–ve

+ve

t

i

V

6R V

3R

V

2R
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8. Initially

C
C C

C C

C
net =

+
=( ) ( )0 0

0 0

0

2

= 0.5 C0

Finally

C
C C

C C
net =

+
( / ) ( )

( / )

0 0

0 0

2 2

2 2

= 0.4 C0

9. The simple circuit is as shown below.

R
R

net =
3

∴ τC CR
CR= =net
3

q q e t C= − −
0 1( )/ τ ,

where, q CV0 =

10. Common potential in parallel grouping,

V = Total charge

Total capacity

= × + ×
+

( ) ( )2 100 4 50

2 4

= 200

3
V

Loss = −U Ui f

= × × × + × × ×








−10
1

2
2 100 100

1

2
4 50 506

− × × ×








1

2
6

200

3

200

3

= × −1.7 10 3J

11. V i R0 0 10 10 100= = =( ) ( ) V

After 2 s, current becomes
1

4
th. Therefore, after

1 s, current will remain half also called half-life.

t CRC1 2 2 2/ (ln ) (ln )= =τ

∴ C
t

R
= =( )

(ln ) ln

/1 2

2

1

10 2
F

Total heat = 1

2
0
2CV

= ×1

2

1

10 2
100 2

ln
( )

= 500

2ln
J

12. Net capacitance between points A and P will be

equal to the net capacitance between points P

and B.

13. Total charge = −( ) ( )2 4C V CV

= 7CV

Common potential after they are connected is

VC = Total charge

Total capacitance

=
+

=7

2

7

3

CV

C C
V

Heat = −U Ui f

= +1

2

1

2
2 42 2CV C V( ) ( )

− × × 





1

2
3

7

3

2

C V

= 25

3

2CV

14. Total heat produced = 1

2

2CV

= 1

2
2 5 2( ) ( )µF

= 25 µJ

Now, this should distribute in inverse ratio of

resistors, as they are in parallel.

∴ H

H

R

R

5

5

Ω =

or H
R

R
5

5
Ω =

+






 (Total heat)

or 10
5

25=
+









R

R
( )

Solving this equation, we get

R = 





10

3
Ω

15. In position-1, initial maximum current is

i
V

R
0

10

5
2= = = A

At the given time, given current is 1A or half of the

above value. Hence, at this is instant capacitor is

also charged to half of the final value of 5 V.

C
R

R

R

V



Now, it is shifted to position-2 wherein steady

state it is again charged to 5Vbut with opposite

polarity.

U U CVi f= = 1

2

2 (Q V = 5 V)

∴ Total energy supplied by the lower battery is

converted into heat. But double charge transfer

(from the normal) takes  place from this

battery.

∴ Heat produced = Energy supplied by the

battery

= = =( ) ( )( )∆q V CV V CV2 2 2

= × × ×−2 2 10 56 2( )

= × −100 10 6J

= 100 µJ

16. Equivalent capacitance of 6 µF and 3 µF is also

2 µF and charge across it is also q or circuit is

balanced. Hence, there is no flow of charge.

17. Two capacitors are in parallel.

∴ U C V= 1

2

2
net

= 1

2
2 2( )C V = CV 2

= 





ε0 2A

d
V

18. Initially, the rate of charging is fast.

19. V1 5 2 7Ω = + = V

∴ i
V

R
1 7Ω = = A

V2 6µF = V

∴ q CV2 12µ µF = = C

20. During charging capacitor and resistance of its

wire are independently connected with the battery.

Hence,

τC CR=
During discharging capacitor is discharged through

both resistors (in series). Hence,

τC C R CR= =( )2 2

21. Total charge = × − × =3 100 1 100 200 µC

Common potential (in parallel) after S is closed, is

V = Total charge

Total capacity

= 200

4

µ
µ

C

F

= 50 V

22.
V

V

1

11.5

1.5=

∴ V1 30=








1.5

1.5 + 1
( )

= 18 V

V

V

2.5

0.5

0.5

2.5
= = 1

5

∴ V2.5 =
+









1

1 5
30( )

= 5 V

Now, | |V V Vab = −1 2.5

= 13 V

23. In the figure,

q q q1 2 3 0+ + =
60 6 20 2 30 3 0( ) ( ) ( )V V V− + − + − =

Solving this equation, we get

V = 49

11
V

24.

V

V

C

C

AB

BC

BC

AB

= = =( )

( )

3

6

1

2

∴ VAB =
+









1

1 2
10( ) V

= 10

3
V
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3 Fµ

3 Fµ 1 Fµ

2 Fµ

1 Fµ

10 V

A
B

C

q1

q2

q320 Fµ

30 Fµ

+2 V +3 V

+6 V

60 Fµ –

+

+
–

+
–

V (let)



25. Applying Kirchhoff’s loop law in outermost loop,

we have

− + − × − − × + =q q

3
15 2

2
3 1 18 02.5

Solving this equation, we get

q = 30 µC

26. τC CR= = 6 s

q CV0 10= = µC

Now, q q e t C= −
0

/ τ = −( ) /10 12 6µC e

= 





1
10

2

e
( )µC

= ( ) ( )0.37 C2 10 µ

27. q E E C= +( )1 2 net

= +
+

( )E E
C C

C C
1 2

1 2

2 2

V
q

C

E E

C C
Cab = = +

+








2

1 2

1 2
1

28. H H U Ui f1 2= = −

The only change is by increasing the resistance τC

increase. Hence, process of redistribution of

charge slows down.

29. Just after the switch is closed C1 is short-circuited

and current passes through R1 and C1 only.

30. i
V

R
e

t

CR
1

6

2
= 





−

∴ i
V

R
e

t

CR
2 = 





−

∴ i

i

e

t

CR
1

2

5

6

2
=

We can see that this ratio is increasing with time.

31. τC CR=

= 











K A

d

d

A

ε
σ

0 R
l

A
=



σ

= Kε
σ

0

= × ×
×

−

−
5 12

12

8.86 10

7.4 10

= 6 s

32. The given time is the half-life time of the

exponentially decreasing equation.

∴ t t CRC= = =1 2 2 2/ (ln ) (ln )τ net

∴ R
t

C
net =

(ln )2

= =2 2

2
4

(ln )

(ln ) (

µ
µ
s

0.5 )F
Ω

∴ Resistance of ammeter = 2Ω

33. Four capacitors are in parallel charge across each

is q CV= . Two surfaces of plate C marks two

capacitors, one with B and other with D and C is

connected to positive terminal of the battery.

Hence,

q CVC = = +2 40 µC

34.

q q
q CV CV Q Q

1 4
2 2

= = = − + =total

2

q Q CV
Q Q

CV2
2 2

= + − = +



( )

q q
Q

CV3 2
2

=− = − +





Electric field between two plates and hence the

potential difference is due to q2 and q3 only.

PD = = +q

C
V

Q

C

2

2

More than One Correct Options

1.

q q
q Q

1 4
2

= = =total

2

q Q q
Q

2 1
2

= − =
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1 2 3 4

Q

2

Q

2

Q

2
–

Q

2

1 2 3 4

–+

+–
q

q

3 Fµ

2 Fµ

5 Ω
1 Ω

18 V 15 V

2r

2.5 A3 A

4 Ω



q q
Q

3 2
2

= − = −

E E EA = +1 4 (towards left)

= + =Q

A

Q

A

Q

A4 4 20 0 0ε ε ε
E EC A= −

= Q

A2 0ε
(towards right)

E E EB = +2 3 (towards right)

= +Q

A

Q

A4 40 0ε ε
= Q

A2 0ε

2. In steady state,

q ECC = and q ECC2 2=
τC CR= 2 of both circuits

At time t ,

q EC eC
t C= −( )/1 τ

q EC eC
t C

2 2 1= − −( )/ τ

∴ q

q

C

C2

1

2
=

3. In steady state, current through capacitor wire is

zero. Current flows through 200 900Ω Ω, and A2.

V
q

C
C = = ×

×

−

−
4 10

100 10

3

6

= 40 V

This is also potential drop across 900 Ω resistance

and 100 Ω ammeter A2 (Total resistance

= 1000 Ω). Now, this 1000 Ω and 200 Ω are in

series. Therefore,

V V
V

2 200

1000

5
= =Ω

Ω

= =40

5
8 V

Emf V= + =V V1000 200 48Ω Ω

i = Emf

Net resistance

= 48

1200
= 1

25
A

4. Current through A is the main current passing

through the battery. So, this current is more than

the current passing through B. Hence, during

charging more heat is produced in A.

In steady state,

iC = 0

and i iA B=

Hence, heat is produced at the same rate in A

and B.

Further, in steady state

V VC B= = ε
2

∴ U CV CC= =1

2

1

8

2 2ε

5. F qE q
q

A
= =







 =( )

σ
ε ε2 20

2

0

q remains unchanged. Hence, F remains

unchanged.

E
q

A
= =σ

ε ε0 0

q remains unchanged. Hence, E also remains

unchanged.

U
q

C
=

2

2
or U

C
∝ 1

C will decrease. Hence,U will increase.

V Ed= or V d∝
d is increasing. Hence, V will increase.

6. C
C C

C C
Ci =

+
=( ) ( )2

2

2

3

q C E ECi i= = 2

3

C Cf = 2

∴ q ECf = 2

∆q q qf i= −

= 4

3
CE

7. Let ( )+ q µC charge flows in the closed loop in

clockwise direction. Then, final charges on

different capacitors are as shown in figure.

Now, applying Kirchhoff’s loop law

360

3

300

2

− + − =q q q

1.5

Solving the above equation, we get

q = 180 µC

8. If the battery is disconnected, then q = constant

C
A

d
= ε0 or C

d
∝ 1
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+ –

+ – + –

+

q q

(300– )q (360– )q



d is decreased. Hence, C will increase.

U
q

C
= 1

2

2

or U
C

∝ 1

C is increasing. Hence,U will decrease.

V
q

C
= or V

C
∞ 1

C is increasing. Hence, V will decrease.

9. (a) At t = 0, emf of the circuit = PD across the

capacitor = 6 V.

∴ i =
+

=6

1 2
2A

Half-life of the circuit

= =(ln ) (ln ) ( ln )2 2 6 2τC CR s.

In half-life time, all values get halved.

For example

VC = =6

2
3V

i = =2

1
1A

∴ V iR1 1Ω = = V

V iR2 2Ω = = V

10.

In series, V
C

∝ 1
(as q = constant)

∴ V

V

2

1

1

4
=

or V
V

2
1

4

10

4
= = = 2.5 V

V

V

3

1

1

9
=

∴ V
V

3
1

9

10

9
= = V

Now, E = +



10

9
2.5 +

10
V

Comprehension Based Questions

1. Finally, the capacitors are in parallel and total

charge ( )= q0 distributes between them in direct

ratio of capacity.

∴ q
C

C C
qC2

2

1 2
0=

+






 → in steady state.

But this charge increases exponentially.

Hence, charge on C2 at any time t is

q
C q

C C
eC

t C

2

2 0

1 2

1=
+







 − −( )/ τ

Initially, C2 is uncharged so, whatever is the

charge on C2, it is charge flown through switches.

2. Common potential in steady state when they

finally come in parallel is

V = Total charge

Total capacity
=

+
q

C C

0

1 2

Total heat dissipated = −U Ui f

= − +
+









q

C
C C

q

C C

0
2

1
1 2

0

1 2

2

2

1

2
( )

=








+








q

C

C C

C C

0
2

1

1 2

1 22

3. E E
V

d
air = =0

4. E
E

K

V

Kd
dielectric = =0

Match the Columns

1. (a) C i = ×
+

=4 4

4 4
2 µF

C
C C

C C
f =

+
= ×

+
1 2

1 2

8 2

8 2

= 1.6 µF

q CV=
Since, total capacity is decreasing. Hence,

charge on both capacitors will decrease.

(b) U
q

C
2

21

2
=

q has become
16

2

.
or 0.8 times but C is halved.

Hence,U 2 will increase.

(c) V
q

C
2 =

q has become 0.8 times and C is halved.

Hence, V2 will increase.

(d) E
V

d
2

2= or E V2 2∝

2. (a) C i = 2 µF

∴ qi = 60 µC

C f = 6 µF

∴ qf = 180 µC

∴ ∆ q from the battery = − =q qf i 120 µC.
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V
1

V
2

V
3

1 Fµ 4 Fµ 9 Fµ



(b) Between 4 µF and 2 µF charge distributes

indirect ratio of capacity. Hence, on 2 µF

qi =
+







 =2

2 4
60 20( )µ µC C

qf =
+









2

2 4
180 60( ) µC

∴ ∆ ∆q f qi= − = 40 µC

(c) On 3 µF, initial charge is 60 µF and final charge

is zero.

∴ ∆ q = 60 µC

(d) On 4 µF

qi =
+







 =4

2 4
60 40( )µ µC C

qf =
+







 =4

2 4
180( µ µC) 120 C

∴ ∆ q q qf i= − = 80 µC

3. (a) In second figure, V VC1
= = maximum

Hence, qC1
is maximum.

(b)  In first figure, V
V

C2 3
=

In second figure, V VC2
=

In third figure, V
C

C C
V

V
C2 2 3

=
+







 =

In fourth figure, V
C

C C
C2

2

2
=

+






 V

V= 2

3

Now, q CV=
Hence, qC2

is minimum in first and third

figures.

(c) In second figure, V VC1
= = maximum

(d) Similar to option (b)

4. After closing the switch, the common potential  is

parallel.

V = Total charge

Total capacity
= =CV

C

V

3 3

U C
V

CVC = 



 =1

2 3

1

18

2
2

U C
V

CVC2

2
21

2
2

3

1

9
= 



 =( )

Loss of energy = −U Ui f

= − × × 





1

2

1

2
3

3

2
2

CV C
V

= 1

3

2CV

5. Let C
A

d
0

0= ε

C
A

d

K A

d
1

0 02 2= +ε ε( / ) ( / )

= + =C
C

C0
0

0

2

3

2

C
A

d d
d

K

A

d
K

2
0 0

2
2

2

1
1

=
− +

=
+





ε ε

/
/

= =4

3

4

3

0
0

ε A

d
C

∴ C

C

1

2

9

8
=

Capacitors are in series.

Hence, q q1 2=

or
q

q

1

2

1=

U
q

C
= 1

2

2

or U
C

∝ 1
(as q is same)

∴ U

U

C

C

1

2

2

1

8

9
= =

6. q q
q

Q1 8 7= = =total

2

q Q q Q2 14 3= − = −
q q Q3 2 3= − = +
q Q q Q4 3 2= − = −
q q Q5 4 2= − = +
q Q q6 52 0= − =
q q7 6 0= − =

Subjective Questions

1.

C
A

d
= ε0

(between two successive plates).

The effective capacity has to be found between V1

and V2.
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V1

V1

V3

V3

V2

1

2

3

4

5

+

–



C C
C C

C C
C

A

d
net = +

+
= = ε( )( )2

2

5

3

5

3

0

q C V V C V V3 1 2 1 3= + − + −[ ( ) ( )]

= ε +





= ε0
0

0 0 0

3

4

3

A

d
V

V AV

d

q C V V
A

d

V
5 3 2

0 02

3
= − = ε









( )

= ε2

3

0 0AV

d

2. (a) V
q

C

C V

C C

V

C C
= =

+
=

+
net

net

1 0

1 2

0

2 11 /

=
+

=120

1 4 8
80

/
V

(b) U C Vi = = × × ×−1

2

1

2
8 10 1201 0

2 6 2( )

= ×5.76 10 J–2

U C C Vf = +1

2
1 2

2( )

= × × ×−1

2
12 10 806 2( )

= ×3.84 10 J–2

3. Let + q charge rotates in the loop in clockwise

direction for achieving equilibrium state. In final

steady state, charges on the capacitors will be as

shown below

Now, applying Kirchhoff’s loop law we have

CV q

C

CV q

C

CV q

C

−



 + −



 + −





4

2

9

3

+ −



 =16

4
0

CV q

C

or q = 4.8 =
24

5
CV CV

Now, V V
q

C
V V1

24

5

19

5
= − = − = − V

V V
q

C
V V V2 2

2
2

24

10

2

5
= − = − = −

V V
q

C
V V V3 3

3
3

24

15

7

5
= − = − = and

V V
q

C
V V V4 4

4
4

6

5

14

5
= − = − =

4. At t = 5 ms,V = 10 V

∴ i
V

R
R = = =10

4
2.5 A Ans.

Further, q CV t t= = × =−( )( )300 10 20006 0.6

i
dq

dt
C = = =0.6 A constant Ans.

5. Potential energy stored in the capacitor,

U CV= 1

2

2 = × × × =−1

2
5 10 2006 2( ) 0.1 J

During discharging this 0.1 J will distribute in

direct ratio of resistance,

∴ H 400

400

400 500
=

+
× 0.1

= × −44.4 10 J3

= 44.4 mJ Ans.

6.

(a) Current in lower branch = =E/8 3 A

Current in upper branch = = =E/ /9 24 9 2.67 A

(b) PD across the capacitor = − =E E E/ / /2 3 6

From q CV= , we have 16 4
6

= ( )
E

∴ E = 24 V
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+–

( – )CV q

+ –

(9 – )CV q

+

+–

–
(16 – )CV q (4 – )CV q

V1 V2

C

C

C

C

V3 V2

V1 V3

V1 V3

V0

2

3

V0

V0

3

V1 V2

+ –

3 Ω

4 Ω

6 Ω

4 Ω
E/2

E

E/3 +

–



(c) After short-circuiting the battery, we will have

to find net resistance across capacitor to

calculate equivalent value of τC in discharging.

3Ω and 6Ω are in parallel. Similarly, 4 Ω and

4 Ω are in parallel. They are then in series.

∴ Rnet = 4Ω,

τ µ µC CR= = × =net s s( )4 4 16

During discharging q q e t C= −
0

/ τ

or 8 16 16= −e t/

Solving this equation, we get t = 11.1 sµ Ans.

7.

Applying loop law in two closed loops, we have

110 02 1 2− + − =q

C

q q

C
or q C2 110= ( )

and − + + − =110
2

01 1 2q

C

q q

C

or q
C

1

440

3
= 





Potential difference between points M and N is

V V
q q

C
N M− = −1 2

= 110

3
volt Ans.

8. Let us first find charges on both capacitors before

and after closing the switch.

q EC2 2= and q1 0=

q E
C C

C C
0

1 2

1 2

=
+









From 2, −q0 charge will flow, so that charge on

right hand side plate of C1 becomes zero. From 1,

q2 charge will flow.

9. (i) Charge on capacitor A, before joining with an

uncharged capacitor.

q CVA = = =( )( )100 3 300µ µC C

Similarly, charge on capacitor B

qB = ( )( )180 2 µC = 360 µC

Let q q1 2, and q3 be the charges on the three

capacitors after joining them as shown in figure.

(q q1 2, and q3 are in microcoulombs)

From conservation of charge

Net charge on plates 2 and 3 before joining = net

charge after joining

∴ 300 1 2= +q q …(i)

Similarly, net charge on plates 4 and 5 before

joining = net charge after joining

− = − −360 2 3q q

or 360 2 3= +q q …(ii)

Applying Kirchhoff’s second law in closed loop

q q q1 2 3

3 2 2
0− + =

or 2 3 3 01 2 3q q q− + = …(iii)

Solving Eqs. (i), (ii) and (iii), we get

q1 90= µC

q2 210= µC

and q3 150= µC

(ii) (a) Electrostatic energy stored before

completing the circuit,

U i = × + ×− −1

2
3 10 100

1

2
2 10 1806 2 6 2( )( ) ( )( )

U CV=





1

2

2

= × −4.74 J10 2 or U i = 47.4 mJ

(b) Electrostatic energy stored after completing

the circuit,

U f = ×
×

+ ×
×

−

−

−

−
1

2

90 10

3 10

1

2

210 10

2 10

6 2

6

6 2

6

( )

( )

( )

( )

+ ×
×

−

−
1

2

150 10

2 10

6 2

6

( )

( )
U

q

C
=











1

2

2

= × −1.8 J10 2 or U f = 18 mJ Ans.
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+

–

+ –

2 Fµ

q
2

3 4

2 Fµ
5

6

q
33 Fµ

2

1

q
1

+

–

2C C

q1 q2

– –+ +

110 V 110 V

+

–
C

q q1 2–

+–

+

–

C1

C2 q0

q0

+

–

C1

q2

q1

E

1 2

C2

E
E
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10. (a) In steady state, capacitors will be in parallel.

Charge will distribute in direct ratio of their

capacity.

∴ q
C

C C
q1

1

1 2
0=

+








and q
C

C C
q2

2

1 2
0=

+








Initial emf in the circuit is potential difference
across capacitor C1 or q C0 1/ .

Therefore, initial current would be

i
q C

R

q

C R
0

0 1 0

1

= =/

Current as function of time will be i i e t C= −
0

/ τ

Here, τC

C C

C C
R=

+






1 2

1 2

Ans.

(b) U
q

C
i = 1

2

0
2

1

and U
q

C C
f =

+
1

2

0
2

1 2

Heat lost in the resistor

= − =
+









U U

q C

C C C
i f

0
2

2

1 1 22 ( )
Ans.

11. τ ε ρ ε ρC CR
K A

d

d

A
K= = 









 =0

0

= × ×
×

≈
−

−5
10

10
6

12

12
8.86

7.4
s

Initial current,

i
q C

R

q

CR

q

C
0

0 0 0

6
= = = = =/

τ
µ8.55

1.425 A

Now, current as function of time i i e t C= −
0

/ τ

or i e= =−( ) /1.425 0.193 A12 6 µ Ans.

12. (a) C
A

x
= ε0 , U

Q

C

Q x

A
= =

ε

2 2

02 2

(b)
dU

dx

Q

A
=

ε

2

02

∴ dU
Q

A
dx=

ε








2

02

(c)
Q

A
dx dW Fdx

2

02ε






 = =

∴ F
Q

A
=

ε

2

02

(d) Because E between the plates is due to both

the plates.

While F Q= ( ) (field due to other plate) Ans.

13. (a) Let q be the charge on smaller sphere. Then,

Vinner = 0

∴ Kq K

2

2

4
0+ =( )

or q = −1µC

Now, V
K

outer = − ×
×

−

−
( )2 1 10

4 10

6

2

= × ×
×

−

−
9 10 10

4 10

9 6

2

= ×2.25 10 V5 Ans.

(b) Charge distribution is as shown in above

figure.

14. (a) Fig. (a) V6

90

3
30= = V, q6 6 30 180= × = µC

V3

90

3
30= = V

q3 30 3 90= × = µC Ans.

Fig. (b) Capacitor 1µF is short-circuited.

Therefore, q1 0= .

V26

20

20 20 10
100 40=

+ +






 × = V

This 40 V will distribute in inverse ratio of

capacity.

∴ V6

2

8
40 10= × = V

V2

6

8
40 30= × = V

∴ q6 60= µC, q2 60= µC Ans.

(b) Fig. (a) When S is open, 6 µF is short-circuited

or V6 0= , q6 0=
and V3 90= V, q3 270= µC Ans.

Fig. (b) When S is open, V1 100= V

q1 100= µC

V26 100= V

∴ V6

2

8
100 25= × = V

–1 Cµ

+1 Cµ

+1 Cµ



and V2

6

8
100 75= × = V

∴ q6 150= µC, q2 150= µC

Further, V VA − =0 2

∴ V VA = =2 75 V Ans.

15. Current in the circuit, i =
+ + +

=10

4 1 2 3
1 A

Now, V V5 1 2 3µF V= =, Ω

∴ q5 15= µC

Further, V V3 2 3 5µF V= =, Ω

∴ q3 15= µC Ans.

16. (a) At t = 0, when capacitor is uncharged, its

equivalent resistance is zero.

∴ Rnet M= + ×
+

=4
6 3

6 3
6 Ω

or i1

3

6

18 10

6 10
3= ×

×
=A mA

This will distribute in inverse ratio of

resistances.

∴ i i2 1

3

6 3
1=

+
= mA and i3 2= mA

At t = ∞, when capacitor is completely

charged, equivalent resistance of capacitor is

infinite.

∴i3 0= , i i1 2

3

6

18 10

4 6 10
= = ×

+ ×
=

( )
1.8 mA Ans.

(b) At t = 0,

V i R2 2 2
3 61 10 6 10= = × ×−( )( ) V

= 6 kV

At t = ∞,

V i R2 2 2
3 610 6 10= = × ×−( )( )1.8 V

= 10.8 kV Ans.

(c) To find time constant of the circuit we will

have to short-circuit the battery and find

resistance across capacitor. In that case, R1 and

R2 are in parallel and they are in series with R3.

∴ Rnet 5.4 M= + ×
+

=3
4 6

4 6
Ω

∴ τ C CR= = × ×−
net 5.4( )( )10 10 106 6

= 54 s

∴ V e t C
2 6 6 1= + − − −( )( )/10.8

= + −6 544.8(1 et/ )

Here, V2 is in kV and t is second.

17. Circuit can be drawn as shown in figure.

In charging of capacitor, R3 has no role.

In steady state, potential difference across

capacitor = potential difference across R E2 2= /

Therefore, steady state charge across capacitor

q
CE

0
2

=

To find time constant of circuit we will have to short

circuit the battery, then we will find net resistance

across capacitor.

R
R

net =
2

⇒ τC CR
CR= =net
2

∴ Charge in the capacitor at time t would be

q q e
CE

et

t

CRC= − = −− −
0

2

1
2

1( ) ( )/ τ Ans.

18. q2 20= µC

∴ q1 10= µC (as they are in parallel)

Energy stored at this instant,

U
q

C

q

C
= +1

2

1

2

1
2

1

2
2

2

= × + × ×
×

−

−

−

−
1

2

10

10

1

2

2 10

2 10

5 2

6

5 2

6

( ) ( )

= × −1.5 J10 4

= 0.15 mJ

In charging of a capacitor 50% of the energy is
stored and rest 50% is dissipated in the form
of heat.
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R3

R2

R1

C

E

R

R

10.8

V2 (kV)

6

t
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Therefore, 0.15 mJ will be dissipated in the form

of heat across all the resistors. In series in direct

ratio of resistance ( )H i Rt= 2 and in parallel in

inverse ratio of resistance.

∴ H 2 = 0.075 mJ, H 3 = 0.05 mJ

and H6 = 0.025 mJ Ans.

19. (a) At t = 0, capacitor is equivalent to a battery of

emf
E

2
.

Net emf of the circuit = − =E E E/ /2 2

Total resistance is R.

Therefore, current in the circuit at t = 0

would be

i
E

R

E

R
= =/2

2
Ans.

(b) Let in steady state there is total q charge on C .

Initial charge on C was CE/2 . Therefore,

charge on 2C in steady state would be
CE

q
2

−



 with polarities as shown. This is

because net charge on lower plate of C and of

upper plate on 2C should remain constant.

Applying loop law in the circuit in steady

state, we have

E
q

C

CE q

C
− + − =/2

2
0

∴ q CE= 5

6

Therefore, charge on C increases from q
CE

i =
2

to q
CE

f = 5

6
exponentially.

Equivalent time constant would be

τC

C C

C C
R CR= ×

+






 =2

2

2

3

Therefore, charge as function of time would be

q q q q ei f i
t C= + − − −( )( )/1 τ

= + −












−CE CE
e

t

C R

2 3
1

3

2 Ans.

20. When S1 is closed and S2 open, capacitor will

discharge. At time t R C= 1 , one time constant,

charge will remain q
e

1

1= 



 times of CV or

q
CV

e
1 =

When S1 is open and S2 closed, charge will

increase (or may decrease also) from
CV

e
to CE

exponentially. Time constant for this would be

( ).R C R C1 2+ Charge as function of time would be

q q q q ei f i
t C= + − − −( )( )/1 τ

q
CV

e
CE

CV

e
e t C= + −



 − −( )/1 τ

After total time 2 1 2R C R C+ or t R C R C= +1 2 , one

time constant in above equation, charge will

remain

q
CV

e
CE

CV

e e
= + −



 −



1

1

= −



 +EC

e

VC

e
1

1
2

21. At t = 0, capacitor C0 is like a battery of

emf V= =Q

C

0

0

1

Net emf of the circuit = − =4 1 3 V

Total resistance is R = 100 Ω

∴ Initial current = =3

100
0.03 A

This current will decrease exponentially to zero.

∴ i e t C= −0 03. / τ

Here, τC C R= = × −
net ( )( )1 10 1006

= −10 4 s

∴ i e t= −0.03 104

Ans.

22. From O to A

V atC = (a = constant)

∴ q CV CatC C= =

VC

t
O

A

E

+

–

C

2C

q

CE

2
– q

+

–

R



∴ i
dq

dt
aCC= =

V iR aCRR = = = constant

From A onwards VC = constant

∴ qC = constant

∴ i
dq

dt

C= = 0

or VR = 0

Therefore, VR versus t graph is as shown in figure.

23. From O to A V at=
Here, a is a positive constant.

∴ at
q

C
iR= +

Differentiating w.r.t. time, we have

a
C

dq

dt

di

dt
R= 



 + 





1

or
di

dt
R a

i

C





 = – as i

dq

dt
=





∴ di

a i C

dt

R

i t

– /0 0∫ ∫=

∴ i aC e t CR= ( – )– /1

i.e. current in the circuit increases exponentially

∴ V iR aCR eED
t CR= = ( – )– /1

or VED also increases exponentially.

From A onwards When V = constant (say V0)

V at0 = or t
V

a
= 0

∴ V aCR eED
V aCR= ( – )– /1 0

After this VED will decrease exponentially.

Hence, a rough graph is as shown in figure.

24. q CVi i= =100 µC, q CVf f= = − 50 µC

Therefore, charge will vary from 100 µC to − 50 µC

exponentially.

∴ q e t C= − + −50 150 / τ , Here q is in µC

τC CR= = × = ×− −( )( )10 5 10 5 106 3 3

∴ q e t C= − + −50 150 / τ

V
q

C
eC

t C= = − + −( )/50 150 τ V

or V eC
t= −−50 3 1200( )

i
dq

dt
e

C

t= − = × −
−150 10 6

200

τ

= ×
×

−

−
−150 10

5 10

6

3

200e t = × − −30 10 3 200e t

V iR eR
t= = −150 200 Ans.

25. At t = 0, equivalent resistance of an uncharged

capacitor is zero and a charged capacitor is like

a battery of emf = potential difference across

the capacitor.

(a) V q CC1 1 1 2= =/ V

∴ Net emf of the circuit = − =9 2 7 V

or 9 2 11+ = V

Net resistance = + ×
+

=30
30 60

30 60
50 Ω

∴ Current at t = 0 would be i0
7

50
= A

or
11

50
A Ans.

(b) In steady state, no current will flow through

the circuit. C2 will therefore be short-circuited,

while PD across C1 will be 9 V.

∴ Q2 0= and Q1 9= µC Ans.

682 � Electricity and Magnetism

t

VED

A B

t

V
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–
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q
i
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t
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26. Time constant of the circuit is

τC CR= = × = ×( ) ( )– –0.5 2.5 s10 500 106 4

For t ≤ 250 µs i i e t C= 0
– / τ

Here, i0
20

500
= = 0.04 A

∴ i e t= ( )–0.04 amp4000

At t = = ×250 10 4µs 2.5 s–

i e= =0.04 0.015 amp–1

At this moment PD across the capacitor,

V eC = =20 1 1( – )– 12.64 V

So when the switch is shifted to position 2, the

current in the circuit is 0.015 A (clockwise) and

PD across capacitor is 12.64 V

As soon as the switch is shifted to position 2

current will reverse its direction with maximum

current.

i0
40

500
′ = + 12.64

= 0.11 A

Now, it will decrease exponentially to zero.

For t ≥ 250 µs

i i e et tC= ′ =– –– / –
0

4000τ 0.11

The ( )i t- graph is as shown in figure.

27. Capacitor C1 will discharge according to the

equation,

q q e t C= −
0

/ τ …(i)

Here, τC C R= 1

and discharging current :

i
dq

dt

q
e

q e

C RC

t
t

C
C

= − = =−
−

0 0

1τ
τ

τ
. /

/

…(ii)

At the given instant i i= 0

Therefore, from Eq. (ii)

q e i C Rt C
0 0 1

− =/ τ at this instant

or charge C1 at this instant will be

q i C R= ( )0 1 [From Eq. (ii)]

Now, this charge q will later on distribute in C1

and C2.

∴ U
q

C
i =

2

12

and
q

C C
U f

2

1 22( )+
=

∴ Heat generated in resistance,

H U Ui f= −
Substituting values of q U i: andU f , we get

H
I R C C

C C
=

+
( )

( )

0
2

1 2

1 22
Ans.
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t ( 10 s)× –4

i ( )A

0.04

0.015

–0.11

2.5

⇒
+

–

500 Ω

12.64 V

40 V

+

–

40 V
20 V

500 Ω

12.64 V

i = 0.015 A



26. Magnetics

1. Q qE Bqv= sin θ

∴ [ / ] [ ]E B v= = −[LT ]1

2. From the property of cross product, F is always

perpendicular to both v and B .

3. May be possible that θ = °0 or 180° between v and

B, so that Fm = 0

4. F v B= ×q ( )

Here, q has to be substituted with sign.

5. Apply Fleming’s left hand rule.

6. Q F Bqv= sinθ

∴ v
F

Bq
=

sin θ

= ×
× × × × °

−

− −
4 6 10

3 5 10 10 60

15

3 19

.

. sin1.6

= ×9.47 m/s106

7. Q F Bqv= °sin 90

= × × × ×−0.8 1.62 10 1019 5

= × −2.56 N10 14

1. Path C is undeviated. Therefore, it is of neutron’s

path. From Fleming’s left hand rule magnetic force

on positive charge will be leftwards and on

negative charge is rightwards. Therefore, track D

is of electron. Among A and B one is of proton and

other of α-particle.

Further, r
mv

Bq
= or r

m

q
∝

Since,
m

q

m

q
P







 >









α

∴ r rPα >
or track B is of α-particle.

2. r
km

Bq
= 2

or r m∝ ( k,q and B are same)

m mp e> ⇒ r rp e>
3. The path will be a helix. Path is circle when it

enters normal to the magnetic field.

4. Magnetic force may be non-zero. Hence,

acceleration due to magnetic force may be

non-zero.

Magnetic force is always perpendicular to

velocity. Hence, its power is always zero or work

done by magnetic force is always zero. Hence, it

can be change the speed of charged particle.

5. F v B= ×q ( )

F is along position y -direction. q is negative and v

is along positive x -direction. Therefore, B should

be along positive z -direction.

6. (a) r
mv

Bq
=

or r m∝ as other factors are same.

(b) f
Bq

m
=

2π

or f
m

∝ 1

7. Q r
qVm

Bq
=

2

1. Q l i= l $

Now, F l B= ×i( )

= × +i l B B[( $) ( $ $ )]i j k0 0

= −ilB0($ $)i j = =| |F 2 0ilB

2. No, it will not change, as the new $i component of

B is in the direction of l.

3. Q i = 3.5 A

l j= − −( $)10 2

Now, apply F l B= ×i ( ) in all parts.

4.

F FACD AD=
∴ | | | |F Fnet = =2 2AD ilB

= × × × =2 2 4 2 32 N
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1. Q

M

L

q

m
=

2

∴ M
q

m
L= 



2

= 





q

m
I

2
( )ω

= 











q

m
mR

2

1

2

2 ( )ω = qR2

4

ω

2. Q M iA i R= = ( )π 2

= × −(0.2) ( ) ( )π 8 10 2 2

= × −(4.0 10 3) A-m2

Now, M M= M $ = (4.0 (0.6 0.8× −−10 3) $ $)i j

(a) τ = ×M B

(b) U = − ⋅M B

3. Q L R= 2π ⇒ R
L=

2π
M iA i R= = ( )π 2

= 



 =( ) ( )i

L iLπ
π π2 4

2 2

τ
πmax sin= ° =MB

iBL
90

4

2

4. Q ∆U U U= −° °0 180

= − ° + °MB MBcos cos0 180 = − 2MB

1. (a) From screw law, we can see that direction of

magnetic field at centre of the square is inwards

as the current is clockwise.

B
i

r
= 



 +4

4

0µ
π

α β(sin sin )

= × × ° + °
−4 10 10

45 45
7

0.2
(sin sin )

= × −2.83 T10 5

(b) 2 4πR = (0.4)

2R = 1.6
m

π

B
i

R
= µ0

2
= 4 × −( ) ( )

( / )

π
π

10 107

1.6

= × −24.7 T10 6

2. Magnetic field due to horizontal wire is zero.

Magnetic field due to vertical is

B
i

x
= ° + °µ

π
0

4
90 0(sin sin )

= µ
π
0

4

i

x
(inwards)

3. Both straight and circular wires will produce

magnetic fields inwards.

∴ B
i

R

i

R
= +µ

π
µ0 0

2 2

= × + ×
×

− −( ) ( ) ( )( )2 10 7 4 10 7

2

7 7

0.1 0.1

π

= × −5.8 T10 5

4. Magnetic field at O due to two straight wires = 0

Magnetic field due to circular wire,

B = 1

4
(due to whole circle)

= 





1

4 2

0µ i

R
(inwards)

= × ×
×

−1

4

4 10 5

2

7( ) ( )π
0.03

= × −2 62 10 5. T

5. Magnetic field at P due to straight wires = 0

Due to circular wires one is outwards (of radius a)

and other is inwards. 60° means
1

6
th of whole

circle.

∴ B
i

a

i

b
= −





1

6 2 2

0 0µ µ
(outwards)

1. Applying Ampere’s circuital law,

B
i

r
A = µ

π
0

2

in

= × −

−
( ) ( )2 10 1

10

7

3

= × −2 10 4 T

Chapter 26 Magnetics � 685

INTRODUCTORY EXERCISE 26.5

45° 45°
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This is due to (⋅) current of 1 A. Hence, magnetic

lines are circular and anti-clockwise. Hence,

magnetic field is upwards.

B
i

r
b = µ

π
0

2

in

= × −
×

−

−
( ) ( )2 10 3 1

3 10

7

3

= × −1.33 T10 4

This is due to net ⊗ current. Hence, magnetic lines

are clockwise.

So, magnetic field at B is downwards.

2. B l⋅ =∫ d iµ0( )net

Along path (a), net current enclosed by this path is

zero.

Hence, line integral = 0

Along path (b), inet is ⊗ . So, magnetic lines along

this current is clockwise. But, we have to take line

integral in counter clockwise direction. Hence, line

integral will be negative.

3. Using Ampere’s circuital law over a circular loop

of any radius less than the radius of the pipe, we

can see that net current inside the loop is zero.

Hence, magnetic field at every point inside the

loop will be zero.

1. i
k

NBA
= 



 φ

∴ B
k

NiA
= φ =

× ×

−

− −
( ) ( )10 90

100 10 10

8

6 4

= 90 T

2. i
k

NBA
= 



 φ

= ×
× × × × ×

−

− −
(0.125

200 5 10

10 6 180

5 2 10

7

2 4

) ( ) ( / )π

= × −1.3 A10 7

Exercises

LEVEL 1

Assertion and Reason

2. By changing the direction of velocity direction of

magnetic force will change. So, it is not a constant

force.

3. To balance the weight, force on upper wire should

be upwards (repulsion). Further equilibrium can be

checked by displacing the wire from equilibrium

position.

4. τ = ° ≠MB sin 90 0

5. Magnetic field is outwards and increasing with x.

So, magnetic force will also increase with x. The

force on different sections are as shown in figure.

Force will act in positive x-direction. But, no

torque will act.

6. Q r
qVm

Bq
=

2
⇒ r

m

q
∝

m and q both are different. Ratio
m

q
is not same for

both.

7. Q F Fe m+ = 0

∴ q qE v B+ × =( ) 0

∴ E v B B v= − × = ×( ) ( )

8. Q F v Bm q= ×( )

F vm ⊥ (always)

and P = ⋅F v

∴ Power of magnetic force is always zero.

F Ee q=
If Fe is also perpendicular to v, then its power is

also zero.

9.

10. | |v = =2 0v speed, which always remains constant.
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11. R v∝ , by increasing the speed two times radius

also becomes two times. Hence, acceleration

( / )= v R2 will also become only two times.

Objective Questions

2. T
m

Bq
= 2π

, independent of v.

3. B
i

r
= µ

π
0

2
, independent of diameter of wire.

8. In uniform B is force on any current carrying loop

is always zero.

9. M NiA=

10. B F⋅ = 0 as B F⊥
∴ B ⋅ =α 0

or 2 3 4 0x + − =
∴ x = 0.5

12. In uniform magnetic field, force on any current

carrying loop is always zero.

13. r
P

Bq
= or r

q
∝ 1

(as P = constant)

14. θ θ θi f= ° = ° −180 180,

W U Uf i= −
= − ° − − − °MB MBcos ( ) ( cos )180 180θ
= −MB MBcos θ

15.

B
i

r
= ° + °µ

π
0

4
37 37(sin sin )

16. B
NiR

R x
x =

+
µ0

2

2 22( )
and B

Ni

R
c = µ0

2
c→ centre.

17. F l B= ×I ( ) = ×I ( )ba B

We can see that all (a), (b) and (c) options are
same.

18. F Bqv= or F v∝

Now, v
qV

m
= 2

∴ F V∝

19. Two fields are additive.

∴ B
I

R

I

R
net =









 =2

2 2

20 0µ
π

µ
π( / )

20. B Bx c= 1

8

∴ µ µ0
2

2 2 3 2
0

2

1

8 2

NiR

R x

Ni

R( ) /+
= 





21. Electric field (acting along $j direction) will change

the velocity component which is parallel to B

(which is also along $j direction).

B j= B0
$ and v j= v0

$ will rotate the particle in a

circle. Hence, the net path is helical with variable

pitch.

22. r
Km

Bq
= 2 ⇒ r

K

B
∝

23.

24. r
qVm

Bq

Vm

q B
= =









 





2 2 1

26. In (c), two wires are producingumagnetic field

and two wires are producing ⊗ magnetic field.

27. I1 produces circular magnetic lines current I2 is

each small circular element is parallel to ( )θ = °0
magnetic field. Hence, force is zero.

28. Arc of radius a
1

4
th of circle





 produces magnetic

field in $k direction or outwards, while arc of radius

b produces magnetic field in − $k direction.

∴ B k k= 



 + 



 −1

4 2

1

4 2

0 0µ µI

a

I

a

$ ( $ )

= −





µ0

8

1 1I

a b

$k

29. Equivalent current,

i q f ef= =

B
i

R

ef

R
= =µ µ0 0

2 2

30.

B
net

B
B

B
D

+ B
A

B
C

+

B C

DA

4 cm
5 cm

P
37°37°

3 cm 3 cm

r = 5 cm

45° 45°

C

a

2



B
I

a
C = ° + °









4

4 2
45 450µ

π /
(sin sin )

= 2 2 0µ
π

I

a

31. At distance r from centre,

B
i

r
= µ

π
0

2

( )in (From Ampere’s circuital law)

For path-1, iin ≠ 0

∴ B1 0≠
For path-2, iin = 0

∴ B2 0=

32. d
i

r
dB l r= ×µ

π
0

34
( )

∴ dB is in the direction d l r× . Hence, d l is

outwards and r is from d l towards P.

33. Magnetic field due the straight portions is zero. It

is only due to arc of circle.

∴ B
I

x
= 





φ
π

µ
2 2

0 (Radius = x)

= µ φ
π

0

4

I

x

34. From centre, r R x= −( )

B
I

R
r= µ

π
0

22
= −µ

π
0

22

I

R
R x( )

35. From Fleming’s left hand rule, we can see that

magnetic force is outwards on the loop.

So, it tends to expand.

Subjective Questions

1. F v B= ×q( ), where q = − × −1.6 10 19 C for an

electron and q = + × −1.6 10 19 C for a proton

2. F v B= ×q( )

3. (a) F v B= ×q ( )

or [ ) $ ) $ ](7.6 (5.2× − ×− −10 103 3
i k

= × − × + +−( . ) [( . )$ ( $ $ $ )]7 8 10 3 8 106 3
j i j kB B Bx y z

∴ (7.8 3.8× ×− −10 106 3) ( ) ( )Bx

= − × −( )5.2 10 3

∴ Bx = − 0.175 T

Similarly,

(7.8 3.8× − ×−10 106 3) ( ) ( )Bz

= × −7.6 10 3

or Bz = − 0.256 T

(c) From the property of cross product.

F is always perpendicular to B .

Hence, F B⋅ = 0

4. Apply F v B= ×q ( )

For example, let us apply for charged particle at e.

F j k ie q
v v

B= −





×





2 2

$ $ ( $)

= − −qvB

2
( $ $ )j k

5. r
qVm

Bq
=

2

∴ B
r

Vm

q
= 1 2

= × × × ×
×

3 −

−
1

0.18

9.1

1.6 10

2 2 10 10 31

19

= × −8.38 T10 4

6. (a) r
mv

Bq
= ⇒ v

Bqr

m
=

(b) t
T m

Bq
= =

2

π

(c) r
qVm

Bq
=

2

∴ V
r B q

qm
=

2 2 2

2
= r B q

m

2 2

2

7. (a) Conservation of charge

They will collide after time,

t
T m

Bq
= =

2

π

8. (a) At A, magnetic force should be towards right.

From Fleming’s left hand rule, magnetic field

should be inwards.
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Further, r
mv

Bq
=

∴ B
mv

qr
= (r = 5 cm)

(b) t
T m

Bq
AB = =

2

π

9. Component of velocity parallel to B, i.e. vx will

remain unchanged vy
$j and B$j will rotate the

particle in y z-plane (⊥ to B).

At the beginning direction to magnetic force is

− $k [from the relation, F j i= ×q v By( $ $)

In the time t, particle rotates an angle

θ ω= =



t

Bq

m
t from its original path.

In the figure, we can set that, y - component of
velocity at time t is vy cos θ and z - component is
− vy sin θ.

10. F Fe m+ = 0

or q qE v B+ × =( ) 0

or E v B= − ×( )

or E B v= ×( )

11. Work is done only by electrostatic force. Hence,

from work-energy theorem

= =1

2

2mv work done by electrostatic force only

= ( )qE z0 or Speed v
qE z

m
= 2 0

Particle rotates in a plane perpendicular to B, i.e. in

xz-plane only. Hence, vy = 0

12. When they are moving rectilinearly, net force is

zero.

∴ qE Bqv= ° −sin ( )90 θ

∴ v
E

B
=

cosθ
When electric field is switched off,

p
m

Bq
v=







 ° −2

90
π θcos ( )

= 2
2

π θm E

qB

tan

13. W Fm= or mg ilB= °sin 90

∴ i
mg

Bl
= = ×

×

−( ) ( )13 10 103

0.44 0.62

= 0.47 A

Magnetic force should be upwards to balance the

weight. Hence, from Fleming’s left hand rule we

can see that direction of current should be from

left to right.

14. (a) ilB mg=

or
V

R
lB mg= or V

mgR

lB
=

=
×

(0.75) (9.8) (25)

0.5 0.45

≈ 817 V

(b) a
ilB mg

m
= − = −VlB

mR
g as i

V

R
=





= −( ) ( ) ( )

( ) ( )

817 0.5 0.45

0.75 2.0
9.8

≈ 112.8 m/s2

15. i = 5 A ⇒ B j= ( . $)0 02 T

Now, applying F l B= ×i ( ) in all parts. Let us

find l for anyone parts.

l r rcd d c= −
= + − +( $ $ ) $ $ )0.4 0.4 (0.4 0.4j k i k

= −( $ $)0.4 0.4j i

16. Let surface charge density is σ.

dq r dr= [( ) ]2π σ
Equivalent current,

i dq f= ( )

dM iA dq f r= = [( ) ][ ]π 2

∴ M dM
R

= ∫0

dB
i

r

dq f

r
= =µ µ0 0

2 2

( )

∴ B dB
R

= ∫0

Now, we can find the ratio
M

B
.
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Z

F
v

y

v
y

θt

r
dq

dr

f



17. (a) From energy conservation,

U K U Kθ θ= = +° °0 0

or ( cos ) ( cos )− + = − ° + °MB MB Kθ 0 0 0

Substituting the given values, we can calculate.

(b) To other side also it rotates upto the same

angle.

18. (a) T
r

v
= 2π

(b) I qf e
v

r
= = 



( )

2π

(c) M IA
ev

r
r

evr= = 



 =

2 2

2

π
π( )

19. Assume equal and opposite currents in wires cf

and eh.

20. Assume equal and opposite currents  in wires PQ

and RS , then find M.

Now, B j( $)2 ⇒ τ = ×M B

21. B B B Bnet = + =2 2 2

where, B
i

r
= ° + °µ

π
0

4
0 90(sin sin )

22. Magnetic fields at O due to currents in wires ab

and cd are zero.

Magnetic field due to current in wire da (say B2) is

inwards due to current in wire bc (say B1) is

outwards.

B
i

r
1

0

14
= +µ

π
α β(sin sin )

B
i

r
2

0

24
= +µ

π
α β(sin sin )

B B1 2> as r r1 2<
∴ B B Bnet = −1 2 (outwards)

23. In first quadrant magnetic field due to I1 is

outwards and due to I2 is inwards. So, net

magnetic field may be zero.

Similarly, in third quadrant magnetic field due to

I1 is inwards and due to I2 magnetic field is

outwards. Hence, only in first and third quadrants

magnetic field may be zero.

Let magnetic field is zero at point P xy( ), then

B BI I1 2
=

∴ µ
π

µ
π

0 1 0 2

2 2

I

y

I

x
=

∴ y
I

I
x= 1

2

24. Two straight wires produces outward magnetic field

by arc of circle produces inward magnetic field.

Due to straight wires,

B
i

R
1

02
4

90= + °





µ
π

θ(sin sin )

= µ
π
0

2

i

R
(outwards)

Due to circular arc, B
i

R
2

0

2 2
= 





θ
π

µ
(inwards)

For net field to be zero,

B B1 2=
or θ = 2 rad

25. (a) If currents are in the same direction, then above

and below the wires magnetic fields are in the

same direction. Hence, they can’t produce zero

magnetic field.

In between the wires, let B = 0 at a distance ( )r

cm from the wire carrying 75 A current. Then,

µ
π

µ
π π

0 0

2

75

2

25

40r





 = 



 −







Solving, we get r = 30 cm.

(b) If currents are in opposite direction, then in

between the wire magnetic field are in the same

direction. So, they cannot produce zero

magnetic field. The points should be above or

below the wires, nearer to wire having smaller

current. Let it is at a distance r from the wire

having 25 A current. Then,

µ
π

µ
π

0 0

2

25

2

75

40r r





 = 



 +









Solving this equation, we get r = 20 cm

26. Apply B
NiR

R x
=

+
µ0

2

2 2 3 22( ) /
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P

Q

z

x

y
S

R

α

β
O

b

c

d

a

r
2

r
1



27. I2 produces inwards magnetic field at centre.

Hence, I1 should produce outward magnetic field.

Or current should be towards right. Further,

µ µ
π

0 2 0 1

2 2

I

R

I

D
= 











∴ I
D

R
I1 2= 





π

28. (a) B
Ni

R
1

0

2
= µ

(b) B
NiR

R x
2

0
2

2 2 3 22
=

+
µ

( ) /
, given B

B
2

1

2
=

29. 10 A and 8 A current produce inward magnetic

field. While 20 A current produces outward

magnetic field. Hence, current in fourth wire

should be ( )20 10 8− − A or 2 A and it should

produce inward magnetic field. So, it should be

downwards toward the bottom.

30. (a) B at origin B BKLM KNM=

= − +µ0

4

I

R
( $ $)i j

Now, we can apply F v B= ×q ( ) for finding

force on it.

(b) In uniform magnetic field,

F F FKLM KNM KM= =
= ×I ( )l B

= − ×I R B[{ ( $ )} { $}]2 0k j

= ( ) $2 0B IR i

∴ Net force is two times of the above value.

31. (a)

a
r

n

r

n
= 



 =1

2

2π π

x a
n

r

n n
= = 









cot cot

π π π

B n
i

x n n
= +











µ
π

π π0

4
sin sin

=








n

i

r n n
n

µ
π π π

π0

4
2

( / )cot /
( sin / )

=











µ π π

π

0
2

22

in
n n

r

sin tan

(b) The above calculated magnetic field can be

written as

B
i

r

n

n

n
=









µ
π

π
π

0

2

2

sin /

/

cos /

As, n→ ∝ →,
π
n

0

Hence, lim
sin /

//π

π
πn

n

n→









0
→ 1

and lim (cot / )
/π

π
n

n
→ 0

→ 1

or B → µ0

2

i

r

32. Current per unit area,

σ
π π

=
− −

I

a a a2 2 22 2( / ) ( / )

= 2
2

I

aπ
Total area is ( )πa2 . Therefore, the total current is

I a I1
2 2= =( ) ( )σ π

Cavity area  is π( / )a 2 2. Therefore, cavity current is

I a
I

2
2 4

2
= =( ) ( / )σ π

Now, the given current system can be assumed as

shown below.

(a) At P1 , B
I I

r
1

0 0

2

2

5
= =µ

π
µ
π

(towards left)

B
I

r a
2

0

2

2

2
=

−
µ
π

/

( / )
(towards right)

and B
I

r a
2

0

2

2

2
=

+
µ
π

/

( / )
(towards right)

∴ B B B Bnet = − −1 2 2 (towards left)

= −
−

−
+











µ
π
0 1 1

4 2

1

4 2

I

r r a r a

= − − − − +
−











µ
π
0

3 2 2 2

2 2

16 4 4 2 4 2

16 4

I r a r ar r ar

r r a( )

= −
−











µ
π

0
2 2

2 2

2

4

I

r

r a

r a
(towards left)
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π
n

π
n

a

x

2

3

I /2

I /2

+1

2I



(b)

B B Bnet = −1 22 cos θ] (towards the top)

= −
+











 +

µ
π

µ
π

0 0

2 2 2 22

2
2

2

2

4 4

I

R

I

r a

r

r a

/

/ /

= +
+











µ
π

0
2 2

2 2

2

4

I

r

r a

r a
(towards  the top)

33.

B in the above situation is given by

B = µ λ0

2

At point P B, 1 and B2 are in opposite directions.

Hence, BP = 0

At point, Q B, 1 and B2 are in same direction.

Hence, BQ = 



 =2

2

0
0

µ λ µ λ

34.
F

L

I I

a
= µ

π
0 1 2

2

∴ F
I I

a
L= µ

π
0 1 2

2
(Repulsion or upwards)

M of the loop is inwards and magnetic field to I1

on the plane of loop is outwards. Hence, τ = 0, as

τ = ×M B and angle between two is 180°.

35.

Electrons touch the x-axis again after every pitch.

Therefore, the asked distance is

d p v T= = 11 =






( cos )v

m

Bq
θ π2

For paraxial electron θ ≈ °0 and q e= ,

∴ d
mv

Be
= 2π

36.

Deviation, θ = 





−sin 1 L

r
for L r<

where, r
mv

Bq
=

and θ π= if L r≤

37. a
qE

m
E = 0 (along negative z-direction)

Electric field will make z-component of velocity

zero. At that time speed of the particle will be

minimum and that minimum speed is the other

component, i.e. v0.

This is minimum when,

v u a tz z z= +

or 0 0
0= −v

qE

m
t

or t
mv

qE
= 0

0

38. Path is helix and after one rotation only

x-coordinate will change by a distance equal to

pitch.

∴ x p v
m

Bq
= =







( cos )0

2θ π

39. M CO OA= ×i( )

= ×i( )CO CB

= − × ° + °4 30 30[( $) ( cos $ sin $ )0.1 0.2 0.2i j k

= −( $ $ )0.04 0.07 A-m2
j k

40.
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B

B1

B1

B2

B2

P
1

2

Q

θ
O x-axis

θ
r

+ v

v

L

θ

v

v

v

v

C C

L r= L r>

a

2

r

θ

θ

√r a
2 2
+ /4

θθ

B
1

B
2

B
3

P
2

C

x

z

A

τ
B

O 30°

y
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M OA AB= ×Ni ( )

= ×Ni ( )OA OC

= × °( ) [( . $) ( . cos $100 0 4 0 03 30(1.2) j i

+ °0 3 30. sin $ )]k

= −( $ $ )7.2 12.47 A-m2
i k

τ = ×M B

= − ×[( $ $ ) ( $)]7.2 12.47 0.8i k i

= −( $)9.98j N-m

∴ | | .τ = 9 98 N-m

Torque vector and expected direction of rotation is

shown in figure.

41. B B B BA B C D= = =

= =B
i

r

µ
π
0

2
= × −( ) ( )

/ )

2 10 5

2

7

(0.2

= × −(5.0 2 10 6) T

Net magnetic field

= + + +( ) ( )B B B BA C B D
2 2

= 2 2B

= × −2.0 10 5 T (towards bottom as shown)

42. i r dr j r dr br
r r

= =∫ ∫0 0
2 2( ) ( ) ( )π π = 2

3

3πbr

(a) For r R1 <

B
i

r
= µ

π
0

12

in

=








µ
π

π0 1
3

12

2 3br

r

/

= µ0 1
2

3

br

(b) For r R2 >

B
i

r
= µ

π
0

22

in

= 













µ
π

π0
3

22

2 bR b

r

/ = µ0
3

23

bR

r

LEVEL 2

Single Correct Option

1. τmg about the left end (from where string is

connected)

= × = °| | sinM B MB 90

or ( ) ( ) ( )mgR NiA B i R B= =0
2

0π

or i
mg

RB
=

π 0

2. In uniform field,

Magnetic force on POQ = magnetic force on

straight wire PQ having the same current. Hence,

F l B PQ B= × = ×i i( ) ( )

= × −2 4[( $) ( $ )]i k0.02

= ( $)0.16 j

∴ a
F j

j= = =
m

( $)
( . $)

0.16

0.1
m/s16 2

3. Linear impulse = mv

or F t m gh∆ = 2 or ( )ilB t m gh∆ = 2

But, i t q∆ ∆=
∴ ( ) ( )∆q lB m gh= 2

Hence, ∆q
m gh

Bl
=

2

4.
M

L

q

m
=

2

∴ M
q

m
L

q

m
I= 



 = 



2 2

( )ω

= 











q

m
mR

2

2

5

2ω = 1

5

2qR ω

5.

sin
( / )

θ = =d

r

d

mv Bq
⇒ q

m

v

Bd
= sin θ

P Q

y

O–2 +2
x (m)

B BA C+ B BB D+

Net

D

CB

A

θ

v

θ
d

+ v

x = 0 x d=

r



6.

Variation of magnetic force on wire ACB is as
shown in figure. Point of application of net force
lies some where between A and C .

7. At a distance X from current I2,

B
I

X
= µ

π
0 2

2

Magnetic force of small element dX of wire AB

dF I dX B= °2 90( ) sin

∴ F dF
x a

x a
=

=

=

∫
2

8. Apply screw law for finding magnetic field around

a straight current carrying wire.

9. B
IR

R x
1

0
3

2 2 3 22
=

+
µ

( ) /

B
I R

R x
2

0
2

2 2 3 2

2

2 2 2
=

+
µ ( )

[( ) ( ) ] /

B

B

1

2

2=

10. ( )b a− = radius of circular part

= mv

Bq

∴ V
Bq b a

m
= −( )

11.
M

L

q

m
=

2

M
q

m
I= 



2

( )ω = 













q

m

ml
f

2 3
2

2

( )π = πqfl2

3

12. At x = 0,

y m= ± 2

F FMNP MP= = ×i [ ]MP B

= ×3 5[ $) ( $ )](4 j k

= 60 $i

13. F FMNPQ MQ= and this force should be upwards to

balance the weight.

∴ ilB mg= ,   where

l MQ
a= =
2

∴ i a B mg( / )2 = or i
Mg

aB
= 2

Force is upwards if current is clockwise or current

in MQ is towards right.

14.
r

2
= radius of circular path

= =mv

Bq

mv

ni q( ) ( )µ0

∴ v
qr ni

m
= µ0

2

15. (a) B v⊥ , so it may along y - axis

(b) F v⊥ ,

∴ a v⊥ = 0

or a v⋅ = 0

or a b a b1 1 2 2=
(c) See the logic of option (a).

(d) Magnetic force cannot change the kinetic

energy of a particle.

16. Magnetic force is always perpendicular to
velocity. So, it will always act in radial direction
which will change tension at different points. But,
time period and θ will remain unchanged.

17. Force on the wires parallel to x-axis will be

obtained by integration (as B x∝ and x

coordinates vary along these wires). But on a loop

there are two such wires. Force on them will be

equal and opposite.

Forces on two wires parallel to y-axis can be
obtained directly (without integration) as value of
B is same along these wires. But their values will
be different (as x-coordinate and therefore B is
different).

F Fnet = ∆ (on two wires)

= Ia B( )∆ = Ia B x( ) ( )0 ∆
= Ia B a0( ) = IB a0

2

This is indecent of x

∴ F F IBla1 2
2 0= = ≠
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+

b – a

M Q

PN

N
x

y

P

M

Force



18. B
I

x
x = µ

π
0

2

in

where, I I
I

c b
x bin = −

−








 −

π
π

( )
[ ( )]

2 2

2 2

= −
−

I c x

c b

( )

( )

2 2

2 2

19. F E ke q= = × − ×−( ) ( ) $1.6 10 102.4 10319

= − × −( $ )1.6384 10 14
k N

F v Bm q= ×( )

= × −( )1.6 10 19 [ $ $ ](1.28 ) (8 10 )× × × −106 2
i j

= × −(1.6384 10 )14 $k Ν
Now, we can see that

F Fe m+ = 0

20. Due to $j component of B, magnetic force is zero. It

is only due to $i component.

l is towards − y direction, B is towards $i direction.

Hence, l B× (the direction of magnetic force is

+ $k )

F dF i dy B= =∫ ∫0

1
( )( ) ( )

= ×∫ −
0

1
32 10( ) ( ) ( )dy y0.3

= × −3 10 4 N

21. r
mv

Bq
= (during circular path)

∴ v
Bqr

m
=

Now, qE Bqv=

∴ E Bv
B qr

m
= =

2

∴ E = × ×
×

− −

−
( ) ( ) ( )

( )

0.1 2 6 2

9

20 10 5 10

20 10

= 0.5 V/m

22. B
i

R
1

0 1

1

7

22

4 10 5

2
5

2
10

= = ×

×





−

−

µ π( ) ( )

( )

= × −2 2 10 5π T

B
i

R
2

0 2

2

7

22

4 10 5 2

2 5 10
= = ×

×

−

−
µ π( ) ( )

( ) ( )

= × −2 2 10 5π T

B B Bnet = +1
2

2
2

23. qE Bqv=

∴ v
E

B
=

r
mv

Bq

m E B

B q
= = ( / )

( )

= E

B S2
(where, S q m= / )

24.
F

l
= weight per unit length

∴ µ
π
0 1 2

2

i i

r
= ×0.01 10

or
( ) ( )2 10 100 507× × = ×

−

r
0.01 10

or r = 0.1 m

When B wire is displaced downwards from

equilibrium position, magnetic attraction from A

wire will decrease (which is upwards). But, weight

(which is downwards). So, net force is downwards,

in the direction of displacement from the mean

position or away from the mean position. Hence,

equilibrium is unstable.

25. Magnetic field due to current in the wire along

z-axis is zero. Magnetic field due to wire along

x-axis is along $j direction and magnetic field due

to wire along y - axis is along − $i direction. Both

wires produce

B
i

a
= µ

π
0

2

26. | | | |F FABC AC+ = = ilB

= ( ) ( ) ( )2 5 2 = 20 N

27. E
qx

R x
=

+
1

4 0
2 2 3 2πε ( ) /

B
iR

R x
=

+
µ0

2

2 2 3 22 ( ) /

where, i qf q
V

R
= = 



2π

c = 1

0 0ε µ

More than One Correct Options

1. B
N i

R
1

0 1 1

12
=µ

`

= ×
×

−

−
( ) ( ) ( )

( )

4 10 50 2

2 5 10

7

2

π

= × −4 10 4π T
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B
N i

R
2

0 2 2

22
= µ

= ×
×

−

−
( ) ( ) ( )

( ) ( )

4 10 100 2

2 10 10

7

2

π

= × −4 10 4π T

When currents are in the same direction, then

B B Bnet = +1 2

When currents are in the opposite directions, then

B B Bnet = −1 2

2. (a) v is parallel on anti-parallel to B.

(c) q qE v B+ × =( ) 0

or E v B B v= − × = ×( ) ( )

3. r
mV

Bq
= = =( ) ( )

( ) ( )

1 10

2 1
5 m

T
m

Bq
= = =2 2 1

2 1

π π π( ) ( ) ( )

( ) ( )

= 3.14 s

Plane of circle is perpendicular to B, i.e.

xy-plane.

4. θ = °180

τ θ= =MB sin 0

U MB MB= − = + =cos θ maximum

5. If current flows in a conductor, then

E ≠ 0 (for inside points)

E = 0 (for outside points)

B
i

R
r= µ

π
0

22
(for inside points)

B = 0 at r = 0, i.e. at centre

B
i

r
= µ

π
0

2
for outside points.

6. Fab = upwards

Fabc = leftwards

∴ Net force on loop is neither purely leftwards or

rightwards or upwards or downwards.

7. F v Bm q= ×( )

Depending on sign of q m, F may be along positive

z-axis or along negative z-axis.

F Ee q=
Again, depending on the value of q it may be along

positive z-axis or along negative z-axis.

If q is positive, v B× and Fm comes along negative

z-axis also. But, Fe comes along positive z-axis. So,

it may also pass undeflected.

8. KE = qV or KE ∝ V

r
qVm

Bq
=

2
or r V∝

T
m

Bq
= 2π

or T is independent of V .

9. (a) Point a lies to the right hand side of ef and fg.

Hence, both wires produce inward magnetic

field. Hence, net magnetic field is inwards.

Same logic can be applied for other points also.

10. See the hint of Q.No-3 of Assertion & Reason

section for Level 1

Match the Columns

1. (a) F v B= ×q( )

q is negative, v is along + $i and B along + $j.

Therefore, F is along negative z.

(b) Same logic is given in (a).

(c) B is parallel to v. So, magnetic force is zero.

Charge is negative so, electric force is opposite

to E.

(d) Charge is negative. So, electrostate force is in

opposite direction of E.

2. For direction of magnetic force apply Fleming’s

left hand rule. According to that w and x are

positively charged particles and y and z negatively

charged particle.

Secondly,

r
Km

Bq
= 2

∴ r
m

q
∝ (K → same)

3. Force on a current carrying loop is zero for all

angles. τ is maximum when Q, then angle

between M and B is 90° minimum potential energy

is at θ = °0 . Positive potential energy is for obtuse

angle. Direction of M is obtained by screw law.

4. Two currents are lying in the plane of paper. Its

point is lying to the right hand side of the current

carrying wire, magnetic field is inward

(− $k direction).

If point lies to left hand side, field is outward

( $k direction).

5. Let us take F
i i

r
= ⋅µ

π
0

2

.

Current in same direction means attraction and

current in opposite direction means repulsion. Let
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us find force on wire-2 by other three wires 1,3

and 4.

6. F F FABC ADC AC= =
∴ F Floop = 2 AC

= ×





I

2
( )l B

= ×I ( )AC B

Hence, AC i + j= ( $ $)l l

Now, putting value of B we can find net force in

different cases.

Subjective Questions

1. Force on wire 12 will be
µ
π
0

2

I

a
Ia





 ( ) in positive

x-direction.

Force on 2-3 and 3-1 :

r a x a
x= + ° = +sin 60 3
2

B
I

r

I

a
xr = =

+

µ
π

µ
π

0 0

2 2
3

2

=
+

µ
π

0

2 3

I

a x

∴ F i231
0

2 60= °





−
=

=

∫ ( cos ) ( $)dF
x

x a

=
+









 −∫2

2 3

1

2

0

0

µ
π

a I

a x
I dx. . .( ) ( $)i

=






 + −µ

π
0

2

0

1

3
2 3

I
a x a. [ln ( )] ( $)i

= +





 −µ

π
0

2

3

2 3

2

I
ln ( $)i

and F i12
0

2

2
= µ

π
I

($)

∴ F iTotal = − +

















µ
π
0

2 1

2

1

3

2 3

2

I
ln ($) Ans.

2. Magnetic moment According to Bohr’s

hypothesis, angular momentum in nth orbit is

L n
h= 



2π
.

Further,
M

L

q

m
=

2
or

e

m2

∴ Magnetic moment,

M
e

m
L

e

m
n

h neh

m
= 



 = 









 = 



2 2 2 4

( )
π π

Magnetic field induction

mv

r

e e

r

2

0
2

1

4
=

επ
( )( )

…(i)

From Bohr’s hypothesis :

mvr
nh=
2π

…(ii)

Solving these two equations, we find

v
e

nh
=

ε

2

02
and r

n h

me
= ε0

2 2

2π
Now, magnetic field induction at centre

B
i

r
= µ0

2

Here, i qf e
v

r
= = 



( )

2π

∴ B
r

ev

r

e v

r
= 









 = 





µ
π

µ
π

0 0
22 2 4

= 



 ε









ε








µ
π

π0e e

nh

m e

n h4 2

2

0

2 2 4

0
2 4 4

=
ε

µ π0
2 7

0
3 5 58

m e

h n
Ans.
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B C

DA

60°

60°

1

2

3
dF

dF

r

x

F F
1

=

F
3

=
F

2

F
net

is rightwards

F F
2

=



3. r = + =9 7 4 cm

B
i

r
= µ

π
α0

4
2( sin )

=
×







 ×





−
−( )10

30

4 10
2

3

5

7

2

= × −9 0 10 5. T

Net field = 4 B sin θ

= × × ×−4 10
3

4

59.0

= × −2.7 T10 4 Ans.

4. xy-plane T
r

v
= = =2 2

5

8

50

π π π( )0.4

Since, T
m

Bq
= 2π

or T
m

q
∝

After collision mass has become
5

4
times and

charge two times.

∴ T T′ = ×



 = × =5

4

1

2

5

8

8

50 10
π π

s

Given time t
T= ′
4

, i.e. combined mass will

complete one-quarter circle.

Further r
P

Bq
=

or r
q

∝ 1
(as P = constant)

Since, charge has become two times

∴ r
r′ = =
2

0.2 m

At t = ( / )π 40 second, particle will be at P in

xy -plane.

∴ x r= ′ = 0.2 m

y r= ′ = 0.2 m Ans.

z-coordinate Mass of combined body has become
5 times of the colliding particle. Therefore, from
conservation of linear momentum, velocity

component in z-direction will become
1

5
times. Or

vz = × =1

5

40 8

π π
m/s m/s

∴ z v tz= = × =8

40π
π

0.2 m Ans.

5. F Fe m= or eE eBv=

∴ v
E

B
= = ×

× −
120 10

50 10

3

3

= ×2.4 m/s106

Let n be the number of protons striking per second.

Then,

ne = × −0.8 10 3

or n = ×
×

−

−
0.8

1.6

10

10

3

19

= ×5 1015 m/s

Force imparted = Rate of change of momentum

= nmv

= × × × × ×−5 10 10 1015 27 61.67 2.4

= × −2.0 N10 5 Ans.

6. (a) Speed of particle at origin, v
qV

m
vx= =2

t
x

v

a

qV

m

a
m

qVx

= = =
2 2

y a t
qE

m
a

m

qV

a E

V
y= = 





×








 =1

2

1

2 2 4

2 2
2

Ans.

(b) Component parallel to B is

v a t
qE

m
a

m

qV
Ea

q

mV
y y= = 













 =

2 2
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r

3 cm

√7

Bθ

×

(a)

cm

α
β

r

r = 4 cm

(b)

y

x

5 m/s

p

t = 0

rN

r



Now, pitch = component parallel to B × time

period

= =














v T Ea

q

mV

m

Bq
y

2

2π

= πEa

B

m

qV

2
Ans.

7. To graze at C Using equation of trajectory of

parabola,

y x
ax

v
= −tan

cos
θ

θ

2

2 22
…(i)

Her , a
qE

m
= = ×− −

−
10 10

10

6 3

10

= 10 2m/s

Substituting in Eq. (i), we have

0.05 0.17
0.17= ° − ×

×
tan

( )

( / )
30

10

2 3 2

2

2 2v

Solving this equation, we have

v = 2 m /s

In magnetic field, AC r= 2

or 0.1 = 2r

or r
mv

Bq
= = °

0.05 m
cos 30

∴ B
mv

q
= °cos

( )

30

0.05

=
−

−
( )( )( / )

( )( )

10 2 3 2

10

10

60.05

= × −3.46 T10 3

= 3 46. mT Ans.

8. Magnetic moment of the loop, M j= ( )$iA

= ( ) $I L0
2

k

Magnetic field, B i j= ° + °( cos ) $ ( sin )$B B45 45

= +B

2
($ $)i j

(a) Torque acting on the loop, τ = ×M B

= × +





( $ ) ($ $)I L
B

0
2

2
k i j

∴ τ = −I L B0
2

2
($ $)j i or | |τ = I L B0

2 Ans.

(b) Axis of rotation coincides with the torque and

since torque is along $ $j i− direction or parallel

to QS . Therefore, the loop will rotate about an

axis passing through Q and S as shown in the

figure.

Angular acceleration, α τ= | |

I

where, I = moment of inertia of loop about QS .

I I IQS PR ZZ= =
(From the theorem of perpendicular axis)

But, I IQS PR=

∴ 2
4

3

2I I MLQS ZZ= =

I MLQS = 2

3

2

∴ α τ= = =| |

/I

I L B

ML

I B

M

0
2

2
0

2 3

3

2

∴ Angle by which the frame rotates in time

∆t is

θ α= 1

2

2( )∆t

or θ = 3

4

0 2I B

M
t. ( )∆ Ans.

9. In equilibrium,

2 0T mg= or T
mg

0
2

= …(i)

Magnetic moment, M iA Q R= = 





ω
π

π
2

2( )

τ ω= ° =MB
BQR

sin 90
2

2

Let T1 and T2 be the tensions in the two strings

when magnetic field is switched on ( ).T T1 2>
For translational equilibrium of ring in vertical
direction,

T T mg1 2+ = …(ii)

For rotational equilibrium,

( )T T
D BQR

1 2

2

2 2
− = =τ ω

or T T
BQR

1 2

2

2
− = ω

…(iii)

Solving Eqs. (ii) and (iii), we have

T
mg BQR

D
1

2

2 2
= + ω
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As T T1 2> and maximum values of T1 can be
3

2

0T
,

We have
3

2 2

0
0

2T
T

BQR

D
= + ωmax

∴ ωmax = DT

BQR

0
2

Ans.

10. dB
i dx

x
= µ

π
ω0

2

( / ).

∴ B
i dx

xd

d
=

+

∫
µ
πω

ω
0

2

B
i d

d
= +





µ
πω

ω0

2
ln (upwards) Ans.

11. θ = 



 =







 = 





− − −tan tan
/

tan1 1 1R

r

R

mv Bq

BqR

mv

Deviation = = 





−2 2 1θ tan
BqR

mv

12. (a) Yes, magnetic force for calculation of torque

can be assumed at centre. Since, variation of

torque about P from one end of the rod to the

other end comes out to be linear.

∴ τ = 



 =( )IlB

l Il B

2 2

2

= (6.5)(0.2) (0.34)2

2

= 0.0442 N-m Ans.

(b) Magnetic torque on rod will come out to be

clockwise. Therefore, torque of spring force

should be anti-clockwise or spring should be

stretched.

(c) In equilibrium,

Clockwise torque of magnetic force

= anti-clockwise torque of spring force

∴ 0 0442 53 4 8 0 2
4

5
. ( )( sin ) ( . )( )( . )= ° = 



kx l x

or x = 0.057 m

U kx= 1

2

2 = ×1

2
(4.8)(0.057)2

= ×7.8 10 J–3 Ans.

13. Let the direction of current in wire PQ is from P to

Q and its magnitude be I .

The magnetic moment of the given loop is

M k= − Iab $

Torque on the loop due to magnetic force is

τ 1 = ×M B

= − × +( $ ) ( $ $ ) $Iab Bk i k i3 4 0

= − 3 0IabB $j

Torque on weight of the loop about axis PQ is

τ 2 = ×r F = 



 × −a

mg
2

$ ( $ )i k

= mga

2

$j

We see that when the current in the wire PQ is

from P to Q , τ 1 and τ 2 are in opposite directions,

so they can cancel each other and the loop may

remain in equilibrium. So, the direction of current

I in wire PQ is from P to Q. Further for

equilibrium of the loop

| | | |τ τ1 2=

or 3
2

0IabB
mga=

I
mg

bB
=

6 0

Ans.

Magnetic force on wire RS is

F l B= ×I ( )

= − × +I b B[( $) {( $ $ ) }]j i k3 4 0

F k i= −IbB0 3 4( $ $) Ans.
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27. Electromagnetic Induction

1. ⊗ magnetic field passing through loop is

increasing. Hence, induced current will produce

magnetic field. So, induced current should be

anti-clockwise.

2. It is true that magnetic flux passing through the

loop is calculated by integration. But, it remains

constant.

3.
d

dt

Bφ = [ ]Potential or EMF

= − −[ ]ML A2 1 3T

4. u is increasing. Hence, ⊗ is produced by the

induced current. So, it is clockwise.

5. By increasing the current in loop-1, magnetic field

in ring-2 in downward direction will increase.

Hence, induced current in ring-2 should produce

upward magnetic field. Or current in ring should

be in the same direction.

6. 2 4πR L=

∴ L
R= =π π
2

10

2

( ) ( )

= ( )5π cm

∆S S S R Li f= − = −( )π 2 2

= − × −π π( ) ( )0.1 2 2 45 10

= 0.0067 m2

e
t

B
S

t
= = 





∆
∆

∆
∆

φ

= ×100 0.0067

0.1

= 6.7 V

7. ∆φ =2 ( )NBS

∆ ∆
q

R

NBS

R
= =φ 2

= × × × × −2 500

50

40.2 4 10

= × −1.6 10 3C

8. S k= × −[( ) $ ]5 10 4 2m

φ = ⋅ = × −| |B S 9 10 7 Wb

1. Q e Bvl= = × ×1.1 .85 0

= 4.4 V

Apply right hand rule for polarity of this emf.

2. Q e Bvl=

i
e

R

Bvl

R
= =

F ilB
B l v

R
= =

2 2

= ( ) ( ) ( )0.15 0.52 2 2

3

= 0.00375 N

3. V V
B l

A C− = ω 2

2

V V
B l

D C− = ω( )2

2

2

From these two equations, we find

V V B lA D− = −3 22ω /

4. Circuit is not closed. So, current is zero or

magnetic force is zero.

1. | |e L
i

t
= ∆

∆
or L

di

dt

Here, L = 1H

and
di

dt
t t t= +3 [sin cos ]

∴ | | ( cos sin )e t t t= +3

2. V L
di

dt
L = + = −( ) ( )2 10 4d

dt
e t

= − −80 4e t

Further, V iR L
di

dt
Va b− − =

∴ V V iR L
di

dt
a b− = +

or V e eab
t t= −− −( ) ( )10 4 804 4

= − −40 4e t

INTRODUCTORY EXERCISE 27.1

1 2

B

INTRODUCTORY EXERCISE 27.2
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3. (a) dI dt/ = 16A/s

∴ L
e

dI dt
= = × −

/

10 10

16

3

= × −0.625 10 3 H = 0.625 mH

(b) At t = 1s, I = 21 A

U LI= 1

2

2 = × × −1

2
213 2( )( )0.625 10

= 0.137 J

P Ei= = × −( ) ( )10 10 213

= 0.21 J/s

4. (a)

L
N S

l
= µ0

2

N
l

d
=

∴ L
lS

d
= µ0

2
= × ×

×

− −

−
( ) ( ) ( . )

( )

4 10 0 9 107 4

2 2

π 0.4

0.1 10

= × −4.5 10 5 H

(b) e L
i

t
= ∆

∆
= × −( ) ( )4.5 10

0.1

5 10 = × −4.5 V10 3

1. Q M
e

di dt
= 2

1 /
= × −( )

( / )

50 10

8

3

0.5

= × −3.125 10 3 H = 3.125 mH

e M
i

t
1

2= 





∆
∆

= × −( ) ( )3.125 10

0.02

3 6

= 0.9375 V

2. (a) M
N

i
= φ = × −

2 2

1

231000 6 10

3

( ) ( ) = 2 H

(b) | |
( ) ( )

e M
i

t
2

1 2 3
30= 





= =∆
∆ 0.2

V

(c) L
N

i
1

1 1

1

3600 5 10

3
= φ = × −( ) ( ) = 1H

3. (a) | |e M
di

dt
2

1= 





= × −( ) ( )3.24 10 4 830

= 0.27 V

(b) Result will remain same.

1. Q E Li i Rt= =1

2

2 2

∴ L

R
has the units of time.

2. (a) τL

L

R
= = =2

10
0.2 s

(b) i
E

R
0

100

10
= = =10 A

(c) i i e t L= − −
0 1( )/ τ

= − −10 1 1( )/e 0.2

= 9.93 A

3. E V VR L= +

1. U Li
q

C
= =1

2

1

2

2
2

∴ LC
q

i

it

i
t= = =

3. (a) V VL C=

L
di

dt

q

C
=

q LC
di

dt
= ( )

= × × −( ) ( )0.75 18 10 3.46

= × −45.9 10 C6

= 45.9 Cµ

(b) V V
q

C
L C= =

= ×
×

−

−
4.2 10 4

618 10

= 23.3 V

4.
1 =
2

1

2

2 2Li CVmax max

∴ V
L

C
imax max=









= ×
×













−

−
20 10 3

60.5 10
0.1( )

= 20 V
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1. In the theory we have already derived mutual

inductance between solenoid and coil,

M
N N R

l
= µ π0 1 2 1

2

1

( )

= µ0 1 2 1

1

N N S

l

`

| |e M
di

dt

N N S

l

di

dt
2

0 1 2 1

1

1= = µ

= × ×− −

−
( ) ( ) ( ) ( ) (4 10 25 10 5 10

10

7 4

2

π 0.2)

= × −3.14 10 V6

(b) El
d

dt
e= =φ

∴ E
e

l

e

R
= =

2 2π

= × −3.14 10

0.25

6

2( ) ( )π

= × −2 10 6 V/m

2. (a) At P2

El
d

dt
= φ

E r R
dB

dt
( )2 2

2π π= ⋅

∴ E
R

r

dB

dt
= 





2

22

F qE
eR

r
t t= = −

2

2

2

2
6 8( )

Substituting the values, we have

F = × ×
× ×

−
− −

−
( ) ( )

[ ( ) ( )]
1.6 10 2.5 1019 2

2

2

2 5 10
6 2 8 2

= × −8.0 10 21N

⊗ magnetic field at the given instant is

increasing. Hence, induced current in an

imaginary circular loop passing through P2

should producedumagnetic field. Or, current

in this should be anti-clockwise. Hence,

electrons should move in clockwise direction.

Or electron at P2 should experience force in

downward direction (perpendicular to r2).

(b) At P1

El
d

dt
= φ

∴ E r s
dB

dt
( )2 1π = = 





( )πr
dB

dt
1
2

∴ E
r dB

dt
= 





1

2

= −r
t t1 2

2
6 8[ ]

= −0.02

2
6 3 8 33[ ( ) ( )]

= 0.3 V/m

As discussed in the above part, direction of

electric field is in the direction of induced

current (anti-clockwise) in an imaginary

circular conducting loop passing through P1.

Exercises

LEVEL 1

Assertion and Reason

1. Due to non-uniform magnetic field (a function of

x) magnetic flux passing through the loop obtained

by integration. But that remains constant with

time.

Hence,
d

dt

φ = 0

or e = 0

Magnetic field is along − $k direction or in ⊗
magnetic is increasing. Hence, induced current

should produceumagnetic field. Or induced

current should be anti-clockwise.

2. At time t0, magnetic field is negative or and

increasing.

Hence, induced current will produce ⊗ magnetic

field. Or induced current should be clockwise.

If
d

dt

φ = constant. Then, e = constant

∴ i or rate of flow of charge is constant.

3. It can exert a force on charged particle.

4.
di

dt
= 2 A/s

V V L
di

dt
a b− =

= ( ) ( )2 2 = 4 V
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5. Comparing with spring-block system

dI

dt







is acceleration.

a A Amax ( )= =ω ω ω2

= ω ( )maxv

∴ dI

dt
I







=
max

maxω

6. Applying RHR, we can find that

V Va b>
8. Ferromagnetic substance will attack more number

of magnetic lines through it. So, flux passing

through it will increase. Hence, coefficient of

self-inductance will increase.

L depends on number of turns in the coil’s radius

of coil etc. It does not depend on the current

passing through it.

9. Current developed in the inductor wire will

decrease exponentially through wire ab.

10. V VL L1 2
=

∴ L
di

dt
L

di

dt

1
2

2=

or L di L di1 1 2 2=
or L i L i1 1 2 2=

or i
L

∝ 1

Objective Questions

1. U Li= 1

2

2

∴ [ ]L
U

i
= 





=










−

2

2ML

A

2

2

T

= − −[ML T A ]2 2 2

2. M ∝ N N1 2

3.

When brought closer induced effects should
produced repulsion. So, currents should increase,
so that pole strength increases. Hence, repulsion
increases.

4. Magnetic field of ring is also along its axis, or in

the direction of velocity of charged particle.

Hence, no magnetic force will act on charged

particle. But, due to g velocity of charged particle

will increase.

5.

If magnetic field in the shown cylindrical region is

changing, then induced electric field exists even

outside the cylindrical regions also where

magnetic field does not exist.

6. i
dq

dt
t= = ( )8 A

di

dt
= 8 A/s

At t = 1 s, q i= =4 8C, A

and
di

dt
= 8 A/s

Charge on capacitor is increasing. So, charge on

positive plate is also increasing. Hence, direction

of current is towards left.

Now, V Va b+ × − + × + =2 8 4 2 8
4

2

∴ V Va b− = − 30 V

7.
dI

dt
I t= 0ω ωcos

e M
dI

dt
MI t= = 0ω ωcos

∴ e MImax = 0ω
= × ×0.005 10 100π
= ( )5π V

8.
1

2

1

2

2 2Li CV=

∴ V
L

C
= ⇒ i =

× −
2

4 10
2

6
( )

= ×2 103 V

9. e
B l= =ω 2

2
constant

10. ∆ ∆
q

R
= φ

or i t
R

∆ ∆= φ

∴ ∆ ∆φ = i t R( ) = × −( ) ( ) ( )10 10 53 0.5

= × −25 10 3 Wb

11. ⊗ magnetic field is increasing. Therefore, induced

electric lines are circular and anti-clockwise. Force

on negative charge is opposite to electric field.
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12. e
d

dt
a at= = −φ τ( )2

i
e

R

a at

R
= = −τ 2

H i Rdt= ∫ 2

0

τ

13. e L
di

dt
L= = (Slope of i t- graph)

Initially, slope = 0 ⇒ e = 0

Then in remaining two regions slopes are constants

but of opposite signs. Hence, induced emfs are

constants but of opposite signs.

14. V VA B− × + + × =−1 5 15 5 10 103 3( ) ( )

∴ V VB A− =15 V

15. I t= +( )10 5 A

dI

dt
= =10 A/s constant

At, t = 0, I = 5 A

Now, V VA B− × − × + =3 5 1 10 10

∴ V VA B− =15 V

16. ( ) ( )max maxV VC L=
q

C
L

dI

dt

0 = 





max

∴ dI

dt

q

LC







=
max

0

17. V L
di

dt
L =

18. φi BS= ° =cos 0 2 Wb

φf BS= ° = −cos 180 2 Wb

| |∆φ =4Wb

| |
| |∆ ∆

q
R

= φ

= =4

10
0.4 C

19. S k= ( ) $ab → perpendicular to x y -plane

φ = ⋅ = =B S ( ) ( )50 ab constant

d

dt

φ = 0

∴ e = 0

20. Back emf = Applied voltage potential drop across

armature coil

= −200 iR

= − ×200 1 5 20.

= 170 V

21.
N

N

I

I

V

V

S

P

P

S

S

P

= =

V V
N

N
VP i

P

S

= =






 0

= × =2

1
20 40 V

I
N

N
IP

S

P
S=









= 





=1

2
4( ) 2 A

22. Relative velocity = 0

∴ Charge in flux = 0

23. In case of free fall,

d gt= 1

2

2

= =1

2
10 1 52( ) ( ) m

Here due to repulsion from induced effects

a g<
∴ d < 5 m

24. V V L
di

dt
A B− =

= −L ( )α = − αL

25. i
E

R
0

12
40= = =

0.3
A

U Li= 1

2
0
2 = × × −1

2
50 10 403 2( )

= 40 J

26. Value remains
1

4
th in 20 ms times. Hence, two

half-lives are equal to 20 ms. So, one half-life is

10 ms.

t
L

R
C1 2 2 2/ (ln ) (ln )= =τ

∴ R
L

t
= (ln )

/

2

1 2

=
× −

(ln ) ( )2 2

10 10 3
= ( ln )100 4 Ω

27. Q i
e

R
=

= N t

R

( / )∆ ∆φ = NS B t

R

( / )∆ ∆

= × −10 10 10 10

20

4 4( ) ( )

= 5 A
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28. In steady state, whole current passes through the

inductor.

29. If current is passed through the straight wire,

magnetic lines are circular and tangential to the

loop. So, no flux is linked with the loop.

30. In second position, ∆φ =0

∴ | |Q
R

2 0= =∆φ

31. From Lenz's law,  induced effects always oppose

the cause due to which they are produced. So,

when the first loop is moved towards the smaller

loop, it will face repulsion.

32. τL

L

R
= = 2 s

i
E

R
0 3= = A , t = 2 s

i i e t L= − −
0 1( )/ τ

Substituting the given values, we can find i.

33. In AB, l is parallel to its v. Hence, PD = 0

34. v is parallel to l.

35. For wire ab, velocity vector is parallel to l.

36. Current increases with time. So, flux passing

through B will increase with time. From Lenz's

law, it should have a tendency to move away from

the coil to decrease flux.

37. For E ≠ 0, φmust change

or
d

dt

φ ≠ 0

38. Even if radius is doubled, flux is not going to

change.

39.

B | | is parallel to MN (or l) and B⊥ is parallel or

antiparallel to velocity.

Subjective Questions

1. When switch is opened current suddenly

decreasing from steady state value to zero. When

switch is closed, it takes time to increase from 0 to

steady state value.

e L
i

t
= ∆

∆

∆t in second case is large. Hence, induced emf

is less.

2. e
N

t

NS B

t
= = 





°∆
∆

∆
∆

φ
cos 30

∴ S
e t

N B
= 





°∆
∆

sec 30

= ×
×

















−

−
( ) ( )

( ) ( )

80 10

50 400 10

2

3

3

6

0.4 = 1.85 m

∴ Side of square = 1.36 m

Total length of wire = ×50 4 1( ).36

= 272 m

3. φ = = −BS B S e at
0

Induced emf = = −d

dt
aB Se atφ

0

4. (a) At a distance x from the wire, magnetic field

over the wire ab is

B
i

x
= µ

π
0

2

dV Bvdx
i

x
vdx= = 





µ
π
0

2

∴ Total emf =
=

= +

∫x d

x d l
dV

(b) Magnetic field due to current i over the wire ab

is inwards. Velocity of wire ab is towards

right. Applying right hand rule, we can see

that a point is at higher potential.

(c) Net change in flux through the loop abcd is

zero. Hence, induced emf is zero. So, induced

current is zero.

5. At t = 0, inductor offers infinite resistance. Hence,

current through inductor wire is zero. Whole

current passes through two resistors of 4Ω each.

i1
10

4 4
=

+
= 1.25 A

At t = ∞ , inductor offers zero resistance.

Rnet = + ×
+

4
8 4

8 4

= 6.67 Ω
So, main current

i
R

2

10= =
net

1.5A

This distributes in 4Ω and 3Ω in inverse ratio of

resistance. Hence, current through 4Ω is 1A and

through 8Ω is 0.5A.

For equivalent τL of the circuit Rnet across inductor

after short-circuiting, the battery is 10 Ω.
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∴ τL
R

= = =1 1

10net

0.1 s

i eL

t

= −
−

0.5 0.1( )1

= − −0.5 ( )1 10e t

i e t= + − −1.25 0.25 0.1( )/1

= − −1.5 0.25 e t10

6. Similar to above problem

∆q
NBS

R
= 2

∴ B
q R

NS
= ( )∆

2

= ×
×

−

−
( ) ( )

( ) ( ) ( )

4.5 10 6

6

40

2 60 3 10

= 0.5 T

7. e
d

dt
= φ = 





s
dB

dt
= π 2R (Slope of B t- graph)

(a) e = 





( ) ( )π 0.12
0.5

2

2 = 0.011 V/m

(b) Slope of B t- graph is zero. Hence,

e = 0

(c) Slope is just opposite to the slope of part (a).

8. Induced emf ( )e BvL= and therefore induced

current is developed only during entering and

during existing from the magnetic field.

i
e

R
= = BvL

R

F iLB= = B L v

R

2 2

Further, magnetic force always opposes the

change. Hence, external force is always positive.

During entering into the field, ⊗ magnetic field

increases. Hence, induced current should produce

umagnetic field. Or it should be anti-clockwise.

During existing from the magnetic field case is just

opposite.

9.

e e enet = −1 2

= −B va B va1 2

= −( )B B va1 2

= −
+











µ
π

µ
π

0 0

2 2

i

x

i

x a
va

=
+

µ
π
0

2

4

2ia v

x x a( )

10. B
i

r
= µ

π
0

2

dV Bvdr
iv dr

r
= = ∫

µ
π

0

2

V dV
iv r

r
r

r

= =






∫

1

2

0 2

12

µ
π

ln

11. V L
di

dt
L =

∴ di
L

V dtL= 1
( )

∴ di i
L

V dtL= = ∫∫
1

or i
L

= 1
(area under VL versus t graph)

(a) At t = 2 ms

i = × × × ×





− − −( )150 10
1

2
2 10 53 1 3

= × −3 33 10 2. A

(b) At t = 4 ms

Area is just double. Hence, current is also double.

12. (a) L
e

di dt
=

/
= 0.016

0.064
= 0.25 H

(b) L
N

i
= φ

∴ φ = =Li

N

( ) ( )0.25 0.72

400

= × −4.5 10 Wb4
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i

x a

e
1 e

2

t

0.5 A

i
L

t

1.25 A

1.5 A

i

i = Current
through
battery



13. (a) M
N

i
= =2 2

1

400φ ( ) ( )0.032

6.52
= 1.96 H

(b) M
N

i
= 1 1

2

φ

φ2
2

1

2 54

700
= =Mi

N

( ) ( . )1.96

= × −7.12 10 Wb3

14. τL

L

R
= = 0.1s

The given time t = 0.1 s is one time constant.

The desired ratio is
iV

iE

L (Q P Vi= )

= V

E

L

After on time constant V
E

e
L = as

V EeL
t L= − / τ

Hence, the desired ratio is
1

e
≈ 0.37.

15. i
V

R
0 = = =3.24

12.8
0.253 A

τL

L

R
= = =3.56

12.8
0.278 s

(a) After one time constant ( )t = 0.278 s = Cτ

i
e

i= −





1
1

0

≈ 0.63 i0
= 0.16 A

Power supplied by battery = Ei

P = ( ) ( )3.24 0.16 = 0.518 W

(b) P i RR = 2

= ( ) ( . )0.16 2 12 8 = 0.328 W

(c) P P PL R= − = 0191. W

16. (a) After one half-life,

t t L= =1 2 2/ (ln ) τ

= 0.693
L

R

= × −( ) ( . )0.693 125 10

50

3

= × −1.73 10 s5

(b)
1

2

1

2
22

0
2Li Li







= 





/

∴ i
i= 0

2

Now, apply

i i e t L= − −
0 1( )/ τ

where, τL

L

R
=

17. Steady state current developed in the inductor

= =E

r
i0 ( )say

(a) Now this current decreases to zero

exponentially through r and R.

∴ i i e t L= −
0

/ τ

where, τL

L

R r
=

+
Energy stored in inductor,

U Li0 0
21

2
= = 











1

2

2

L
E

r

Now, this energy dissipates in r and R in direct

ratio of resistances.

∴ H
r

R r
Ur =

+






 0 =

+
E L

r R r

2

2 ( )

18. In steady state, main current from the battery is

i
E

R
0

20

5
= = = 4 A

Now, this current distributes in inverse ratio of

inductor.

∴ i5
10

10 5
4=

+






 ( )A = 8

3
A

19. (a)
1

2

1

2
0
2

0
2Li CV=

∴ L
CV

i
= 0

2

0
2

= ×
×

−

−
( ) ( )

( )

4 10

50 10

6

3 2

1.5

= × −3.6 10 3 H

(b) f
LC

= 1

2π
=

× ×− −

1

2 4 103 6π ( ) ( )3.6 10

= ×0.133 10 Hz4

= 1.33 kHz

(c) t
T

f
= =

4

1

4
=

× ×
1

4 1.33 10
s

3

= × −0.188 10 s3

= 0.188 ms

20. (a) ω π= =2 1

f
T

f
,

(b) At t q q CV= = = =0 1000 0, ( )µC

Now, q q t= 0 cos ω
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(c) ω = 1

LC
⇒ L

C
= 1

2ω

(d) | | sini
dq

dt
q t= = 0ω ω

Average value of current in first quarter cycle

= ∫0

4

4

T
dt

T

/

/

21. (a)
1 + =
2

1

2

1

2

2
2

0
2q

C
LI CVi

i

∴ V
q

C

i
0 = (as I i = 0)

(b)
1

2

1

2
0
2

0
2CV LI=

∴ I
C

L
V0 0=

(c) U LImax = 1

2
0
2

(d) U L
I

L = 





1

2 2

0

2

U
q

C
U UC L= = −1

2

2

max

LEVEL 2

Single Correct Option

1.
1

2

1

2
0
2 2mv Li= max

∴ i
m

L
vmax = 0

2. V BvlC =

∴ q CV BvlCC= = =constant

∴ I
dq

dt
C = = 0

U CV CB L vC = =1

2

1

2

2 2 2

3. From right hand rule, we can see that P and Q

points are at higher potential than O.

4. At mean position, velocity is maximum. Hence,
motional emf Bvl is also maximum. v oscillates
simple harmonically. Hence, motional emf will
also move simple harmonically. Further, polarity
of induced emf will keep on changing.

5. At t t= side of square,

l a v t= +( )2 0

Area, S l a v t= = +2
0

22( )

φ = = +BS B a v t( )2 0
2

e
d

dt
Bv a v t= = +φ

4 20 0( )

R l a v t= = +λ λ[ ] ( )4 4 2 0

∴ i
e

R

Bv= = 0

λ
6. At time t

Side of square l l dti= −
S l l ti= = −2 2( )α

At given time

l l t ai= − =α
φ α= = −BS B l ti( )2

e
d

dt
B l ti= = −φ α α2 ( )

But, ( )l t ai − =α
∴ e a B= 2 α

7.

ω = v

R
= =v

l

v

l/2

2

e
B l= ω 2

2
=







B
v

l
l

2

2

2

= Bvl

8. From right hand rule, we can see that

V VA B>
∴ qA is positive and qB is negative.

q CV C Bvl= = ( )

= × −( ) ( ) ( ) ( . )20 10 016 0.5 0.2

= × −0.2 10 C6 = 0.2 Cµ

9. i
Bvl

R
=

Let λ = resistance per unit length of conducting

rod, then

i
Bvl

l

Bv= = =
λ λ

constant
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10. At time t, angle rotated by loop is θ ω= t. This is

also the angle between B and S. Then,

φ θ= BS cos

= Bb t2 cos ω

e
d

dt
b B t= =φ ω ω2 sin

11. El
d

dt
S

dB

dt
= =φ

∴ E r r
dB

dt
( ) ( )2 2π π=

or E
r dB

dt
=

2

F qE
qr dB

dt
= =

2

W F d r= = ( )2π

= 





πr q
dB

dt

2

= 





×− −22

7
1 10 2 102 6 3( ) ( ) ( )

= × −2 10 9π J

12. Initial current = =10

10
1 A

∴ φ i iL I= =( ) 500 mWb = 0.5 Wb

Final current = =20

5
4A

φf fL I= = × =( ) ( )0.5 Wb4 2

∴ ∆φ = 1.5 Wb

13.
1

2

1

2

1

2

2
0
2Li Li= 





∴ i
i

i e t L= = − −0
0

2
1( )/ τ

e t L− = − = −/ τ 1
1

2

2 1

2

∴ t

Lτ
=

−






ln

2

2 1

or t L=
−







τ ln

2

2 1

=
−









L

R
ln

2

2 1

14. B
i

a
= µ

π
0

2

F Bqv= °sin 90 = µ
π
0

2

i

a
qv( )

15.

B
i

x
= µ

2π
0 ⇒ dS cdx=

d BdS
ic

x
dxφ µ

π
= = 0

2

φ φ µ
π

= = 



∫a

b
d

ic b

a

0

2
ln

M
i

c b

a
= = 





φ µ
π
0

2
ln

16. B
I

x
x = µ

π
0

2

de B vdx
I

x
v dxx= = µ

π
0

2

e de
Iv b

aa

b
= = 



∫

µ
π

0

2
ln

i
e

R

Iv

R

b

a
= = 





µ
π
0

2
ln = Induced current

dF i dx Bx= ( ) ( )

= 

















µ
π

µ
π

0 0

2 2

Iv

R

b

a

I

x
dxln

F dF
a

b
= ∫

17. El
d

dt
S

dB

dt
= =φ

∴ E r r
dB

dt
( )2 2π π=

or E
r dB

dt
=

2
or E r∝

18. Magnetic field through Q (by I2) is downwards.

By decreasing I1, downward magnetic field

through Q will decrease. Hence, induced current in

Q should produce magnetic field in same

direction.

19. i e t L= − −0 1( )./ τ = − −E

R
e t L( )/1 τ

= −
−E

R

Ee

R

t L/ τ
= − 





i
V

R

L
0 (as V EeL

t L= − / τ )

∴ V i R R iL = −( ) ( )0

i.e. VL versus i graph is a straight line with positive

intercept and negative slope.
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20. e Bvl= = × ×0.5 4 0.25 = 0.5 V

12 Ω and 4Ω are parallel. Hence, their net

resistance R = 3 Ω.

i
e

R r
=

+
= =0.5

3 + 2
0.1 A

21. El
d

dt
S

dB

dt
= =φ

E R r( ) ( ) ( )2 2π π β=

∴ E
r

R
=

2

2
β ⇒ F qE=

and τ = =FR qER = 1

2

2qr β

22.

PD = B lω 2

2
= ( ) ( / ) ( )B v R R2 4

2

2

= 4 BvR

23. L L R R1 1
1

=






 =









η
η +

η
η + 1

,

L L2

1

1
=

+








η
, R R2

1

1
=

+








η

L
L L

L L
net =

+
1 2

1 2

Similarly, R
R R

R R
net =

+
1 2

1 2

τL

L

R

L

R
= =net

net

24. i i e t L= −
0

/ τ

β τi i e T L
0 0= − /

∴ τ
βL

T=
ln ( / )1

25. P i R= 0
2 ⇒ i

P

R
0
2 = ⇒ τ = L

R

∴ L R= τ

Heat dissipated = 1

2
0
2Li = 





1

2
( )τR

P

R
= 1

2
Pτ

26. In decay of current through L-R circuit, current can

not remain constant.

27. By short-circuiting the battery, net resistance

across inductor is
R

2
(R and R in parallel).

∴ τ net
net

= =L

R

L

R

2

28. At t i E R= =0, /

Now, this current will decay in closed loop in

anti-clockwise direction. So, | | /i i E R2 2= = in

upward or opposite direction.

Hence, i
E

R
2 = −

29.
1

2

1

4

1

4
0
2Li Li2 = 





So, i
i= 0

2
, half value

∴ t t
L

R
L= = = 



1 2 2 2/ (ln ) (ln )τ

30. Steady state current through inductor in
E

R
.

So, at t = 0, current in closed loop (confiding of

capacitor) will remain same.

31. At t V EL= = −0,

32. V V
B R

B RA − = =0

2
22

2
2

ω ω( )
…(i)

V V
B R

B RC0

2
22

2
2− = =ω ω( )

…(ii)

Adding these two equations, we get

V V B RA C− = 4 2ω

33.

v v
v v

l
x= + −



1

2 1

Small potential difference = Bv dx( )

∴ Total potential difference = ∫0

l
Bvdx

= +1

2
1 2B v v l( )
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v
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C

Oω

A

O ω

v
2

v

v
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x

dx



34. At time t = 0, resistance offered by a capacitor = 0

and resistance offered by an inductor = α.

R
R R R

net = + = =
2 3

5

6
5 Ω

∴ Current from the battery,

i
E

R
= = =

net

A
5

5
1

35. τL

L

R
= = = −0.01

10
s10 3

τC CR= = × =− −( ) ( )0.1 10 s3 310 10

( )i L0

20

10
2= = A

( )i0
20

10
2C = = A

The given time is the half-life time of both the

circuits.

∴ i iL C= = =2

2
1 A

or total current is 2A.

36. | |e
d

dt
S

dB

dt
= =φ = −( )4 2 2

0b a Bπ

i
e

R

b a B

R
= = −| | ( )4 2 2

0π

⊗ magnetic field is increasing. So,

umagnetic field is produced.

37. φ µ
πi

b

b a
i

x
adx=

+

∫ 0

2
( ) = +





µ
π

0

2

ia b a

b
ln

Similarly,

φ µ
πf

ia b a

b
= −





0

2
ln

∆φ µ
π

= − = +
−







| | lnQ Q

ia b a

b a
i f

0

2

∆ ∆
q

R

ia

R

b a

b a
= = +

−








φ µ
π
0

2
ln

More than One Correct Options

1. e Bvl= , where l
L=
2

For polarity of this motional emf, we can use right

hand rule.

2. (a)

B
i

x
x = µ

π
0

2

d B dS
i

x
adxxφ µ

π
= = 





( ) ( )0

2

φ φ µ
π

= =∫a

a
d

ia2
0

2
2ln

M
i

a= =φ µ
π
0

2
2ln

(c)

Wire producesumagnetic field over the loop. If

the loop is brought closer to the wire,umagnetic

field passing through the loop increases. Hence,

induced current produces ⊗ magnetic field so,

induced current is clockwise.

3. (a) L
N

i
= φ ⇒ φ = Li

N

So, SI unit of flux is Henry-ampere.

(c) L
e

i t

e t

i
= − = − −

∆ ∆
∆

∆/

Hence, SI unit of L is
V- s

ampere
.

4. τL

L

R
= = =2

2
1s

t L1

2

2 2= =(ln ) (ln )τ s
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Hence, the given time is half-life time.

∴ i
i= = 8 =0

2

2

2

/
2 A

Rate of energy supplied by battery

= = × =Ei 8 2 16 J/s

P i RR = = =2 22 2 8( ) ( ) J/s

V V E iRa b− = − = − × =8 2 2 4 V

5. According to Lenz's law, induced effects always

oppose the change i1 and i2 both are in same

direction. Hence, magnetic lines from B due to

both currents are from right to left. By bringing A

closer to B or increasing i1 right to left magnetic

field from B will increase. So, i2 should decrease.

6. φi BS= ° = =cos ( ) ( )0 4 2 8 Wb

φf BS= ° =cos 90 0

∆φ =8 Wb

| |e
t

= = =∆
∆
φ 8

0.1
80 V

i
e

R
= =| |

20 A

∆ ∆
q

R
= =φ

2 C

This current is not constant. So, we cannot find the

heat generated unless current function with time is

not known.

7. i q
LC

qmax = = 





ω 0 0

1

di

dt
q

LC
q







= = 





max

ω2
0 0

1

8. If ⊗ magnetic field increases, then induced electric

lines are anti-clockwise. If ⊗ magnetic field

decreases, then induced electric lines are

clockwise (both inside and outside the cylindrical

region).

On positive charge, force is in the direction of E.

On negative charge, force is in the opposite

direction of E.

9. q t= 2 2

i
dq

dt
t= = 4

di

dt
= 4 A/s

At t = 1 s, q i= =2 4C, A

and
di

dt
= 4 A/s

V V L
di

dt
a b− = = × =1 4 4 V

V V
q

C
b c− = = =2

2
1 V

V V iRc d− = = × =4 4 16 V

V Va d− is summation of above three, i.e. 21 V.

10. V Va c− = 0 as l is parallel to v.

V V V V
B l

a b c b− = − = ω 2

2

Comprehension Based Questions

1.
dB

dt
t= +( )6 242 T/s

At t = 2 s,
dB

dt
= 48 T/s

El
d

dt
S

dB

dt
= = 





φ

or E r r
dB

dt
( )2 2π π= 





∴ E
r dB

dt
= ⋅

2
…(i)

F qE
qr dB

dt
= =

2

= × ×− −(1.6 10 ) (1.25 10 )19 2

2
48( )

= × −48 10 21N

2. From Eq. (i) of above problem, we can see that

E r∝
i.e. E r- graph is a straight line passing through

origin.

3. ⊗ Magnetic field is increasing. Hence,umagnetic

field is produced by a conducting circular loop

placed there. For producing, magnetic field

induced current should be anti-clockwise.

Direction of induced circular electric lines are also

anti-clockwise.

4. | |e
d

dt
S

dB

dt
= =φ = ( )πa B2

0

5. El
d

dt
= φ

∴ E a a B( ) ( )2 2
0π π=

or E aB= 1

2
0

6. F qE qaB= = 1

2
0
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τ = =F a qa B
1

2

2
0

α τ= =







=
I

qa B

ma

qB

m

1

2

2

2
0

2
0

7. ω α= = 





t
qB

m
t0

2

P qa B
qB

m
= = 











τ ω 1

2 2

2
0

0

= q B a

m

2
0
2 2

4

8. | |e
d

dt
S

dB

dt
= =φ

= ×( ) ( )0.2 0.4 2 = 0.16 V

i
e

R
= | | =

× −
0.16

(1) (40 + 40 + 20) 10 2

= 0.16 A

uMagnetic field passing through the loop is

increasing. So, induced current should produce

⊗ magnetic field. Hence, induced current is

clockwise.

9. At t = 2 s, rod will move 10 cm. Hence, 40 cm side

will become 30 cm.

| | ( )e e S
dB

dt
= = 



1 say

( ) ( )0.2 0.3 0.12 V× =2

At t = 2 s , B = 4 T

∴ e Bvl2 =
= × −( ) ( ) (4 5 10 2 0.2)

= 0.04 V

∴ e e enet 0.08 V= − =1 2

10. i
e

R
= =

× −
net 0.08

(1) (30 + 30 + 20) 10 2

= 0.1 A

F ilB=
= ( ) ( . ) ( )0.1 0 2 4 = 0.08 N

11 to 13

At terminal velocity,

iLB mg=

∴ i
mb

LB
= = ×

×
0.2 98

1 0.6

i = 3.27 A …(i)

e BvL= (v = terminal velocity)

= ( ) ( ) ( )0.6 v 1

e v= 0.6

P
e

R
R1

2

1

=

∴ 0.76
0.36= v

R

2

1

…(ii)

P
e

R
R2

2

2

=

∴ 1.2
0.36 2

= v

R2

…(iii)

R1 and R2 are in parallel.

∴ R
R R

R R
net =

+
1 2

1 2

…(iv)

i
e

R
=

net

…(v)

Solving these five equations, we can get the
results.

Match the Columns

1. (a) B
F

il
=

[ ] [ ]B =








 =

−
− −MLT

AL
MT A

2
2 1

(b) U Li= 1

2

2

∴ [ ]L
U

i
= 





=










−

2

2

2

ML2T

A
= − −[ ]ML T A2 2 2

(c) ω = 1

LC
⇒ [ ] [ ]LC

L= 





=
ω2

2T

(d) [ ] [ ]φ = BS = − −[ ]MT 2 1 2A L

2. V Ee eL
t tL L= =− −/ /τ τ10

τL

L

R
= =1 s

∴ V eL
t= −10

V E V eR L
t= − = − −10 1( )

Now, we can put t = 0 and t = 1second.

3. ω = =1
2

LC
rad /s

(a) i qmax = =ω 0 8 A

(b)
di

dt
q

max

= =ω2
0 16 A/s

(c) V V
q

C
L C= = = =2

1 4
8

/
V

(d) V V L
di

dt
C L= = = 





=( )1
16

2
8 V
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4. Steady state current through inductor,

i0
9

3
3= = A

Now, this current decays exponentially across

inductor and two resistors.

τL

L

R
= =

+
=9

6 3
1 s

t L1 2 2 2/ (ln ) (ln )= =τ s

Given time is half-life time. Hence, current will

remain 1.5 A.

i i e et tL= =− −
0 3/ τ

−





= −di

dt
e t3

In the beginning
−





=di

dt
3 A/s

After one half-life time
−





=di

dt
1.5 A/s

(a) V L
di

dt
L = −





= ×9 1.5 = 13.5 V

(b) V iR3Ω = = ×1.5 3 = 4.5 V

(c) V iR6Ω = = ×1.5 6 = 9 V

(d) V V Vbc L= − =3 9Ω V

5. φ =2t

(a) e
d

dt
= =φ

2 V

(b) i
e

R
= = =1 A constant

(c) ∆ ∆q i t= = × =1 2 2 C

(d) H i R t= 2 ∆ = ( ) ( ) ( )1 2 22 = 4J

6. (a) If current is increased, ⊗ magnetic field

passing through loop will increase. So, induced

current will produceumagnetic field. Hence,

induced current is anti-clockwise.

Now, i and I currents in PQ are in opposite

directions. Hence, they will repel each other.

Same logic can be applied for (b) part.

(c) situation is similar to (b) situation and
(d) situation is similar to (a) situation.

Subjective Questions

1. τL

L

R
=

and τC CR= ,
τ
τ

C

L

CR

L

C

L

L

C
= = =

2

1.

∴ τ τL C=
∴ For the given condition τ τ τL C= = (say)

Now, in L R- circuit

I
V

R
e t

1 1= − −( )/ τ

In CR circuit, I
V

R
e t

2 = − / τ

∴ I I I
V

R
= + = =1 2 constant Ans.

2. Motional emf, V Bvl=

Net resistance of the circuit = +
+

R
R R

R R

1 2

1 2

∴ Current through the connector,

i
Bvl

R
R R

R R

=
+

+
1 2

1 2

Ans.

3. θ ω= t

de B x dx= ( )ω

Here, B
i

d x t
= µ

π ω
0

2 – sin

∴ de
i x

d x t
dx= ⋅µ ω

π ω
0

2 – sin

V V V de
i x

d x t
dxOA A

a a
= = =∫ ∫0

0

0

02
–

– sin

µ ω
π ω

= 





+





–
sin sin

ln
– sinµ ω

π ω ω
ω0

2

i

t

d

t

d a t

d
a

Similarly,

V V V
i x

d x t
dxOB O B

a
= =

+∫–
sin

µ ω
π ω

0

02

= +











µ ω
π ω ω

ω0

2

i

t
a

d

t

d a t

dsin
–

sin
ln

sin

∴ V V VAB OB OA= –

= +
+


















µ ω
π ω ω

ω
ω

0

2
2

i

t
a

d

t

d a t

d a tsin sin
ln

– sin

sin


Ans.
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i

P

Q

I

B

O

A

θ

dx d x d x t– sin = – sinθ ω

i

xsin θx



Note This function is discontinuous at ω πt n= .

4. At t = 0, equivalent resistance of an inductor in

infinite and at t = ∞, equivalent resistance is zero.

∴ Initial current through inductor = 0 and

Final current through inductor = =36

10
3.6 A

To find equivalent time constant, we will have to

short circuit the battery and find net resistance

across inductor.

Rnet = ×
+

=10 5

10 5

10

3
Ω

τL

L

R
= =

net

ms
3

10

Current through inductor will increase

exponentially from 0 to 3.6 A.

∴ i e t L= − −3.6( ),/1 τ where τ µL = =3

10
300ms s

Current through 10 Ω will vary with time. Ans.

5. At t = 0, Current through inductor will be zero.

At t = ∞, net emf V= +
+

=2 2 4 1

12 11

10

3

/ /

/ /

Net resistance = ×
+

=2 1

2 1

2

3
Ω

∴ i = =10 3

2 3
5

/

/
A

To find equivalent time constant short circuit, both

the batteries and find net resistance across

inductor.

Rnet = ×
+

=2 1

2 1

2

3
Ω

∴ τL

L

R
= = × =

−

net

s
1 10

2 3

3

2000

3

/

Current through inductor will increase

exponentially from 0 to 5 A.

∴ i e

t

= −












−
5 1

2000

3

6. These are two independent parallel circuits across

the battery.

(a) V Eab = =120 volt (at all instants)

(b) a is at higher potential.

(c) Vcd will decrease exponentially from 120 V to

zero.

∴ Vcd = 120 volt, just after the switch is closed.

(d) c will be at higher potential.

(e) When switch is opened, current through R1

will immediately become zero. While through

R2, will decrease to zero from the value
E

R
i

2
0= =2.4 A (say), exponentially. Path of

this decay of current will be cdbac.

∴ Just after the switch is opened,

V i Rab = − = − × = −0 1 2 4 30 72. volt

(f) Point b is at higher potential.

(g) V i R Rcd = − + = − −0 1 2 192( ) 2.4(80) = volt

(h) This time point d will be at higher potential.

7. q CV1 08= : q CV2 0=
q q CV1 2 09+ =

In the absence of inductor, this 9 0C V will

distribute as 6 0CV in 2C and 3 0CV in C. Thus,

mean position of q1 is 6 0CV and mean position of

q2 is 3 0CV .

At t = 0, q1 is 2 0CV more than its mean position

and q2 is 2 0CV less.

Thus, q CV0 02=

C
C

net = 2

3

∴ ω = =1 3

2LC LCnet

(a) I qmax = 0ω

(b) V
CV

C
V1

0
0

6

2
3= =
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10 Ω

5 Ω

2 Ω

1 Ω

q1 q2

– ++ –

L



and V
CV

C
2

03=

= 3 0V

(c) i q t= 0 sinω

8.

(a) V L
di

dt

d

dt
L = = × −( )1 10 3 ( )20t = 0.02 V

= 20 mV

(b) q i dt t dt t
t t

= = =∫ ∫0 0

220 10( )

V
q

C

t
t= = =−

+10

10
10

2

6

7 2( ) V

(c)
q

C
Li

2
2

2

1

2
>

or
( )

( )
10

2 10

1

2
10 20

2 2

6

3 2t
t

×
> × ×−

−

or t > × −63.2 s10 6

or t > 63.2 sµ Ans.

9. In steady state when switch was closed,

i E R0 1 5= = =/ ( / )A 0.2 A

After switch is opened, it becomes L-C circuit in

which peak value current is  0.2 A.

∴ 1

2

1

2
0
2

0
2Li CV=

or L
V

i
C= 0

2

0
2

.

= × × −( )

(

150
10

2

2

6

0.2)
0.5

= 0.28 H Ans.

10. (a) e Bvl= = × ×0.8 7.5 0.5 = 3 V

(b) Current will flow in anti-clockwise direction,

as magnetic field in ⊗ direction passing

through the closed loop is increasing.

Therefore, induced current will produce

magnetic field inudirection.

(c) F F ilB
e

R
lB

Bvl

R
Bl

B l

R
vm= = = = 



 =

2 2

= × =(0.8) (0.5)

1.5
7.5 0.8 N

2 2

(d) F v = × =0.8 7.5 6 W Ans.

i R
Bvl

R
R

B l

R
v2

2 2 2
2= 



 = .

= × =(0.8) (0.5)

1.5
W

2 2

( . )7 5 62 Ans.

So, we can see that both rates are equal.

11. (a) Magnitude of induced electric field due to

change in magnetic flux is given by

E l⋅ = φ =∫ d
d

dt
S

dB

dt
.

or El R B t= π 2
02( )

dB

dt
B t=



2 0

Here, E = induced electric field due to change

in magnetic flux

or E R R B t( )2 2 2
0π π=

or E B Rt= 0

Hence, F QE B QRt= = 0

This force is tangential to ring. Ring starts

rotating when torque of this force is greater

than the torque due to maximum friction

( )maxf mg= µ or when

τ τF f≥
max

Taking the limiting case

τ τF f=
max

or FR mg R= ( )µ
or F mg= µ
or B QRt mg0 = µ
It is given that ring starts rotating after 2. So,

putting t = 2, we get

µ = 2 0B RQ

mg
Ans.

(b) After 2

τ τF f>
max

Therefore, net torque is

τ τ µ= − = −F f B QR t mgRtan
max 0

2

Substituting µ = 2 0B QR

mg
, we get

τ = −B QR t0
2 2( )

or I
d

dt
B QR t

ω



 = −0

2 2( )

or mR
d

dt
B QR t2

0
2 2

ω



 = −( )

or d
B Q

m
t dt

0

0

2

4
2

ω
ω∫ ∫= −( )

or ω = 2 0B Q

m
…(i)
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20 V



Now, magnetic field is switched off, i.e only

retarding torque is present due to friction. So,

angular retardation will be

α
τ µ µ= = =f

I

mgR

mR

g

R

max

2

Therefore, applying

ω ω αθ2
0
2 2= −

or 0
2

20

2

= 



 − 





B Q

m

g

R

µ θ

or θ
µ

= 2 0
2 2

2

B Q R

m g

Substituting µ = 2 0B RQ

mg

We get θ = B Q

m

0 Ans.

12. Let v be the velocity of connector at some instant

of time. Then,

V Bvlab = , i
Bvl

R
1 = , q C Bvl= ( )

∴ i
dq

dt
CBl

dv

dt
2 = =

Now, i i i
Bvl

R
CBl

dv

dt
= + = +1 2

Magnetic force, F ilB
B l

R
v B l C

dv

dt
m = = ⋅ + ⋅

2 2
2 2

Further, F F Fmnet = −

or m
dv

dt
F

B l

R
v B l C

dv

dt
= − −

2 2
2 2

∴ dv

F
B l

R
v

dt

m B l C

v t

−
=

+∫ ∫2 20 2 20

Integrating we get,

v
FR

B l
e

B l

mR RB l C
t

= −

















−
+













2 2
1

2 2

2 2

Terminal velocity in this case is : v
FR

B l
T =

2 2
Ans.

13. With key K1 closed, C1 and C2 are in series with

the battery in steady state.

∴ Cnet F= 1µ or q C0 20= =net V Cµ
(a) With K1 opened and K2 closed, charge on

C2 will remain as it is, while charge on C1

will oscillate in L C- 1 circuit.

ω = 1

1LC

=
× × ×− −

1

0 2 10 2 103 6.

= ×5 104 rad/s Ans.

(b) Since, at t = 0, charge is maximum ( )= q0 .

Therefore, current will be zero.

1

2

1

3

1

2

2
2

Li
q

C
=









or i
q

LC

q= =
3 3

ω

From the expression,

i q q= −ω 0
2 2

We have,
q

q q
ω ω
3

0
2 2= −

or q q= 3

2
0

Since at t = 0, charge is maximum or q0, so we

can write

q q t= 0 cos ω or
3

2

0
0

q
q t= cos ω

or ω π
t =

6
or t = =

× ×
π
ω

π
6 6 5 104

= × −1.05 10 s5

(c) q q= = × =3

2

3

2
20 10 30 µC Ans.

14. In the capacitor,

q CVi i= = × =−( )( )10 10 53 0.05 C

q CVf f= = × =−( )( )10 10 103 0.1 C

∴ Charge in capacitor will increase from 0.05 C

to 0.1 C exponentially.

Time constant for this increase would be

τC CR= =1 s.

∴ Charge at time t will be

q e t C= + − − −0 05 1. ( )( )/0.1 0.05 τ

= 0.1 0.05− −e t C/ τ
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i

i1 i2

Fm

Fv

R

b

a

q
–

+



(a) At t = 1 s, q e= − =−0.1 0.05 0.0816 C1

V
q

C
= =

×
=−

0.0816
8.16 V

10 10 3
Ans.

(b) This charge 0.0816 C is also the maximum

charge q0 of L C- oscillations.

From energy conservation equation,

1

2

1

2

0
2

0
2q

C
Li= we have,

i
q

LC
0

0= =
× × ×− −

0.0816

25 10 10 103 3

= 5.16 A Ans.

Further, ω = 1

LC
or f

LC
= =ω

π π2

1

2

=
× × ×− −

1

2 25 10 10 103 3π

= 10 Hz Ans.

15. (a) Let at time t velocity of rod be v (towards

right) and current in the circuit is i (from a to b).

The magnetic force on it is ilB (towards right).

Writing the equation of motion of the rod,

m
dv

dt
i l B

E Blv

R
lB⋅ = = 





0 –

dv

E Bl

mR

B l

mR
v

dt
tv

0
2 2 00

–

= ∫∫

∴ v
E

Bl
e

B l

mR
t

= 0 1

2 2

( – )
–

Ans.

(b) i
E Blv

R
= 0 –

16. Let v be the velocity at some instant. Then,

motional emf, V Bvl=
Charge stored in capacitor q CV CBl v= = ( )

Current in the wire = =dq

dt
CBl

dv

dt
( )

Magnetic force, F ilB CB l
dv

dt
m = = ( )2 2 (upwards)

∴ Net force, F mg Fmnet = −

or m
dv

dt
mg CB l

dv

dt
= − ( )2 2

∴ dv

dt
= acceleration, a

mg

m CB l
=

+ 2 2

Since, a = constant

∴ x at
mgt

m CB l
= =

+
1

2 2

2
2

2 2( )

17. Let at time t velocity of ring be v (downwards)

e Bv r B v r= =( )2 2

(Two batteries of emf 2Bvr are connected in

parallel)

∴ i
e

R

Bvr

R
= = 2

Now, a
mg F T

m

m= – –

Here, F
i

r B irB
B r v

R
m = 











= =2
2

2 2
4 2 2

( )

∴ a g
B r v

mR

T

m
= – –

4 2 2

…(i)

α = =Tr

mr

T

mr2
…(ii)

a r
T

m
= =α …(iii)

From Eqs. (i), (ii) and (iii), we get

a
g B r v

mR
=

2

2 2 2

–

or
dv

g B r v

mR

dt
tv

2

2 2 2 00

–

= ∫∫

or v
mgR

B r
e

B r

mR
t

=
4

1
2 2

2 2 2

( – )
–

Ans.

i
Bvr

R
= 2 = −















−mg

Br
e

B r

mR
t

2
1

2 2 2

and v
mgR

B r
T =

4 2 2
Ans.

18. (a) Suppose v be the velocity of rod ef when it has

fallen a distance, x. Then,

V Vfe cb= or Bvl L di dt= ( / )

or B dx dt l L di dt( / ) ( / )= or Bl dx L di( ) ( )=
Integrating, we get Li Blx=

or i
Bl

L
x= 



 …(i)

Now, magnetic force opposite to displacement

x will be
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Fm

α

mg

R

T

i i
i /2

v, a

i /2



F F ilB
B l

L
xm= = =









2 2

A constant downward force is mg.

So, this is similar situation like spring-block

system in vertical position. In which a force

F kx= acts upwards and a constant force mg

acts downwards.

Hence, the wire will execute SHM, where

k
B l

L
=

2 2

Amplitude will be at F mgm =

or
B l

L
A mg

2 2





 = ⇒ A

mgL

B l
=

2 2

At t = 0, rod is in its extreme position.

Therefore, if we write the equation from mean

position we will write,

X A t= − cos ω
But, x X A A A t A t= + = − = −cos ( cos )ω ω1

where, ω = =k

m

B l

mL

2 2

Ans.

(b) From Eq. (i),

i
Bl

L
xmax max= 





Here, xmax = 2A = 2
2 2

mgL

B l

∴ i
Bl

L

mgL

B l

mg

Bl
max = 









 =2 2

2 2
Ans.

(c) Maximum velocity,

v A
B l

mL

mgL

B l
g

mL

B l

g mL

Bl
0

2 2

2 2 2 2
= =

















 = =ω

Ans.

19. (a) At time t, v a t= 0

Motional emf, V Bvl Ba lt= = 0

Total resistance =
+

R R

R R

1 2

1 2

∴ i
Ba lt R R

R R
= +( )( )0 1 2

1 2

Ans.

(b) From right hand rule, we can see that points a

and b will be at higher potential and c and d at

lower potentials.

F ilB
B l a t

R R
R Rm = = +

2 2
0

1 2
1 2( )

Let F be the external force applied, then,

F F mam− = 0

∴ F F ma
B l a t

R R
R R mam= + = + +0

2 2
0

1 2
1 2 0( )

20. (a) At the given instant,

AC
a=
2

, OC
a=
2

and cos
/

,θ = =a

a

2 1

2
θ π=

3

∴ Velocity of rod

= +





v0

2
along the direction of current.

Emf induced across the ends M and N

E v B dx

a
a

a
a

rod rod=
−

+

∫
3

3

2

3
3

2

= ∫v
i

x
dx

a

a

rod

µ
π
0 0

3

2

3
3

2

2

= 











v i0 0 0

2 2

3

1

µ
π

ln

with end M at higher potential.

Since, the effective length of both the arcs MAN

and MBN is MN.

720 � Electricity and Magnetism

x = 0

Fm

mg

Mean

position

+ve

C

A

θ a/2

O

B

aa 3

B

a 3

Vrod

M N

dx
x

i0



∴ E E v
i

MAN MBN= = loop

µ
π
0 0

2
3ln

= v
i

0
0 0

2
3

µ
π

ln

with point M at higher potential.

Resistance of arc MAN

⇒ R R a aR1 2 2
3

= =( ) ( )θ π

⇒ Resistance of arc MBN

⇒ R R a aR2 2 2 4
3

= − =( ) ( )π θ π

Equivalent circuit at the given instant is shown in

the figure.

Current through the rod MN,

i i i
E E

R

E R

R

MAN MBN= + = −





 + −






( )1 2

1 2

rod rod

i E E
R R

MAN= − +








( )rod

1 1

1 2

= +











v i

aR

0 0 0 3

4

1

2

1

4

3µ
π π
(ln )

= 9

16
30 0 0

2

v i

aR

µ
π

ln ( ) Ans.

(b) Force on the rod

F i dxB
a

a

rod = ∫ 3

2

3 3

2

= i iµ
π
0 0

2
3ln = 9

32
30

2
0
2

0
3

2µ
π

i v

aR
(ln )

21. Since, PQ and DC both cut the lines of field.

∴ Motional emf will be induced across both of

them.

Integrating, potential difference across

dx ⇒ de v
i

x
dx

a

a

∫ ∫= 





2
0 0

2

µ
π

e
v i

DC = µ
π
0 0

2
2ln with D at higher potential

e
v i

PQ = 2

2
20 0µ

π
ln with P at higher potential

The relative velocity of the rod PQ w.r.t. U frame

v v v vrel = − =2

Now, time taken by it to loose the contact t
l

v
=

From equivalent electrical network

Net emf in the closed loop QPDC.

e e e
v i

PQ DC= − = µ
π
0 0

2
2ln

Growth of current in the L R- circuit is given by

i i e
e

R
etR L tR L= − = 



 −− −

0 1 1( ) ( )/ /

At time t
l

v
=

⇒ i
e

R
e

Rl

vL= 



 −

−
( )1
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Erod

NM

–EMAN
R1

R2
–EMBN

i1

i2

i

EPQ

A B

QP

EDC

CD

l

x
dx



28. Alternating Current

1. (a) X fLL = 2π

(b) L
X

f

L=
2π

(c) X
fC

C = 1

2π

(d) C
fXC

= 1

2π

2. V V VL R= −2 2

= −( ) ( )150 1002 2

= 111.8 V

V IX I fLL L= = ( )2π

∴ L
V

fI

L= =
× ×2 2 50 10π π
111.8

= 0.036 H

3. φ =0, if

X XL C=

or 2
1

2
π

π
f L

f C
=

∴ L
f C

= 1

2 2( )π

=
× −

1

360 102 6( )

= 7.7 H

Z R= (When X XL C= )

∴ I
V

Z

V

R
= = = 120

20

= 6 A

1. f
C

= =1

2 2π
resonance frequency

=
× × −

1

2 2 10 6π 0.03

= 650 Hz

At resonance, X XL C= and Z R=

∴ cosφ = =R

Z
1 or φ = °0

2. R
V

I
= = =40

10
4Ω

Z
V

I
= = =200

10
20 Ω

Power factor, cosφ = =R

Z

4

20

= 0.2

Exercises

LEVEL 1

Assertion and Reason

1. Z R X XC L= + −2 2( )

From this expression, we can see that XC may be

greater than Z also.

2. At resonance frequency fr,

X XC L=
Now, X fLL = 2π or X fL ∝
For f f X Xr L C> >,

At resonance, X XL C= ⇒ Z R=

∴ cos φ = =R

Z
1

or φ = °0

3. ω = 1

LC

By inserting a slab, C will increase. So, ω will

decrease.

4. Average value = total area under graph

total time interval

i-t

= + + + +8 2 2 4 2

6

= 18

6
= 3 A

5. Z R X XC L= +2 2( ~ )

X L will increase. So, Z may increase or decrease,

depending on the value of XC.Therefore, current

may decrease or increase.

INTRODUCTORY EXERCISE 28.1

INTRODUCTORY EXERCISE 28.2



6. V VL C= ⇒ X XL C=
So this resonance condition.

8. P I R= rms
2

= 





2

2
10

2

( )

= 20 W

9. I
V

r
DC

DC= (r = internal resistance of inductor)

I
V

Z

V

r X L

AC
AC AC= =

+2 2

If V VDC AC= , then I IDC AC>

10. I
V

Z

V

R X L

= =
+2 2

=
+

V

R fL2 22( )π

with increase in frequency, I will decrease.

tan φ = =X

R

fL

R

L 2π

with increase in frequency tan φand therefore φ
will increase.

11. At resonance, X XL C=
⇒ Z R=

Hence, I
V

Z

V

R
= =

So, current at resonance depends on R.

Objective Questions

2. Average value in AC comes out to be zero.

3.

Impedance first decreases, then increases. At

resonance frequency Z is minimum.

4. In case of only capacitor and inductor phase

difference between current and voltage should

be 90°.

5. I
I

Irms 0.707= ≈0
0

2

6. φ = °90 between V and I functions.

∴ P V I= φ =rms rms cos 0

7. Z R X XL C= + −2 2( )

8. Q P V I= rms rms cos θ

= 











V I0 0

2 2
cos θ

= V I0 0

2
cos θ

9. V0 240= V

∴ V
V

rms V= = =0

2

240

2
170

ω =120 rad/s

f = =
×

=ω
π2

120

2 3.14
19 Hz

10. ω = =
× × −

1 1

8 10 6LC 0.5

= 500 rad/s

11. P V I= φrms rms cos

= 





×





 ⋅ 





−100

2

100 10

2 3

3

cos
π

= 2.5 W

12. X
C

C = 1

ω
ω = 0 for DC

∴ XC = ∞
or it becomes a perfect insulator.

13. Substituting t = 1

600
s in the given equation, we

have

V = 



10 100

1

600
cos ( )π

= 10
6

cos
π

= 5 3 V

15. X
C f C

C = =1 1

2ω π
or X

f
C ∝ 1

i.e. XC versus f graph is a rectangular hyperbola.

16. sin φ = X

Z
= 1

3

∴ φ = 





−sin 1 1

3

17. i t= + +





2
4 2

sin ω π π

Hence, phase difference between V and i is
π
2

. So,

power consumed = 0.
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Z

f

φ

Z

R

X



18. I
V

R
DC

DC=

I
R

= 100 ⇒ R = 100 Ω

I
V

R X L

AC
AC=
+2 2

0.5 =
+

100

100 2 2( ) X L

or X f LL = =100 3 2Ω ( )π

∴ L
f

= 100 3

2π
= 100 3

2 50π ( )

=








3

π
H

19. X
C

C = =
×

=−
1 1

100 10
10

6

4

ω
Ω

I
V

XC
rms

rms= = ( )/200 2 2

104

= 0.02 A = 20 mA

20. V V VR L= +2 2

= + =( ) ( )20 15 252 2 V

But this is the rms value.

∴ Peak value = =2 25 2Vrms V

22. Resistance does not depend on the frequency of

AC.

23. An ideal choke coil should have almost zero

internal resistance. Otherwise, it will consume

some power.

24. 45° phase angle means,

X RL =
∴ ( )2πfL R=

∴ L
R

f
=

2π

= 100

2 103( ) ( )π
= 0.0159 H

≈ 16 mH

25. T
f

= =1 1

50
s

t
T= =
4

1

200
s

= × −5 10 3 s

= 5 ms

26. P V I= φrms rms cos

= 











°V I0 0

2 2
60cos

= 

















220

2

4

2

1

2

= 220 W

27. IC is 90° ahead of the applied voltage and IL lags

behind the applied voltage by 90°. So, there is a

phase difference of 180° between IL and IC.

∴ I I IC L= − = 0.2 A

28. VL function is cos function, which is 90° ahead of

the current function. Hence, current function

should be sin function.

29. HDC = I Rt2

HAC rms= = 





=I Rt
I

Rt
I Rt2

2 2

2 2

∴ H

H

DC

AC

= 2

1

30. V V VC R= − = −2 2 2 220 12( ) ( )

= 16 V

Subjective Questions

1. X LL = =ω 100 Ω

X
C

C = =1

ω
312.5 Ω

Z R X XC L= + −2 2( )

= + −( ) ( )300 1002 2312.5

= 368 Ω

(a) I
V

Z
0

0 120

368
= = = 0.326 A

(b) Since, X XC L> , voltage lags the current by an

angle given by

φ = 





−cos 1 R

Z
= 



 = °−cos 1 300

368
35.3

(c) ( ) ( )V I RR0 0 300= = =0.326 97.8 V

( ) ( ) ( )V I XL L0 0 100= = =0.326 32.6 V

( ) ( ) (V I XC C0 0= = =0.326 312.5) 102 V

2. (a) Voltage lags

∴ X XC L>

Power factor, cos φ = R

Z

=
+ −

R

R X XC L
2 2( )
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To increase the power factor denominator

should decrease. Hence, X L should increase.

Therefore, an inductor is required to be

connected.

(b) cos φ = =R

Z
0.72

∴ R Z= = ×0.72 0.72 60

= 43.2 Ω

( ) ( ) ( )X XC L− = −60 2 243.2

= 41.64 Ω
New inductor of inductance 41.64 Ω should be

added in the circuit.

L
X

f

L=
2π

= =41.64
0.133 H

2 50π ( )

3. (b) f = =
×

=ω
π2

6280

2 3.14
1000 Hz

(c) φ = − =π π π
2 3 6

or 30°

Power factor = φ = °cos cos 30

= 3

2

From the given functions of V and i, we can

see that current function leads the voltage

function.

(d) Z = =170
20

8.5
Ω ...(i)

cos φ = = =3

2 20

R

Z

R

∴ R = =10 3 Ω Ω17.32

X Z RC = −2 2

= 10 Ω

C
XC

= 1

ω
=

×
1

6280 10
F

= × −15.92 F10 6

4. I
V

X

V

LL
0

0 0= =
ω

5. (a) I
V

R

R
0

0

300
= =( ) 2.5

= × −8.33 A10 3

= 8.33 mA

Current function and VR function are in phase.

Hence,

I t= ( ) cos [( ) ]8.33 mA rad/s950

(b) X LL = = × =ω 950 7600.8 Ω
(c) ( )V I XL L0 0=

= × −( ) ( )8.33 10 7603

= 6.33V

Now, VL function leads the current (or VR )

function by 90°.
∴ V tL = + °6.33 cos ( )950 90

= −6.33 sin ( )950 t

6. X f LL = =2 301π Ω

X
fC

C = =1

2
55

π
Ω

Z R X XL C= + −2 2( )

= + −( ) ( )240 301 552 2

= 343 Ω

(a) φ = 





−cos 1 R

Z

= 





−cos 1 240

343

= °45.8

cos φ = R

Z

= 240

343

= 0.697

Since, X XL C> , voltage leads the current.

(b) Impedance = =Z 343Ω
(c) V I Zrms rms=

= ×0.45 343

= 155 V

(d) P I R= rms
2

= ( ) ( )0.45 2 240

= 48.6 W

(e) P PR= = 48.6 W

(f) PC = 0

(g) PL = 0

LEVEL 2

Single Correct Option

1. I
V

X

V

C
2

3
= = ( here V = rms value)

I
V

R

V
1

4
= =
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I2 is 90° ahead of applied voltage function and I1 is

in phase with it.

tan
/

/
φ = =V

V

3

4

4

3

∴ φ = °53

2. IR and IL are in same phase and phase difference

between them and applied voltage lies between 0°
and 90°.

3. X LL = = × =−ω ( ) ( )5 10 2000 103 Ω

X
C

C = =
×

=−
1 1

2000 50 10
10

6ω ( ) ( )
Ω

Since, X XL C= circuit is in resonance.

Z R= = + =( )6 4 10 Ω

I
V

Z
rms

rms 1.414 A= = =( / )20 2

10

This is also the reading of ammeter.

V I= 4 rms

≈ 5.6 volt

4. I
V

R
R = = =rms 0.2 A

200

100

X
fC

C = =
× ×





−

1

2

1

2 5 10
1

103 6π π
π

( ) ( )

= 100 Ω

∴ I
V

X
C

C

= = =rms 2 A
200

100

IC is 90° ahead of the applied voltage and IR is in

phase with the applied voltage. Hence, there is a

phase difference of 90° between IR and IC too.

∴ I I IR C= +2 2

= +( ) ( )2 22 2

= 283 A

5. Average value of 5 100sin ωt is zero. But average

value of 5A (= constant current) is 5 A. Hence,

average value of total given function is 5 A.

6. V function is sin function. I function is ahead of V

function. Hence, the circuit should be capacitive in

nature.

Further, φ = °45

∴ X RC = or ωC R=

or C
R R

R= = =
ω 100

0.01

In option (b), this condition is satisfied.

7. V V V VR C L= + − =2 2( ) 10 V

V VC L> , hence current leads the voltage.

Power factor = φ = =cos
8

10
0.8

8. See the hint of miscellaneous example numbers 6

and 7 of solved examples.

9. V V VS R L= +2 2

= + =( ) ( )70 202 2 72.8 V

tan φ = = = =X

R

V

V

L L

R

20

70

2

7

10. In first case, X
V

I
C = = =220

0.25
880 Ω

In the second case, R
V

I
= = =220

880
0.25

Ω

In the combination of P and Q,

tan φ = =X

R

C 1

∴ φ = °45

Since the circuit is capacitive, current leads the

voltage. Further,

Z R XC= + =2 2 880 2 Ω

I
V

Z
= = =220

880 2

1

4 2
A

11. See the hints of miscellaneous example numbers 6
and 7 of solved examples.

12. i
V

R
= , i.e. circuit is in resonance. Hence,

V VC L= = 200 V

13. P I R= rms
2 = 





V

Z
Rrms

2

=
+











( / )V

R L
R0

2

2 2 2

2

ω

=
+

V R

R L

0
2

2 2 22 ( )ω
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14. X LL = ω
If ω is very low, then X L ≈ 0

∴ VL ≈ 0

or V V VC= = 0

15. I
V

R
max = (at resonance)

6
24=
R

∴ R = 4 Ω

I
V

R r
DC 1.5 A=

+
=

+
=12

4 4

16. V V VR C= − = − =2 2 2 210 8 6( ) ( ) V

tan φ = = = =X

X

V

V

C

R

C

R

8

6

4

3

17. Current will lead the voltage function by 90°
voltage function is cos function. Therefore, current

function will be − sin function.

t
T

0
4

2

4 2
= = =( / )π ω π

ω

= =π
π2 2

1
( / )

s

18. R
C

XC= =1

ω

∴ Z R X RC= + =2 2 2 (as X RC = )

I
V

Z

V

R
0

0 0

2
= = ...(i)

When ω becomes
1

3
times, XC will become 3

times or 3 R.

Z R R R′ = + =( ) ( )2 23 2

I
V

Z

V

R

I
0

0 0 0

2 2
′ =

′
= =

More than One Correct Options

1. V VR L
2 2 100+ = ...(i)

V VL C~ = 120 ...(ii)

V V VR L C
2 2 130+ =( ~ ) ...(iii)

Solving these three equations, we get

V VR L= =50 V 86.6 V and,

VC = 206.6 V

Power factor = φ = = = =cos
R

Z

V

V

R 50

130

5

13

Since V VC L> , circuit is capacitive in nature.

2. i t= + °5 53sin ( )ω

i0 5= A

∴ i
i

rms A= =0

2

5

2

Mean value of current in positive half cycle is

2 2
5

10
0π π π

i = 



 = 



( ) A

In V V tm= sin ω , current i t= + °5 53sin ( )ω leads

the voltage function. Hence, circuit is capacitive in

nature. Same is the case with part ( )d .

3. P V iR R=

∴ i
P

V

R

R

= = =60

60
1 A

Now, V V VL R= −2 2

= −( ) ( )100 602 2

= = =80 2V i X i fLL ( )π

L
fi

= 80

2π

= =80

2 50 1

4

5( ) ( ) ( )π π
H

If we connect another resistance R in series, then it

should consume 40 V, so that remaining 60 V is

used by the tube light.

R
V

i
= = =40

1
40 Ω

4. Power factor, cos φ = R

Z

When circuit contains only resistance, then

Z R= ⇒ cos φ =1

When circuit contains only inductance, then

R = 0

∴ cosφ =0
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5. (a) X XL C> , hence voltage function will lead the

current function.

(b) Z R X XL C= + −2 2( )

= + −( ) ( )10 20 102 2

= 10 2 Ω

(c) cos φ = =R

Z

1

2

Hence, φ = °45

(d) Power factor = φ = =cos
R

Z

1

2

6. (b) At resonance frequency ( )ωr

X XL C>
In the given values, X XL C> . Hence,

ω ω> r

As, X LL = ω ⇒ X L ∝ ω

and X
C

C = 1

ω
⇒ XC ∝ 1

ω
(c) If frequency is increased from the given value,

X L will further increase. So, X XL C− will

increase. Hence, net impedance will increase.

(d) If frequency is decreased from the given value,

then XC will increase and X L will decrease.

So, X XL C− may be less than the previous

value or X XC L− may be greater than the

previous. So, Z may either increase or

decrease. Hence, current may decrease or

increase.

7. (a) V IRR = = 80 V

(b) X
V

I
C

C= = =100

2
50 Ω

(c) V IXL L= = 40 V

(d) V V V V VR C L= = + −rms
2 2( )

= + −( ) ( )80 100 402 2

= 60 V

∴ V V0 2 60 2= =rms V

8. I
V

Z
=

=

+ 





V

R L
C

2
2

1ω
ω

~

By increasing R, current will definitely decrease

by change in L or C , current may increase or

decrease.

Comprehension Based Questions

1 to 3.

V I RDC DC=

∴ R
V

I
= = =DC

DC

12

4
3 Ω

I
V

Z

V

R X L

AC
AC AC= =

+2 2

2.4 =
+

12

3 2 2( ) X L

Solving this equation, we get

X L = 4 Ω

X
C

C = =
× × −

1 1

50 2500 10 6ω

= 8 Ω

Z R X XC L= + − =2 2 5( ) Ω

∴ I
V

Z
I= = = =DC

rms2.4 A
12

5

P I R= =rms 2.42 2 3( ) ( )

= 17.28 W

At given frequency, X XC L> . If ω is further

decreased, XC will increase as XC ∝





1

ω
and X L

will increase ( )as X L ∝ ω .

Therefore, X XC L− and hence Z will increase. So,

current will decrease.

4. ω = 1

LC

=
× ×− −

1

10 103 64.9

= 10

7

5

rad /s

5. X
C

C = =








=
−

1 1

10

7
10

70
5

6
ω

( )

Ω

Z R XP P C= +2 2

= +( ) ( )32 702 2

≈ 77 Ω
6. At maximum current means at resonance,

X X Z RL C= =,

∴ Power factor = φ = =cos
R

Z
1
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Match the Columns

2. (a) φ = °0 between voltage function and current

function.

(b) I I t= − °0 90sin ( )ω
i.e. φ = °90 and voltage function leads the

current function.

(c) Current function leads the voltage function.

So,

X XC L>
(d) Voltage function leads the current function.

So,

X XL C>
3. See the hint of Q.No. 6 and 8 of section more than

one correct options. Then,

P I R= rms
2

By increasing R, current irms will decrease but the

power, P I R= rms
2 may increase or decrease.

4. (a) R
V

I

R= = =40

2
20 Ω

(b) V IXC C= = × =2 30 60 V

(c) V I XL L= = ×2 15 = 30 V

(d) V V V VR C L= + −2 2( ) = 50 V

5. (a) Resistance does not depend on the value of ω.

(b) X
C

C = 1

ω
or XC ∝ 1

ω
(c) X LL = ω or X L ∝ ω
(d) Z is minimum at ω ω= r and Z Rmin =

Below or above ωr

Z R X XL C= +2 2( ~ )

or Z R>

Subjective Questions

1. P V i= φrms rms cos

or 200 230 8= × × φcos

∴ cos φ =0.108

or φ = °83.8

Further, P i R= rms
2

∴ R
P

i
= = =

rms

3.125
2 2

200

8( )
Ω

(a) tan φ = −X X

R

C L

∴ 1

2
2

π
π

f C
fL R− = φ( ) tan

∴ L
f C

R

f
= − φ1

2 22( )

tan

π π

=
× × ×

− °
×−

1

2 50 20 10 2 502 6( )π π
3.125 tan 83.8

= 0.416 H

(b) tan φ = −X X

R

L C

or 2
1

2
π

π
fL

fC
R− = φ

( )
tan Ans.

L
f C

R

f
= + φ1

2 22( )

tan

( )π π

=
× × × ×

+ °
×−

1

2 50 20 10 2 502 6( ) ( )π π
3.125 tan 83.8

= 0.597 H Ans.

2. Average current will be zero as positive and

negative half cycles are symmetrical RMS current

can also be obtained from 0 to τ / 2.

I
I

t
I

t=






 = 





0 0

2

2

τ / τ

⇒ I
I

t2 0
2

2

24=








τ

⇒ I

I
t dt

2

0 2

0
2

2

0

2
24

2−
=

∫
τ

τ

τ
τ/

/

/

or I
I2

0 2

0
2

3−
=

τ /

⇒ I
I I

rms = =0
2

0

3 3

3. (a) 0.5 = R

Z

1

1

Further, P V i= φrms rms cos

or 100 230
230

0 5
1

= × ×
Z

.

∴ Z1 264 5= . Ω
and R1 = 132.25 Ω

Further, X Z R ZL = − =1
2

1
2

1

3

2

= 229 Ω

In second case, 0.6 = R

Z

2

2

and 60
230 230

2

= × ×
Z

0.6
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∴ Z2 529= Ω
and R2 = 317.4 Ω
Further, X Z RC = −2

2
2
2

= 423.2 Ω
When connected in series,

R R R= + =1 2 449.65 Ω
X XC L− =194.2

∴ Z = +( . ) ( . )449 65 194 22 2

= 489.79 Ω

Power factor, cos φ = =R

Z
0.92 (leading)

P V i= φrms rms cos

= 



( ) ( . )230

230
0 92

489.79

= 99 W Ans.

(b) Since, X XC L− =194.2 Ω

Therefore, if 194.2 Ω inductive reactance is to

be added in series, then it will become only R

circuit and power factor will become unity.

4. (a) i
V

R
rms A= = =1 40

4
10

i i0 2 10 2= =rms A Ans.

(b)
E

V V V0
1
2

2 1
2

2
50= + − =( ) V

∴ E0 50 2= V

(c) X L
V

i
L = = = =( )ω 2 40

10
4

rms

Ω

∴ L = = =4 4

100

1

25ω π π
H H Ans.

X
C

V

i
C = = = =1 10

10
11

ω rms

Ω

∴ C = =1 1

100ω π
F Ans.

5. cos .φ =1 0 5

∴ φ = °1 60

cos φ =2

3

2

∴ φ = °2 30

Let R be the effective resistance of the box. Then,

tan φ =1

X

R

C or 3 = X

R

C …(i)

tan φ =
+2

10

X

R

C or
1

3 10
=

+
X

R

C …(ii)

From these two equations, we get R = 5 Ω

6. (a) V IRR = = 80 V,VC = 100 V

and V IXL L= =160 V

∴ V V V VR L C= + − =2 2 100( ) V Ans.

Note Value of XL have been taken from part (b).

(b) Since the current is lagging behind, there

should be an inductor in the box.

X
V

I
C

C= =100 Ω

Now, 0 8
80

80 1002 2
.

( ) ( )
= =

+ −

R

Z X L

Solving, we get

X L = 160 Ω
or ωL = 160

∴ ( )2 160πfL =

∴ L
f

= =
×

160

2

160

2 50π π( )

= 16.

π
H

7. (a)

ω π π= =2 100f ( ) rad/s

From the above two figures, we can write

V t t= + = +





400 400 100
4

1sin ( ) sinω θ π π
Ans.

i t t= + = +





20 20 100
6

2sin ( ) sinω θ π π
Ans.
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200 2 V√

45°

θ1

400V

sin ωt

Reference circle for voltage

60°

θ2

20 A

sin ωt

Reference circle for current

10 A



(b) Phase difference between V and i

φ = − =( / / )π π π
4 6

12
or 15°

P V i= φ =











°rms rms cos cos
400

2

20

2
15

= 3864 W Ans.

8. ω = =
× × ×− −

2 2

5 10 20 103 6LC

= 6324.5 rad/s

X LL = = × =−ω ( . )( )6324 5 5 10 3 31.62 Ω

X
C

C = =
× ×

=−
1 1

6324 5 20 10
7 9

6ω .
. Ω

∴ Z X XL C= − = 23.72 Ω
(a) Maximum voltage across capacitor

= = =i XC0 ( (0.211) 7.9) 1.67 mV

∴ Maximum charge

q0
6 320 10 167 10 33 4= × × =− −( )( . ) . nC

(b) i
V

Z
0

0 5

23 72
= = =

.
mA 0.211 mA

(c) Since X XL C> , current in the circuit will lag

behind the applied voltage by π/2.

Further voltage across the inductor will lead

this current by π/2.

Therefore, applied voltage and voltage across

inductor are in phase.

Voltage across the capacitor will lag the circuit

current by π/2.

Therefore, phase difference between VL and VC

will be 180°.

9. X LL1 1 2 50= = × =ω π( )(0.02) 6.28 Ω

∴ Z R X L1 1
2 2

1
= +

= + =( ) ( . ) .5 6 28 8 02 2 Ω

P I V1 1 1

100

8
100

5

8
= φ =









( ) cos ( )rms rms

= 781.25 W

X LL2 2 2 50= = ×ω π( )( )0.08

= 25.13 Ω

∴ Z R X L2 2
2 2

2
= +

= 25.15 Ω
∴ P i V2 2 2= φ( ) cosrms rms

= 











100
100

1

25.15 25.15
( )

= 15.8 W

∴ P P PTotal W= + =1 2 797

10. Z1

115

3
= = 38.33 Ω

cos φ =1
1

1

R

Z

⇒ R Z1 1 1= φcos

= (38.33)(0.6) = 23 Ω

X Z RL = − =1
2

1
2 30.67 Ω

Z2

115

5
23= = Ω

R Z2 2 2 23= φ =cos ( ) (0.707)

= 16.26

X Z RC = −2
2

2
2

= −( ) ( . )23 16 262 2

= 16 26. Ω
When connected in series,

R R R= + =1 2 39.26 Ω
X XL C− =14.41 Ω

∴ Z R X XL C= + −2 2( )

= 41.82 Ω

(a) i
V

Z
= = =230

41.82
5.5 A

(b) P i R= =2 (5.5) (39.26)2

= 1187.6 W 1.188 kW≈

(c) Power factor = φ = =cos
R

Z

39.26

41.92
= 0.939

Since X XL C> , this power factor is lagging.
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JEE Main
1. Three concentric metal shells A B, and C

of respective radii a b, and c a b c( )< <
have surface charge densities + −σ σ, and

+σ, respectively. The potential of shell B

is (2018)

(a)
σ
ε

− +









0

2 2a b

a
c (b)

σ
ε

− +









0

2 2a b

b
c

(c)
σ
ε

− +









0

2 2b c

b
a (d)

σ
ε

− +









0

2 2b c

c
a

2. A parallel plate capacitor of capacitance

90 pF is connected to a battery of emf

20 V. If a dielectric material of dielectric

constant K = 5

3
is inserted between the

plates, the magnitude of the induced

charge will be (2018)

(a) 1.2 nC (b) 03. nC (c) 2 4. nC (d) 09. nC

3. In an AC circuit, the instantaneous emf

and current are given by

e t= 100 30sin , i t= −





20 30
4

sin
π

In one cycle of AC, the average power

consumed by the circuit and the wattless

current are, respectively

(a) 50 , 10 (b)
1000

2
, 10

(c)
50

2
, 0 (d) 50 , 0

4. Two batteries with emf 12 V and 13 V are

connected in parallel across a load resistor

of 10 Ω. The internal resistances of the

two batteries are 1 Ω and 2 Ω, respectively.

The voltage across the load lies between(2018)

(a) 11.6 V and 11.7 V (b) 11.5 V and 11.6 V

(c) 11.4 V and 11.5 V (d) 11.7 V and 11.8 V

5. An electron, a proton and an alpha

particle having the same kinetic energy

are moving in circular orbits of radii re, rp,

rα respectively, in a uniform magnetic field

B. The relation between re, rp, rα is (2018)

(a) r r re p> = α (b) r r re p< = α

(c) r r re p< < α (d) r r re p< <α

6. The dipole moment of a circular loop

carrying a current I, is m and the

magnetic field at the centre of the loop is

B1. When the dipole moment is doubled by

keeping the current constant, the

magnetic field at the centre of the loop is

B2. The ratio
B

B

1

2

is
(2018)

(a) 2 (b) 3 (c) 2 (d)
1

2

7. For an R-L-C circuit driven with voltage of

amplitude vm and frequency ω0

1=
LC

,

the current exhibits resonance. The

quality factor, Q is given by (2018)

(a)
ω

0
L

R
(b)

ω
0
R

L

(c)
R

Cω
0

(d)
CR

ω
0

8. In a potentiometer experiment, it is found

that no current passes through the

galvanometer when the terminals of the

cell are connected across 52 cm of the

potentiometer wire. If the cell is shunted

by a resistance of 5 Ω, a balance is found

when the cell is connected across 40 cm of

the wire. Find the internal resistance of

the cell. (2018)

(a) 1 Ω (b) 15. Ω (c) 2 Ω (d) 25. Ω
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9. On interchanging the resistances, the

balance point of a meter bridge shifts to

the left by 10 cm. The resistance of their

series combination is 1 kΩ. How much

was the resistance on the left slot before

interchanging the resistances? (2018)

(a) 990 Ω (b) 505 Ω (c) 550 Ω (d) 910 Ω

10. In the below circuit, the current in each

resistance is (2017 )

(a) 0.25 A (b) 0.5 A (c) 0 A (d) 1 A

11. When a current of 5 mA is passed through

a galvanometer having a coil of resistance

15 Ω, it shows full scale deflection. The

value of the resistance to be put in series

with the galvanometer to convert it into a

voltmeter of range 0-10 V is (2017 )

(a) 2 045 103. × Ω (b) 2535 103. × Ω
(c) 4 005 103. × Ω (d) 1985 103. × Ω

12. Which of the following statements is

false? (2017 )

(a) In a balanced Wheatstone bridge, if the cell

and the galvanometer are exchanged, the

null point is disturbed

(b) A rheostat can be used as a potential divider

(c) Kirchhoff’s second law represents energy

conservation

(d) Wheatstone bridge is the most sensitive

when all the four resistances are of the same

order of magnitude

13. An electric dipole has a fixed dipole

moment p, which makes angle θ with

respect to X-axis. When subjected to an

electric field E i1 = E$, it experiences a

torque T k1 = τ $ . When subjected to another

electric field E2= 3 1E $j, it experiences a

torque T T2 1= − . The angle θ is (2017 )

(a) 45° (b) 60° (c) 90° (d) 30°

14. A capacitance of 2 µF is required in an

electrical circuit across a potential

difference of 1kV. A large number of 1 µF

capacitors are available which can

withstand a potential difference of not

more than 300 V. The minimum number

of capacitors required to achieve this is
(2017 )

(a) 16 (b) 24 (c) 32 (d) 2

15. In the given circuit diagram, when the

current reaches steady state in the

circuit, the charge on the capacitor of

capacitance C will be (2017 )

(a) CE
r

r r
1

2
( )+

(b) CE
r

r r
2

2
( )+

(c) CE
r

r r
1

1
( )+

(d) CE

16. In a coil of resistance 100 Ω, a current is

induced by changing the magnetic flux

through it as shown in the figure. The

magnitude of change in flux through the

coil is (2017 )

(a) 225 Wb (b) 250 Wb (c) 275 Wb (d) 200 Wb

17. A galvanometer having a coil resistance of

100 Ω gives a full scale deflection when a

current of 1 mA is passed through it. The

value of the resistance which can convert

this galvanometer into ammeter giving a

full scale deflection for a current of 10 A,

is (2016 )

(a) 0.01 Ω (b) 2 Ω (c) 0.1 Ω (d) 3 Ω

2 Electricity & Magnetism
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2V 2V 2V
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18. The region

between two

concentric spheres

of radii a and b,

respectively (see

the figure), has

volume charge

density ρ = A

r
,

where, A is a constant and r is the

distance from the centre. At the centre of

the spheres is a point charge Q. The value

of A, such that the electric field in the

region between the spheres will be

constant, is (2016 )

(a)
Q

a2 2π
(b)

Q

b a2 2 2π( − )

(c)
2
2 2

Q

a bπ( − )
(d)

2
2

Q

aπ

19. A combination of capacitors is set-up as

shown in the figure. The magnitude of the

electric field, due to a point charge Q

(having a charge equal to the sum of the

charges on the 4µF and 9µF capacitors),

at a point distant 30 m from it, would

equal to (2016 )

(a) 240 N/C (b) 360 N/C

(c) 420 N/C (d) 480 N/C

20. Two identical wires A and B, each of

length l, carry the same current I. Wire A

is bent into a circle of radius R and wire B

is bent to form a square of side a. If BA

and BB are the values of magnetic field at

the centres of the circle and square

respectively, then the ratio
B

B

A

B

is
(2016 )

(a)
π2

8
(b)

π2

16 2
(c)

π2

16
(d)

π2

8 2

21. Hysteresis loops for two magnetic

materials A and B are as given below:

(2016 )

These materials are used to make

magnets for electric generators,

transformer core and electromagnet core.

Then, it is proper to use

(a) A for electric generators and transformers

(b) A for electromagnets and B for electric

generators

(c) A for transformers and B for electric

generators

(d) B for electromagnets and transformers

22. An arc lamp requires a direct current of

10 A at 80 V to function. If it is connected

to a 220 V (rms), 50 Hz AC supply, the

series inductor needed for it to work is

close to (2016 )

(a) 80 H (b) 0.08 H

(c) 0.044 H (d) 0.065 H

23. Arrange the following electromagnetic

radiations in the order of increasing

energy. (2016 )

A. Blue light      B. Yellow light

C. X-ray              D. Radio wave

(a) D, B, A, C (b) A, B, D, C

(c) C, A, B, D (d) B, A, D, C

24. When 5V potential difference is applied

across a wire of length 0.1m, the drift

speed of electrons is 2 5 10 4 1. × − −ms . If the

electron density in the wire is 8 1028 3× −m

the resistivity of the material is close to

(2015)

(a) 1.6 × −10 8 Ω -m

(b) 1.6 × −10 7 Ω -m

(c) 1.6 × −10 5 Ω -m

(d) 1.6 × −10 6 Ω -m
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25. In the circuit shown below, the current in

the 1Ω resistor is

(2015 )

(a) 1.3 A, from P to Q (b) 0.13 A, from Q to P

(c) 0 A (d) 0.13 A, from P to Q

26. A uniformly charged solid sphere of radius

R has potential V0 (measured with respect

to ∞) on its surface. For this sphere, the

equipotential surfaces with potentials
3

2

5

4

3

4

0 0 0V V V
, , and

V0

4
have radius R1,

R R2 3, , and R4 respectively. Then, (2015 )

(a) R
1

0≠ and ( ) ( )R R R R
2 1 4 3

− > −
(b) R

1
0= and R R R

2 4 3
> −( )

(c) 2
4

R R<
(d) R

1
0= and R R R

2 4 3
< −( )

27. A long cylindrical shell carries positive

surface charge σ in the upper half and

negative surface charge − σ in the lower

half. The electric field lines around the

cylinder will look like figure given in

(figures are schematic and not drawn to

scale) (2015 )

28. In the given circuit,
charge Q2 on the 2µF
capacitor changes as
C is varied from 1 µF
to 3 µF. Q2 as a
function of C is given
properly by (figures
are drawn schematically and are not to
scale) (2015 )

29. Two coaxial solenoids of different radii
carry current I in the same direction. Let
F1 be the magnetic force  on the inner
solenoid due to the outer one and F2 be the
magnetic force on the outer solenoid due
to the inner one. Then, (2015 )

(a) F
1

is radially outwards  and F
2

0=
(b) F

1
is radially inwards and F

2
is radially outwards

(c) F
1

is radially inwards and F
2

0=
(d) F F

21 2
0= =

30. Two long current carrying
thin wires, both with
current I, are held by
insulating threads of
length L and are in
equilibrium as shown in
the figure, with threads
making an angle θ with
the vertical. If wires have mass λ per unit
length then, the value of I is
(g = gravitational acceleration) (2015 )

(a) 2
0

sin
cos

θ πλ
µ θ

gL
(b) sin

cos
θ πλ

µ θ
gL

0

(c) 2
0

π
µ

θgL
tan (d)

πλ
µ

θgL

0

tan

31. A rectangular loop of sides 10 cm and 5 cm
carrying a current I of 12 A is placed in
different orientations as shown in the
figures below. (2015 )

4 Electricity & Magnetism

I I

θ
L

(a)

(c)

(b)

(d)+
++++

+
––

––––
––

+
++++

+
–
–––––

–– +
++++

+
––––––

–
–

+
++++

+
–
–––––

––

1 Fµ

2 Fµ
C

E

(a)

(c)

(b)

(d)

Charge

1 Fµ 3 Fµ
C

Charge

Q2Q2

1 Fµ 3 Fµ

Charge Charge

1 Fµ 3 Fµ 1 Fµ 3 Fµ

Q2 Q2

C

C

C

6V

3Ω 3ΩQ

P

9V1Ω

2Ω

(a)

(c)

(b)

(d)

B

z

I

I I

I
x

y

B

z

I
I

I
Ix

y

B

z

I

I

I
I

x

y

B

z

I
I

I
I

y

x



If there is a uniform magnetic field of 0.3 T

in the positive z-direction, in which

orientations the loop would be in

(i) stable equilibrium and (ii) unstable

equilibrium?

(a) (a) and (b) respectively

(b) (b) and (d) respectively

(c) (a) and (c) respectively

(d) (b) and (c) respectively

32. An inductor ( . )L = 0 03 H and a resistor

( . )R = 015 kΩ are connected in series to a

battery of 15V EMF in a circuit shown

below. The key K1 has been kept closed

for a long time. Then at t = 0, K1 is opened

and key K 2 is closed simultaneously. At

t = 1 ms, the current in the circuit will be

( ~ )e5 150= (2015 )

(a) 100 mA (b) 67 mA (c) 0.67mA (d) 6.7 mA

33. In a large building, there are 15 bulbs of
40 W, 5 bulbs of 100 W, 5 fans of 80 W
and 1 heater of 1 kW. The voltage of the
electric mains is 220 V. The minimum
capacity of the main fuse of the building
will be (2014 )

(a) 8 A (b) 10 A (c) 12 A (d) 14 A

34. Assume that an electric field E i= 30 2x $

exists in space. Then, the potential

difference V VA O− , where VO is the

potential at the origin and VA the

potential at x = 2 m is (2014 )

(a) 120 J (b) −120 J (c) −80 J (d) 80 J

35. A parallel plate capacitor is made of two

circular plates separated by a distance of

5 mm and with a dielectric of dielectric

constant 2.2 between them. When the

electric field in the dielectric is

3 104× V/m, the charge density of the

positive plate will be close to (2014 )

(a) 6 10 7× − C/m2 (b) 3 10 7× − C/m2

(c) 3 104× C/m2 (d) 6 104× C/m2

36. The coercivity of a small magnet where

the ferromagnet gets demagnetised is

3 103× Am−1. The current required to be

passed in a solenoid of length 10 cm and

number of turns 100, so that the magnet

gets demagnetised when inside the

solenoid is (2014 )

(a) 30 mA (b) 60 mA

(c) 3 A (d) 6 A

37. In the circuit shown here, the point C is

kept connected to point A till the current

flowing through the circuit becomes

constant. Afterward, suddenly point C is

disconnected from point A and connected

to point B at time t = 0. Ratio of the

voltage across resistance and the inductor

at t L R= / will be equal to (2014 )

(a)
e

e1 −
(b) 1 (c) −1 (d)

1 − e

e

38. A conductor lies along the z-axis at

− ≤ <1.5 z 1.5 m and carries a fixed

current of 10.0 A in −az direction (see

figure).

For a field B = × − −3 0 10 4 0 2. ,.e ax

y T find the

power required to move the conductor at

constant speed to x = 2 0. m, y = 0 in

5 10 3× − s.

Assume parallel motion along the x-axis.

(2014 )

(a) 1.57 W (b) 2.97 W

(c) 14.85 W (d) 29.7 W
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39. This question has Statement I and

Statement II. Of the four choices given

after the statements, choose the one that

best describes the two statements. (2013 )

Statement I Higher the range, greater

is the resistance of ammeter.

Statement II To increase the range of

ammeter, additional shunt needs to be

used across it.

(a) If Statement I is true, Statement II is true;

Statement II is the correct explanation for

Statement I

(b) If Statement I is true, Statement II is true;

Statement II is not a  correct explanation for

Statement I

(c) If Statement I is true; Statement II is false

(d) If Statement I is false; Statement II is true

40. The supply voltage in a room is 120 V.

The resistance of the lead wires is 6 Ω. A

60 W bulb is already switched on. What is

the decrease of voltage across the bulb,

when a 240 W heater is switched on in

parallel to the bulb? (2013 )

(a) zero (b) 2.9 V (c) 13.3 V (d) 10.4V

41. Two charges, each equal to q, are kept at

x a= − and x a= on the x-axis. A particle

of mass m and charge q
q

0
2

= is placed at

the origin. If charge q0 is given a small
displacement y y a( )<< along the y-axis,
the net force acting on the particle is
proportional to (2013 )

(a) y (b) − y (c)
1

y
(d) − 1

y

42. A charge Q is uniformly distributed over a

long rod AB of length L as shown in the

figure. The electric potential at the point

O lying at distance L from the end A is

(2013 )

(a)
Q

L8
0

π ε
(b)

3

4
0

Q

Lπ ε

(c)
Q

L4 2
0

π ε ln ( )
(d)

Q

L

ln ( )2

4
0

π ε

43. Two capacitors C1 and C2 are charged to

120 V and 200 V respectively. It is found

that by connecting them together the

potential on each one can be made zero.

Then (2013 )

(a) 5 3
1 2

C C= (b) 3 5
1 2

C C=
(c) 3 5 0

1 2
C C+ = (d) 9 4

1 2
C C=

44. Two short bar magnets of length 1 cm

each have magnetic moments 1.20 Am2

and 1.00 Am2, respectively. They are

placed on a horizontal table parallel to

each other with their N poles pointing

towards the South. They have a common

magnetic equator and are separated by a

distance of 20.0 cm. The value of the

resultant horizontal magnetic induction

at the mid-point O of the line joining their

centres is close to (Horizontal component

of the earth’s magnetic induction is

3.6 10 5× − Wb/m2) (2013 )

(a) 3.6 × −10 5 Wb /m2 (b) 2.56 × −10 4 Wb /m2

(c) 3.50 × −10 4 Wb /m2 (d) 5.80 Wb /m2× −10 4

45. A circular loop of radius 0.3 cm lies

parallel to a much bigger circular loop of

radius 20 cm. The centre of the smaller

loop is on the axis of the bigger loop. The

distance between their centres is 15 cm. If

a current of 2.0 A flows through the

bigger loop, then the flux linked with

smaller loop is (2013 )

(a) 9.1 × −10 11 Wb (b) 6 10 11× − Wb

(c) 3.3 × −10 11 Wb (d) 6.6 × −10 9 Wb

46. A metallic rod of length l

is tied to a string of

length 2l and made to

rotate with angular speed

ω on a horizontal table

with one end of the string fixed. If there is

a vertical magnetic field B in the region,

the emf induced across the ends of the

rod is (2013 )

(a)
2

2

3B lω
(b)

3

2

3B lω

(c)
4

2

2B lω
(d)

5

2

2B lω

6 Electricity & Magnetism

A B

LL

O

2l l

ω



47. In a L-C-R circuit as shown below, both

switches are open initially. Now, switch

S1 and S2, are closed. (q is charge on the

capacitor and τ = RC is capacitance time

constant). Which of the following

statement is correct? (2013 )

(a) Work done by the battery is half of the

energy dissipated in the resistor

(b) At t = τ, q CV= /2

(c) At t = 2τ, q CV e= − −( )1 2

(d) At t = τ /2, q CV e= − −( )1 1

48. The amplitude of a damped oscillator

decreases to 0.9 times its original

magnitude is 5 s. In another 10 s, it will

decrease to α times its original

magnitude, where α equals (2013 )

(a) 0.7 (b) 0.81

(c) 0.729 (d) 0.6

Answer with Explanations
1. (b) Potential of B = Potential due to charge on

A + Potential due to charge on B + Potential due to
charge on C.

∴ V
k Q Q

b

kQ

c
B

A B C= + +( )

= − +









1

4

4 4 42 2 2

πε
σ π σ π σ π

0

a

b

b

b

c

c

= − +







σε
ε0

2 2 2a b

b

c

c
= − +








σ
ε0

2 2a b

b
c

V
a b

b
cB = − +








σ
ε0

2 2

2. (a) Magnitude of induced charge is given by

Q K CV′ = −( )1 0

= −





× ×−5

3
1 90 10 2012 = × −1.2 10 C9

⇒ Q ′ = 1.2 nC

3. (b) Given, e t= 100 30sin

and i t= −





20 30
4

sin
π

∴ Average power ,

P V I
av rms rms

= φcos

= × ×100

2

20

2 4
cos

π = 1000

2
watt

Wattless current is,

I I= φ
rms

sin

= ×20

2 4
sin

π

= =20

2
10A

∴ P
av

= 1000

2
watt

and I
wattless

= 10A

4. (b)

For parallel combination of cells,

E

E

r

E

r

r r

eq
=

+

+

1

1

2

2

1 2

1 1

∴ E
eq

=
+

+
=

12

1

13

2
1

1

1

2

37

3
V

Potential drop across 10 Ω resistance,

V
E

R
= 






 ×

total

10 =
+





×

37

3

10
2

3

10 = 1156. V

∴ V = 1156. V
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Alternative Method

Applying KVL, in loop ABCFA,

− + + + × =12 10 1 01 2 1( )I I I

⇒ 12 11 101 2= +I I …(i)

Similarly,

in loop ABDEA,

− + + + × =13 10 2 01 2 2( )I I I

⇒ 13 10 121 2= +I I …(ii)

Solving Eqs. (i) and (ii), we get

I I1 2

7

16

23

32
= =A A,

∴ Voltage drop across 10 Ω resistance is,

V = +





=10
7

16

23

32
1156. V

5. (b) From Bqv
mv

r
=

2

, we have

r
mv

Bq

mK

Bq
= = 2

where, K is the kinetic energy.

As, kinetic energies of particles are same;

r
m

q
∝ ⇒ r r re p: : α =

m

e

m

e

m

e

e p p: :
4

2

Clearly, r rp = α and re is least [Q m me p< ]

So, r r rp e= >α

6. (c) As m IA= , so to change dipole moment (current is

kept constant), we have to change radius of loop.

Initially, m I R= π 2 and B
I

R
1

0

12
= µ

Finally, m m I R′ = =2 2
2π

⇒ 2 1
2

2
2I R I Rπ π=

or R R2 12=

So, B
I

R

I

R
2

0

2

0

1
2 2 2

= =µ µ
( )

Hence,     ratio
B

B

I

R

I

R

1

2

0

1

0

1

2

2 2

2=

















=

µ

µ

∴ Ratio
B

B

1

2

2=

7. (a) Sharpness of resonance of a resonant L-C-R circuit
is determined by the ratio of resonant frequency with
the selectivity of circuit. This ratio is also called
‘‘Quality Factor’’ or Q-factor.

Q-factor =
∆
ω

ω
0

2
= =ω

ω
0

0

1L

R CR

8. (b) With only the cell,

On balancing, E x= ×52 …(i)
where, x is the potential gradient of the wire.

When the cell is shunted,

Similarly, on balancing,

V E
Er

R r
x= −

+
= ×

( )
40 …(ii)

Solving Eqs. (i) and (ii), we get

E

V r

R r

=
−

+

=1

1

52

40

⇒ E

V

R r

R
= + = 52

40
⇒ 5

5

52

40

+ =r

⇒ r = Ω3

2
⇒ r = 1.5 Ω

9. (c) We have, X Y+ = 1000 Ω

Initially,
X

l

X

l
= −

−
1000

100
…(i)

When X and Y are interchanged, then
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I2
E

I1
12V, 1Ω

F

A
10 Ω

B

C

D

13 V, 2 Ω

G

E′

52 cm

E r,

G

E′

40 cm

E r,

R=5 Ω

G

X Y X=1000 –

100 – l
l



1000

10 100 10

−
−

=
− −

X

l

X

l( )

or
1000

10 110

−
−

=
−

X

l

X

l
…(ii)

From Eqs. (i) and (ii), we get

100 10

110

− = −
−

l

l

l

l

( ) ( ) ( )100 110 10− − = −l l l l

11000 100 110 102 2− − + = −l l l l l

⇒ 11000 200= l

∴ l = 55 cm

Substituting the value of l in Eq. (i), we get

X

55

1000 55

100 55
= −

−
⇒ 20 11000X =
∴ X = 550 Ω

10. (c) A potential drop across each resistor is zero, so
the current through each of resistor is zero.

11. (d) For a voltmeter,

I G R Vg s( )+ =

⇒ R
V

I
G

g

= −

⇒ R = =1985 1985. kΩ or R = ×1985 103. Ω

12. (a) In a balanced Wheatstone bridge, there is no effect
on position of null point, if we exchange the battery
and galvanometer. So, option (a) is incorrect.

13. (b) Torque applied on a
dipole τ = pE sin θ

where θ = angle
between axis of dipole
and electric field.

For electric field E E1 = $i

it means field is directed
along positive X direction, so angle between dipole
and field will remainθ, therefore torque in this direction

E pE1 1= sin θ

In electric field E E2 3= $j, it means field is directed
along positive Y-axis, so angle between dipole and
field will be 90 − θ

Torque in this direction T pE2 90= −sin ( θ).

= p E3 1 cos θ

According to question τ τ τ τ2 1 2 1= − ⇒ =| | | |

∴ pE p E1 13sin cosθ θ=

tan tan tanθ θ= ⇒ = °3 60

∴ θ = °60

14. (c) Let there are n capacitors in a row with m such

rows in parallel.

As voltage not to exceed 300 V

∴ n × >300 1000

[a voltage greater than 1 kV to be withstand]

⇒ n > 10

3
⇒ n = 4 (or 3.33)

Also, C
mC

n
Eq F= = 2µ

⇒ m

n
= 2 ⇒ m = 8 [Q C = 1µ F]

So, total number of capacitors required

= ×m n = × =8 4 32

15. (b) In steady state no current flows through the
capacitor.

So, the current in circuit I
E

r r
=

+ 2

Q Potential drop across capacitor = Potential drop

across r2 = =
+

Ir
Er

r r
2

2

2

∴ Stored charge of capacitor, Q CV= =
+

CEr

r r

2

2

16. (b) Induced constant, I
e

R
=

Here, e = induced emf = d

dt

φ

I
R

d

dt R
= = 





⋅1 1φ

⇒ d IRdtφ =

⇒ φ = IRdt∫
∴ Here, R is constant ⇒ φ = ∫R Idt

I dt⋅ =∫ Area under I t− graph

= × × =1

2
10 0 5 2 5. .

∴ φ = ×R 2 5. = ×100 2 5. = 250 Wb.

17. (a)

Previous Years’ Questions (2018-13) 9

G

Rs

V

Ig

90 – q

p

X

Y

q

n

n

n

m rows

V=1.0kV

( – 10)l (110 – )l

Y X=1000 – X

G



In parallel, current distributes in inverse ratio of
resistance.  Hence,

I I

I

G

S

g

g

−
= ⇒ S

GI

I I

g

g

=
−

As Ig is very small, hence

S
GI

I

g= ⇒ b = × =
−( ) ( )100 1 10

10

3

0.01 Ω

18. (a) As E is constant,

Hence, E Ea b=

As per Guass theorem, only Q
in

contributes in electric
field.

∴ kQ

a

k Q r dr
A

r

b

a

b

2

2

2

4

=
+ ⋅



∫ π

Here, k = 1

4 0πε

⇒ Q
b

a
Q A

r

a

b
2

2

2

4
2

= +












π = + ⋅ −





Q A

b a
4

2

2 2

π

⇒ Q
b

a
Q A b a

2

2

2 22






 = + −π ( )

⇒ Q
b a

a
A b a

2 2

2

2 22
−






 = −π ( ) ⇒ A

Q

a
=

2 2π

19. (c) 3 µF and 9 12µ µF F=

4µF and 12
4 12

4 12
3µ µF F= × =

+

Q CV= = × =3 8 24µC (on 4µF and 3µF )

Now, this 24µC distributes in direct ratio of capacity
between

3µF and 9µF. Therefore,

Q 9 18µ µF C=

∴ Q Q4 9 24 18 42µ µ µF F C+ = + = =Q (say)

E
kQ

R
=

2
= × × × −9 10 42 10

30

9 6

2
= 420 N/C

20. (d) B at centre of a circle = µ 0

2

I

R

B at centre of a square

= ×
⋅

° + °4

4
2

45 45
µ

π

I

l
[sin sin ]= 4 2

2
0µ
π
I

l

Now, R
L=

2 π
and l

L=
4

(as L R l= =2 4π )

where, L = length of wire.

∴ B
I

LA =
⋅

µ

π

0

2
2

= = 





πµ π µ0 0I

L

I

L

B
I

L
B =







4 2

2
4

0µ

π
= 8 2 0µ

π
I

L
= 





8 2 0

π
µ I

L

∴ B

B

A

B

= π2

8 2

21. (d) We need high retentivity and high coercivity for
electromagnets and small area of hysteresis loop for

transformers.

22. (d) V V VR L

2 2 2= + ⇒ 220 802 2 2= + VL

Solving, we get

VL ≈ 205 V

X
V

I
L

L= = 205

10
= 20 5. Ω = ωL

∴ L =
×

=20.5

2 50
0.065

π
H

23. (a) Theoretical question. Therefore, no solution is
required.

24. (c) i neAvd= or
V

R
neAvd= ⇒ V

l

A

neAvdρ





=

∴ ρ = =V

nelvd

resistivity of wire

Substituting the given values we have

ρ =
× × ×− −

5

8 10 16 10 01 2 5 1028 19 4( ( . )( . )( .) )

≈ × −16 10 5. Ω-m

25. (b)

Applying Kirchhoff’s loop law in loops 1 and 2 in the
directions shown in figure we have

10 Electricity & Magnetism

Q
r

dr

6V
2ΩP

1Ω 9 V

3 Ω 3ΩQ

i + i1 2

i1

i2

1 2

G

I

Ig

I I− g

S



6 3 01 2 2− + − =( )i i i ...(i)

9 2 3 01 2 1− + − =i i i ...(ii)

Solving Eqs. (i) and (ii) we get,

i 2 013= . A

Hence, the current in 1 Ω resister is 0.13 A from Q to P.

26. (b, c) V0 = potential on the surface = Kq

R

where, K = 1

4 0πε
and q is total charge on sphere.

Potential at centre = =3

2

3

2
0

Kq

R
V

Hence, R1 0=

From centre to surface potential varies between
3

2
0V

and V0 From surface to infinity, it varies between V0

and 0,
5

4
0V

will be potential at a point between centre

and surface. At any point, at a distance r r R( )≤ from
centre potential is given by

V
Kq

R
R r= −



3

2 23

2

1

2

= −





V

R
R r0

2

2 23

2

1

2
(as V

Kq

R
0 = )

Putting V V= 5

4
0 and r R= 2 in this equation, we get

R
R

2
2

=

3

4
0V

and
V0

4
are the potentials lying between V0 and

zero hence these potentials lie outside the sphere. At
a distance r R( )≥ from centre potential is given by

V
Kq

r

V R

r
= = 0

Putting V V= 3

4
0 and r R= 3 in this equation we get,

R R3

4

3
=

Further putting V
V= 0

4
and r R= 4 in above equation,

we get R R4 4=
Thus, R1 0= , R

R
2

2
= , R

R
3

4

3
= and R R4 4= with

these values, option (b) and (c) are correct.

27. (d) Electric field lines originate from position charge
and termination negative charge. They cannot form
closed loops and they are smooth curves. Hence the
most appropriate answer is (d).

28. (a) Resultant of 1 µF and 2 µF is 3 µF. Now in series,

potential difference distributes in inverse ratio of
capacity.

∴
V

Vc

3µF = C

3
or V

C

C
E3

3
µF

=
+









This is also the potential difference across2 µF.

∴ Q V2 22= ( )( )µ µF
F

or Q
CE

C

C

E2

2

3

2

1
3

=
+







 =

+

















From this expression of Q2, we can see that Q2 will
increase with increase in the value of c (but not linearly).
Therefore, only options (a) and (b) may be correct.

Further,
d

dc
Q E

C C

C

E

C
( )

( )

( ) ( )
2 2 2

2
3

3

6

3
= + −

+








 =

+

= Slope of Q2 versus C graph.

i.e. slope of Q2 versus C graph decreases with
increase in the value of C. Hence, the correct graph
is (a).

29. (d)

If we calculate the force on inner solenoid. Force onQ

due to P is outwards (attraction between currents in
same direction. Similarly, force on R due to S is also
outwards. Hence, net force F1 is zero)
Force on P due to Q and force on S due to R is
inwards. Hence, net force F2 is also zero.
Alternate Thought Field of one solenoid is uniform
and other solenoid may be assumed a combination of
circular closed loops. In uniform magnetic field, net
force on a closed current carrying loop is zero.

30. (a)

r L= sinθ
F = Magnetic force

(repulsion) per unit length

= µ
π
0

2

2 2

I

r
= µ

π θ
0

2

4

I

Lsin

λg = weight per unit length

Each wire is in equilibrium under three concurrent forces
as shown in figure. Therefore, applying Lami’s theorem.

F g

sin( ) sin( )180 90−
=

+θ
λ

θ
or

µ
π θ

θ
λ

θ

0
2

4

I

L gsin
sin cos

=

∴ I
gL= 2

0

sin
cos

θ πλ
µ θ

31. (b) Direction of magnetic dipole moment M is given by

screw law and this is perpendicular to plane of loop.
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P

Q

R

S

θ
θ

T

rF

λg

L



In stable equilibrium position, angle between M and B

is 0° and in unstable equilibrium this angle is 180°.

32. (c) Steady state current i 0 was already flowing in the

L R- circuit when K1 was closed for a long time. Here,

i
V

R
0

15
01= = =V

150 Ω
. A

Now, K1 is opened and K 2 is closed. Therefore, this i 0

will decrease exponentially in the L-R circuit. Current i

at time t will be given by i i e

t

L=
−

0
τ

where, τ L

L

R
= ⇒ ∴ i i e

Rt

L=
−

0

Substituting the values, we have

i e=
− × −

( . )

( . )( )

( . )01

0 15 10 10

0 03

3 3

= −( . )( )01 5e

= = × −01

150
6 67 10 4.
. A

= 0 67. mA

33. (c) Total power (P) consumed

= × + × + ×( ) ( ) ( )15 40 5 100 5 80 + ×( )1 1000

= 2500 W

As we know,

Power i.e. P VI= ⇒ I = 2500

220
A = 125

11
= 11.3 A

Minimum capacity should be 12 A.

34. (c) As we know, potential difference V VA O− is

dV Edx= −

⇒ dV x dx
V

V

o

A

= − ∫∫ 30 2

0

2

⇒ V V
x

A O− = − × 







30

3

3

0

2

= − × −10 2 03 3[ ( ) ] = − × = −10 8 80 J

35. (a) When free space between parallel plates of

capacitor, E = σ
ε0

When dielectric is introduced between parallel plates

of capacitor, E
K

′ = σ
ε0

Electric field inside dielectric,
σ
εK

0

3 104= ×

where, K = dielectric constant of medium = 2.2

ε0 = permitivity of free space = × −8 85 10 12.

⇒ σ = × × × ×−2 2 8 85 10 3 1012 4. .

= × × −6 6 8 85 10 8. . = × −5 841 10 7. = × −6 10 7 C/m 2

36. For solenoid, the magnetic field needed to be
magnetised the magnet. B nI= µ 0

where, n l= = = =100 10
10

100
01, .cm m m

⇒ 3 10
100

01

3× = ×
.

I ⇒ I = 3 A

37. (c) After connecting C to B hanging the switch, the

circuit will act like an L-R discharging circuit.

Applying Kirchhoff’s loop  equation,

V VR L+ = 0 ⇒ V VR L= − ⇒ V

V

R

L

= −1

38. (b) When force exerted on a current carrying
conductor F B

ext
= IL

Average power = Work done

Time taken

P
t

F dx= ∫1

0

2

ext. . = ∫1

0

2

t
B x IL dx( )

=
×

× × ×
−

− −∫1

5 10
3 10 10 3

3

4

0

2
0 2e dxx.

= − −9 1 0 4[ ].e = −





= ≈9 1
1
0 4e .

2.967 2.97 W

39. (d) Statement I is false and Statement II is true.

40. (d) As, P
V

R
=

2

where, P = power dissipates in the circuit,
V = applied voltage,

R = net resistance of the circuit

R = × =120 120

60
240 Ω [resistance of bulb]

Req = + =240 6 246 Ω ⇒ i
V

R
1

120

246
= =

eq

[before connecting heater]

R
V

R
= = ×2 120 120

240

⇒ R = 60 Ω [resistance of heater]

So, from figure,

V1

240

246
120= × = 117.073 V [Q V IR= ]
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R

L

6Ω48Ω

120 V

240Ω 6Ω

120 V

60Ω

6Ω60 W

120 V

240Ω

54Ω

120 V

⇒

⇒



⇒ i
V

R
2

2

120

54
= = ⇒ V2 = ×48

54
120 = 106.66 V

V V1 2− = 10.04 V

41. (a) F Fnet = 2 cosθ

F
kq q

y a

y

y a
net =

+
⋅

+

2 2
2 2 2 2 2

( / )

( )

F
kq q y

y a
net =

+
2 2

2 2 3 2

( / )

( ) /

⇒ kq y

a
y

2

3
∝

42. (d)

V
kdQ

xL

L

= ∫
2

=







∫L

L
k

Q

L
dx

x

2

= 



∫Q

L x
dx

L

L

4

1

0

2

πε

=
4

Q

L
xe L

L

πε0

2[log ] = −Q

L
L Le e

4
2

0πε
[log log ]

= Q

L4
2

0πε
ln( )

43. (b, c) Polarity should be mentioned in the question.
Potential on each of them can be zero if,q

net
= 0

or q q1 2 0± =
or 120 200 01 2C C± = or 3 5 01 2C C± =

44. (b) B B B BHnet = + +1 2

B
M M

r
BHnet = + +µ

π
0 1 2

34

( )

= + + ×
−

−10 (1.2 1)

(0.1)
3.6 10

7

3

5 = × −2.56 10 Wb / m4 2

45. (a) Magnetic field at the centre of smaller loop

B
iR

R x
=

+
µ 0 2

2

2
2 2 3 22( ) /

Area of smaller loopS R= π 1
2

∴ Flux through smaller loop φ = BS

Substituting the values, we get, φ ≈ × −9.1 10 Wb11

46. (d) e x Bdx B
l l

l

l

= = −
∫2

3
2 23 2

2
( )

[( ) ( ) ]ω ω = 5

2

2Bωl

47. (c) For charging of capacitor q CV et= −( )/1 τ

At t = 2τ ; q CV e= − −( )1 2

48. (c) Amplitude decreases exponentially. In 5 s, it
remains 0.9 times. Therefore, in total 15 s it will
remains (0.9) (0.9) (0.9) = 0.729 times its original

value.

JEE Advanced
1. In the figure below, the switches S1 and S2

are closed simultaneously at t = 0 and a

current starts to flow in the circuit. Both

the batteries have the same magnitude of

the electromotive force (emf) and the

polarities are as indicated in the figure.

Ignore mutual inductance between the

inductors. The current I in the middle

wire reaches its maximum magnitude Imax

at time t = τ. Which of the following

statements is (are) true?
(More than One Correct Option, 2018)

(a) I
V

R
max =

2
(b) I

V

R
max =

4

(c) τ = L

R
ln 2 (d) τ = 2

2
L

R
ln
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θ θ
–q/2

a aq q
x

y

F F

F sinθ F sinθ

2 cosF θ

dxx

L L

A BO

N

S

S

N

S

N
O

B2

B1

BH

dxx

l
2lω

R L R 2L

VIV

S1 S2



2. Two infinitely long straight wires lie in

the xy-plane along the lines x R= ± . The

wire located at x R= + carries a constant

current I1and the wire located at x R= −
carries a constant current I2. A circular

loop of radius R is suspended with its

centre at ( , , )0 0 3R and in a plane

parallel to the xy-plane. This loop carries

a constant current I in the clockwise

direction as seen from above the loop. The

current in the wire is taken to be positive,

if it is in the +$j-direction. Which of the

following statements regarding the

magnetic field B is (are) true?
(More than One Correct Option, 2018)

(a) If I I
1 2

= , then B cannot be equal to zero at the

origin ( , , )000

(b) If I
1

0> and I
2

0< , then B can be equal to zero

at the origin ( , , )000

(c) If I
1

0< and I
2

0> , then B can be equal to zero

at the origin ( , , )000

(d) If I I
1 2

= , then the z-component of the

magnetic field at the centre of the loop is

−





µoI

R2

3. Three identical

capacitors C C1 2,

and C3 have a

capacitance of

1 0. µF each and

they are

uncharged

initially. They are

connected in a circuit as shown in the

figure and C1 is then filled completely

with a dielectric material of relative

permittivity εr. The cell electromotive

force (emf) V0 8= V. First the switch S1 is

closed while the switch S2 is kept open.

When the capacitor C3 is fully charged, S1

is opened and S2 is closed simultaneously.

When all the capacitors reach equilibrium,

the charge on C3 is found to be 5µC. The

value of εr = ............ (Numerical Value, 2018)

4. In the xy-plane, the region y > 0 has a

uniform magnetic field B1
$k and the region

y < 0 has another uniform magnetic field

B2
$k. A positively charged particle is

projected from the origin along the

positive Y-axis with speed v0

1= −π ms at

t = 0, as shown in figure. Neglect gravity

in this problem. Let t T= be the time

when the particle crosses the X-axis from

below for the first time. If B B2 14= , the

average speed of the particle, in ms
−1,

along the X-axis in the time interval T

is............ . (Numerical Value, 2018)

5. An infinitely long thin

non-conducting wire is

parallel to the Z-axis

and carries a uniform

line charge density λ . It

pierces a thin

non-conducting spherical

shell of radius R in such

a way that the arc PQ

subtends an angle 120° at the centre O of

the spherical shell, as shown in the

figure. The permittivity of free space is ε0.

Which of the following statements is (are)

true? (More than One Correct Option, 2018)

(a) The electric flux through the shell is 3
0

Rλ ε/ .

(b) The z-component of the electric field is zero.

at all the points on the surface of the shell.

(c) The electric flux through the shell is 2
0

Rλ ε/ .

(d) The electric field is normal to the surface of

the shell at all points.

6. A particle of mass 10 3− kg and charge 1.0 C

is initially at rest. At time t = 0, the

particle comes under the influence of an

electric field E i( ) sin $t E t= 0 ω , where

E0 1 0= −. NC
1 and ω = −103 1

rad s . Consider

the effect of only the electrical force on

the particle. Then, the maximum speed in

m s
1− , attained by the particle at

subsequent times is .......... .
(Numerical Value, 2018)
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V0

S1

S2

C1

C2

C3

Y

X

B1

V0
–1= msπ

B2

λ Z

R

1
2

0
°

O

Q

P



7. A moving coil galvanometer has 50 turns

and each turn has an area 2 10 4× −
m

2. The

magnetic field produced by the magnet

inside the galvanometer is 0.02 T. The

torsional constant of the suspension wire

is10 N - m rad
4 1− − . When a current flows

through the galvanometer, a full scale

deflection occurs, if the coil rotates by

0.2 rad. The resistance of the coil of the

galvanometer is 50 Ω. This galvanometer

is to be converted into an ammeter

capable of measuring current in the range

0 1 0− . .A For this purpose, a shunt

resistance is to be added in parallel to the

galvanometer. The value of this shunt

resistance in ohms, is ............. .
(Numerical Value, 2018)

8. The electric field E is measured at a point

P d( , , )0 0 generated due to various charge

distributions and the dependence of E on

d is found to be different for different

charge distributions. List-I contains

different relations between E and d.

List-II describes different electric charge

distributions, along with their locations.

Match the functions in List-I with the

related charge distributions in List-II.
(Matching Type, 2018)

List-I List-II

P. E is
independent
of d

1. A point charge Q at the origin

Q. E
d

∝ 1 2. A small dipole with point
charges Q at ( , , )0 0 l and − Q at
( , , )0 0 1− . (Take, 2 l d<< )

R. E
d

∝ 1
2

3. An infinite line charge
coincident with the X-axis, with
uniform linear charge density λ.

S. E
d

∝ 1
3

4. Two infinite wires carrying a
uniform linear charge density
parallel to the X- axis. The one
along ( , )y z l= =0 has a
charge density + λ and the
one along ( , )y z l= = −0 has a
charge density – λ. (Take,
2 l d<< ).

5. Infinite plane charge coincident
with the xy-plane with uniform
surface charge density.

(a) P → 5; Q → 3,4;  R → 1; S → 2

(b) P → 5; Q → 3;     R → 1, 4; S → 2

(c) P → 5; Q → 3;     R → 1, 2; S → 4

(d) P → 4; Q → 2, 3; R → 1; S → 5

Passage (Q. Nos. 9-10)

Consider a simple RC circuit as shown in
Figure 1.

Process 1 In the circuit the switch S is
closed at t = 0 and the capacitor is fully
charged to voltage V0 (i.e. charging
continues for time T RC>> ). In the process
some dissipation ( )ED occurs across the
resistance R. The amount of energy finally
stored in the fully charged capacitor is Ec.

Process 2 In a different process the

voltage is first set to
V0

3
and maintained for

a charging time T RC>> . Then, the voltage

is raised to
2

3

0V
without discharging the

capacitor and again maintained for a time

T RC>> . The process is repeated one more
time by raising the voltage to V0 and the
capacitor is charged to the same final
voltage V0 as in Process 1. These two
processes are depicted in Figure 2.

(Passage Type, 2017)

9. In Process 1, the energy stored in the

capacitor EC and heat dissipated across

resistance ED are related by

(a) E E
C D

= ln2 (b) E E
C D

=

(c) E E
C D

= 2 (d) E E
C D

= 1

2

10. In Process 2, total energy dissipated

across the resistance ED is

(a) E CV
D

= 





1

3

1

2
0

2 (b) E CV
D

= 





3
1

2
0

2

(c) E CV
D

= 3
0

2 (d) E CV
D

= 1

2
0

2
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Directions (Q.Nos. 11 to 13) Matching the
information given in the three columns of the
following table.

A charged particle (electron or proton) is
introduced at the origin (x = 0, y = 0, z = 0)
with a given initial velocity v. A uniform
electric field E and a uniform magnetic field

B exist everywhere. The velocity v, electric
field E and magnetic field B are given in
columns 1, 2 and 3, respectively. The
quantities E B0 0, are positive in magnitude.

(Matching Type, 2017)

Column 1 Column 2 Column 3

(I) Electron with

v = 2 0

0

E

B
x$

(i) E = E z0
$ (P) B = − B x0

$

(II) Election with

v = E

B
y0

0

$

(ii) E = − E y0
$ (Q) B = B x0

$

(III) Proton with
v = 0

(iii) E = − E x0
$ (R) B = B y0

$

(IV) Proton with

v = 2 0

0

E

B
x$

(iv) E = E x0
$ (S) B = B z0

$

11. In which case would the particle move in a

straight line along the negative direction

of Y -axis?

(a) (IV) (ii) (S) (b) (II) (iii) (Q)

(c) (III), (ii) (R) (d) (III) (ii) (P)

12. In which case will the particle move in a

straight line with constant velocity?

(a) (II) (iii) (S) (b) (III) (iii) (P)

(c) (IV) (i) (S) (d) (III) (ii) (R)

13. In which case will the particle describe a

helical path with axis along the positive

z-direction?

(a) (II) (ii) (R) (b) (III) (iii) (P)

(c) (IV) (i) (S) (d) (IV) (ii) (R)

14. A symmetric star

shaped conducting

wire loop is carrying

a steady state

current I as shown

in the figure. The

distance between the

diametrically opposite vertices of the star

is 4a. The magnitude of the magnetic field

at the center of the loop is
(Single Correct Option, 2017)

(a)
µ
π
0

4
6 3 1

I

a
[ ]− (b)

µ
π
0

4
6 3 1

I

a
[ ]+

(c)
µ
π
0

4
3 3 1

I

a
[ ]− (d)

µ
π
0

4
3 2 3

I

a
[ ]−

15. A uniform magnetic field B exists in the

region between x = 0 and x
R= 3

2
(region 2

in the figure) pointing normally into the

plane of the paper. A particle with charge

+Q and momentum p directed along

X-axis enters region 2 from region 1 at

point P1 ( )y R= − .

Which of the following option(s) is/are

correct? (More than One Correct Option, 2017)

(a) When the particle re-enters region 1 through

the longest possible path in region 2, the

magnitude of the change in its linear

momentum between point P1 and the farthest

point fromY -axis is
p

2

(b) For B
p

QR
= 8

13
, the particle will enter region 3

through the point P2 on X-axis

(c) For B > 2

3

p

QR
, the particle will re-enter region 1

(d) For a fixed B, particles of same charge Q and

same velocity v, the distance between the

point P1 and the point of re-entry into region 1

is inversely proportional to the mass of the

particle

16 Electricity & Magnetism

I

4a

Region 1 Region 2 Region 3

O x
P2

+Q P1

( – )y= R

(3 /2)R

B

y
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16. In the circuit shown, L = 1µH, C = 1µF

and R = 1 kΩ . They are connected in series

with an AC source V V t= 0 sinω as shown.

Which of the following options is/are

correct? (More than One Correct Option, 2017)

(a) At ω ∼ 0 the current flowing through the circuit

becomes nearly zero

(b) The frequency at which the current will be in

phase with the voltage is independent of R

(c) The current will be in phase with the voltage if

ω =104 rads−1

(d) At ω >>106 rads−1, the circuit behaves like a

capacitor

17. A circular insulated copper

wire loop is twisted to form

two loops of area A and 2A

as shown in the figure. At

the point of crossing the

wires remain electrically

insulated from each other.

The entire loop lies in the

plane (of the paper). A

uniform magnetic field B

points into the plane of the paper. At

t = 0, the loop starts rotating about the

common diameter as axis with a

constant angular velocity ω in the

magnetic field. Which of the following

options is/are correct?
(More than One Correct Option, 2017)

(a) the emf induced in the loop is proportional to

the sum of the areas of the two loops

(b) The rate of change of the flux is maximum

when the plane of the loops is perpendicular

to plane of the paper

(c) The net emf induced due to both the loops is

proportional to cos ωt

(d) The amplitude of the maximum net emf

induced due to both the loops is equal to the

amplitude of maximum emf induced in the

smaller loop alone

18. A source of constant voltage V is

connected to a resistance R and two ideal

inductors L1 and L2 through a switch S as

shown. There is

no mutual

inductance

between the two

inductors. The

switch S is initially open. At t = 0, the

switch is closed and current begins to

flow. Which of the following options is/are

correct? (More than One Correct Option, 2017)

(a) After a long time, the current through L1 will

be
V

R

L

L L
2

1 2+








(b) After a long time, the current through L2 will

be
V

R

L

L L
1

1 2+








(c) The ratio of the currents through L1 and L2 is

fixed at all times ( )t > 0

(d) At t = 0, the current through the resistance R

is
V

R

19. The instantaneous voltages at three

terminals marked X Y, and Z are given

by V V tX = 0 sinω ,V V tY = +



0

2

3
sin ω π

and

V V tZ = +



0

4

3
sin ω π

.

An ideal voltmeter is configured to read

rms value of the potential difference

between its terminals. It is connected

between points X and Y and then between

Y and Z. The reading(s) of the voltmeter

will be (More than One Correct Option, 2017)

(a) V VYZ
rms = 0

1

2

(b) V VXY
rms = 0

3

2

(c) independent of the choice of the two terminals

(d) V VXY
rms = 0

20. An infinite line charge of uniform electric

charge density λ lies along the axis of an

electrically conducting infinite cylindrical

shell of radius R. At time t = 0, the space

inside the cylinder is filled with a

material of permittivity ε and electrical

conductivity σ. The electrical conduction

in the material follows Ohm's law. Which

one of the following graphs best describes

+
–

S

V

R

L1 L2

B

Aarea

area 2A

w

V0 sin ωt

L=1µH C=1µF R=1kΩ



the subsequent variation of the magnitude

of current density j (t) at any point in the

material? (Single Correct Option, 2016)

21. In the circuit shown below, the key is

pressed at time t = 0. Which of the following

statement(s) is (are) true?
(More than One Correct Option, 2016)

(a) The voltmeter display −5 V as soon as the key

is pressed and displays +5 V after a long time

(b) The voltmeter will display 0 V at time t = ln 2

seconds

(c) The current in the ammeter becomes 1/e of

the initial value after 1 second

(d) The current in the ammeter becomes zero after

a long time

Passage (Q. Nos. 22-23)

Consider an evacuated cylindrical chamber
of height h having rigid conducting plates at
the ends and an insulating curved surface
as shown in the figure. A number of
spherical balls made of a light weight and
soft material and coated with a conducting
material are placed on the bottom plate. The
balls have a radius r h<< . Now, a high
voltage source (HV) connected across the
conducting plates such that the bottom plate
is at +V0 and the top plate at −V0. Due to

their conducting surface, the balls will get
charge, will become equipotential with the
plate and are repelled by it.

The balls will
eventually collide
with the top plate,
where the
coefficient of
restitution can be
taken to be zero due
to te soft nature of
the material of the balls. The electric field in
the chamber can be considered to be that of a
parallel plate capacitor. Assume that there
are no collisions between the balls and the
interaction between them is negligible.
(Ignore gravity) (Passage Type, 2016)

22. Which one of the following statements is

correct?

(a) The balls will execute simple harmonic

motion between the two plates

(b) The balls will bounce back to the bottom plate

carrying the same charge they went up with

(c) The balls will stick to the top plate and

remain there

(d) The balls will bounce back to the bottom plate

carrying the opposite charge they went up with

23. The average current in the steady state

registered by the ammeter in the circuit

will be

(a) proportional toV0
2

(b) proportional to the potentialV0

(c) zero

(d) proportions toV0
1 2/

24. An incandescent bulb has a thin filament

of tungsten that is heated to high

temperature by passing an electric current.

The hot filament emits black-body radiation.

The filament is observed to break up at

random locations after a sufficiently long

time of operation due to non-uniform

evaporation of tungsten from the filament.

If the bulb is powered at constant voltage,

which of the following statement(s) is (are)

true? (More than One Correct Option, 2016)

(a) The temperature distribution over the filament

is uniform

(b) The resistance over small sections of the

filament decreases with time
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t
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V
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(c) The filament emits more light at higher band

of requencies before it breaks up

(d) The filament consumes less electrical power

towards the end of the life of the bulb

25. A conducting loop in the shape of a right

angled isosceles triangle of height 10 cm

is kept such that the 90° vertex is very

close to an infinitely long conducting wire

(see the figure). The wire is electrically

insulated from the loop. The hypotenuse

of the triangle is parallel to the wire. The

current in the triangular loop is in

counter- clockwise direction and increased

at a constant rate of 10 1As− . Which of the

following statement(s) is (are) true?
(More than One Correct Option, 2016)

(a) There is a repulsive force between the wire

and the loop

(b) If the loop is rotated at a constant angular

speed  about the wire, an additional emf of

(µ π)0 / volt is induced in the wire

(c) The magnitude of induced emf in the wire is
µ
π
0





volt

(d) The induced current in the wire is in opposite

direction to the current along the hypotenuse

26. Consider two identical galvanometers and

two identical resistors with resistance R.

If the internal resistance of the

galvanometers R Rc < / 2, which of the

following statement(s) about anyone of

the galvanometers is (are) true?

(More than One Correct Option, 2016)

(a) The maximum voltage range is obtained when

all the components are connected in series

(b) The maximum voltage range is obtained when

the two resistors and one galvanometer are

connected in series,  and the second

galvanometer is connected in parallel to the

first galvanometer

(c) The maximum current range is obtained when

all the components are connected in parallel

(d) The maximum current range is obtained

when the two galvanometers are connected

in series, and the combination is connected

in parallel with both the resistors

27. Two inductors L1 (inductance 1mH,

internal resistance 3 Ω) and L2

(inductance 2 mH, internal resistance

4 Ω), and a resistor R (resistance 12 Ω)

are all connected in parallel across a 5V

battery. The circuit is switched on at time

t = 0. The ratio of the maximum to the

minimum current ( / )max minI I drawn from

the battery is (Single Integer Type, 2016)

28. A rigid wire loop of square shape having

side of length L and resistance R is

moving along the x-axis with a constant

velocity v0 in the plane of the paper .

At t = 0, the right edge of the loop enters a

region of length 3L where there is a

uniform magnetic field B0 into the plane of

the paper, as shown in the figure. For

sufficiently large v0, the loop eventually

crosses the region. Let x be the location of

the right edge of the loop. Let v x( ), I x( )

and F x( ) represent the velocity of the loop,

current in the loop, and force on the loop,

respectively, as a function of x. Counter-

clockwise current is taken as positive.
(More than One Correct Option, 2016)

Which of the following schematic plot(s) is

(are) correct? (Ignore gravity)
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29. An infinitely long uniform line charge

distribution of charge per unit length λ
lies parallel to the y-axis in the y-z plane

at z a= 3

2
(see figure). If the magnitude

of the flux of the electric field through the

rectangular surface ABCD lying in the x-y

plane with its centre at the origin is
λ
ε
L

n 0

(ε =0 permittivity of free space), then the

value of n is = 6) (Single Integer Type, 2015)

30. Consider a uniform

spherical charge

distribution of radius

R1 centred at the

origin O. In this

distribution, a

spherical cavity of

radius R2, centred at

P with distance OP a R R= = −1 2 (see

figure) is made. If the electric field inside

the cavity at position r is E r( ), then the

correct statement(s) is/are
(Single Correct Option, 2015)

(a) E is uniform, its magnitude is independent of

R2 but its direction depends on r

(b) E is uniform, its magnitude depends on R2

and its direction depends on r

(c) E is uniform, its magnitude is independent of

‘a’ but its direction depends on a

(d) Eis uniform and both its magnitude and

direction depend on a

31. A parallel plate capacitor having plates of

area S and plate separation d, has

capacitance C1 in air. When two

dielectrics of different relative

permittivities (ε =1 2 and ε =2 4) are

introduced between the two plates as

shown in the figure,

the capacitance

becomes C2. The

ratio
C

C

2

1

is

(a)
6

5
(b)

5

3

(c)
7

5
(d)

7

3

(Single Correct Option, 2015)

32. In an aluminium (Al) bar of square cross

section, a square hole is drilled and is

filled with iron (Fe) as shown in the

figure. The electrical resistivities of Al

and Fe are 2 7 10 8. × − Ωm and

1 0 10 7. × − Ωm, respectively. The electrical

resistance between the two faces P and Q

of the composite bar is
(Single Correct Option, 2015)

(a)
2475

64
µ Ω (b)

1875

64
µ Ω

(c)
1875

49
µ Ω (d)

2475

132
µ Ω

33. In the following circuit, the current

through the resistor R( )= 2 Ω is I

amperes. The value of I is(Single Integer Type, 2015)
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d/2
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S
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34. The figures below depict two situations in

which two infinitely long static line

charges of constant positive line charge

density λ are kept parallel to each other.

In their resulting electric field, point

charges q and −q are kept in equilibrium

between them. The point charges are

confined to move in the x direction only. If

they are given a small displacement about

their equilibrium positions, then the

correct statements is/are
(Single Correct Option, 2015)

(a) both charges execute simple harmonic

motion

(b) both charges will continue moving in the

direction of their displacement

(c) charge + q executes simple harmonic motion

while charge − q continues moving in the

direction of its displacement

(d) charge − q executes simple harmonic motion

while charge + q continues moving in the

direction of its displacement

35. A conductor (shown in the figure)

carrying constant current I is kept in the

x-y plane in a uniform magnetic field B. If

F is the magnitude of the total magnetic

force acting on the conductor, then the

correct statements is/are
(More than One Correct Option, 2015)

(a) if B is along $z, F L R∝ +( )

(b) if B is along $x, F = 0

(c) if B is along $y, F L R∝ +( )

(d) if B is along $z, F = 0

Passage (Q. Nos. 36-37)

In a thin rectangular metallic strip a
constant current I flows along the positive

x-direction, as shown in the figure. The
length, width and thickness of the strip are
l, w and d, respectively. A uniform magnetic
field B is applied on the strip along the
positive y-direction. Due to this, the charge
carriers experience a net deflection along
the z-direction.
This results in accumulation of charge
carriers on the surface PQRS and
appearance of equal and opposite charges on
the face opposite to PQRS. A potential
difference along the z-direction is thus
developed. Charge accumulation continues
until the magnetic force is balanced by the
electric force. The current is assumed to be
uniformly distributed on the cross section of
the strip and carried by electrons.

(Passage Type, 2015)

36. Consider two different metallic strips (1

and 2) of the same material. Their lengths

are the same, widths are w1 and w2 and

thicknesses are d1 and d2, respectively.

Two points K and M are symmetrically

located on the opposite faces parallel to

the x-y plane (see figure). V1 and V2 are

the potential differences between K and

M in strips 1 and 2, respectively. Then,

for a given current I flowing through

them in a given magnetic field strength B,

the correct statements is/are

(a) If w w1 2= and d d1 22= , thenV V2 12=
(b) If w w1 2= and d d1 22= , thenV V2 1=
(c) If w w1 22= and d d1 2= , thenV V2 12=
(d) If w w1 22= and d d1 2= , thenV V2 1=

37. Consider two different metallic strips (1

and 2) of same dimensions (length l,

width w and thickness d) with carrier

densities n1 and n2, respectively. Strip 1

is placed in magnetic field B1 and strip 2

is placed in magnetic field B2, both along
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positive y-directions. Then V1 and V2 are

the potential differences developed

between K and M in strips 1 and 2,

respectively. Assuming that the current I

is the same for both the strips, the correct

options is/are

(a) If B B1 2= and n n1 22= , thenV V2 12=
(b) If B B1 2= and n n1 22= , thenV V2 1=
(c) If B B1 22= and n n1 2= , thenV V2 105= .

(d) If B B1 22= and n n1 2= , thenV V2 1=

38. A parallel plate capacitor has a dielectric

slab of dielectric constant K between its

plates that covers 1/3 of the area of its

plates, as shown in the figure. The total

capacitance of the capacitor is C while

that of the portion with dielectric in

between is C1. When the capacitor is

charged, the plate area covered by the

dielectric gets charge Q1 and the rest of

the area gets charge Q2. The electric field

in the dielectric is E1 and that in the other

portion is E2. Choose the correct

option/options, ignoring edge effects.
(More than One Correct Option, 2014)

(a)
E

E
1

2

1= (b)
E

E K
1

2

1=

(c)
Q

Q K
1

2

3= (d)
C

C

K

K1

2= +

39. Let E r E r1 2( ), ( ) and E r3( ) be the respective

electric fields at a distance r from a point

charge Q, an infinitely long wire with

constant linear charge density λ , and an

infinite plane with uniform surface

charge density σ. If E r E r1 0 2 0( ) ( )= = E r3 0( )

at a given distance r0, then
(More than One Correct Option, 2014)

(a) Q r= 4 0
2σπ (b) r0

2
= λ

πσ

(c) E
r

E
r

1
0

2
0

2
2

2







= 





(d) E
r

E
r

2
0

3
0

2
4

2







= 





40. Charges Q Q, 2 and 4Q are uniformly
distributed in three dielectric solid
spheres 1, 2 and 3 of radii R R/ ,2 and 2R
respectively, as shown in figure. If
magnitudes of the electric fields at point P
at a distance R from the centre of spheres
1, 2 and 3 are E E1 2, and E3 respectively,
then (Single Correct Option, 2014)

(a) E E E1 2 3> > (b) E E E3 1 2> >
(c) E E E2 1 3> > (d) E E E3 2 1> >

41. Four charges Q Q Q1 2 3, , and Q4 of same

magnitude are fixed along the x-axis at

x a a a= − − +2 , , and +2a respectively. A

positive charge q is placed on the positive

y-axis at a distance b > 0. Four options of the

signs of these charges are given in Column I.

The direction of the forces on the charge q is

given in Column II. Match Column I with

Column II and select the correct answer

using the code given below the lists.
(Matching Type, 2014)

Column I Column II

P. Q Q Q Q1 2 3 4, , , all positive 1. + x

Q. Q Q1 2, positive; Q Q3 4, negative 2. −x

R. Q Q1 4, positive; Q Q2 3, negative 3. + y

S. Q Q1 3, positive; Q Q2 4, negative 4. −y

Codes

P Q R S

(a) 3, 1, 4, 2

(b) 4, 2, 3, 1

(c) 3, 1, 2, 4

(d) 4, 2, 1, 3
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42. Two ideal batteries of emf V1 and V2 and

three resistances R R1 2, and R3 are

connected as shown in the figure. The

current in resistance R2 would be zero if
(More than One Correct Option, 2014)

(a) V V1 2= and R R R1 2 3= =
(b) V V1 2= and R R R1 2 32= =
(c) V V1 22= and 2 21 2 3R R R= =
(d) 2 1 2V V= and 2 1 2 3R R R= =

43. During an experiment with a metre

bridge, the galvanometer shows a null

point when the jockey is pressed at 40.0

cm using a standard resistance of 90 Ω, as

shown in the figure. The least count of the

scale used in the metre bridge is 1 mm.

The unknown resistance is
(Single Correct Option, 2014)

(a) 60 ± 0.15 Ω (b) 135 ± 0.56 Ω
(c) 60 ± 0.25 Ω (d) 135 ± 0.23 Ω

44. Two parallel wires in the plane of the

paper are distance X0 apart. A point

charge is moving with speed u between

the wires in the same plane at a distance

X1 from one of the wires. When the wires

carry current of magnitude I in the same

direction, the radius of curvature of the

path of the point charge is R1. In contrast,

if the currents I in the two wires have

directions opposite to each other, the

radius of curvature of the path is R2. If
X

X

0

1

3= , and value of
R

R

1

2

is

(Single Integer Type, 2014)

45. A galvanometer gives full scale deflection

with 0.006 A current. By connecting it to

a 4990 Ω resistance, it can be converted

into a voltmeter of range 0-30 V. If

connected to a
2

249

n Ω resistance, it

becomes an ammeter of range 0-1.5 A. The

value of n is (Single Integer Type, 2014)

Passage (Q. Nos. 46-47)

The figure shows a circular loop of radius a
with two long parallel wires (numbered 1
and 2) all in the plane of the paper. The
distance of each wire from the centre of the
loop is d. The loop and the wires are
carrying the same current I. The current in
the loop is in the counter-clockwise direction
if seen from above. (Passage Type, 2014)

46. When d a≈ but wires are not touching

the loop, it is found that the net magnetic

field on the axis of the loop is zero at a

height h above the loop. In that case

(a) current in wire 1 and wire 2 is the direction

PQ and RS, respectively and h a≈
(b) current in wire 1 and wire 2 is the direction

PQ and SR, respectively and h a≈
(c) current in wire 1 and wire 2 is the direction

PQ and SR, respectively and h a≈ 1.2

(d) current in wire 1 and wire 2 is the direction

PQ and RS, respectively and h a≈ 1.2

47. Consider d a>> , and the loop is rotated

about its diameter parallel to the wires by

30° from the position shown in the figure.

If the currents in the wires are in the

opposite directions, the torque on the loop

at its new position will be (assume that

the net field due to the wires is constant

over the loop)

(a)
µ 0

2 2I a

d
(b)

µ 0
2 2

2

I a

d

(c)
3 0

2 2µ I a

d
(d)

3

2
0

2 2µ I a

d

48. At time t = 0, terminal A in the circuit

shown in the figure is connected to B by a

key and an alternating current

I t I t( ) cos ( )= 0 ω , with I0 1= A and
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ω = −500 1rad s starts flowing in it with

the initial direction shown in the figure.

At t = 7

6

π
ω

, the key is switched from B to D.

Now onwards only A and D are connected.

A total charge Q flows from the battery to

charge the capacitor fully. If C = 20 µF,

R = 10 Ω and the battery is ideal with emf

of 50 V, identify the correct statement(s).
(More than One Correct Option, 2014)

(a) Magnitude of the maximum charge on the

capacitor before t = 7

6

π
ω

is 1 10 3× − C

(b) The current in the left part of the circuit just

before t = 7

6

π
ω

is clockwise

(c) Immediately after A is connected to D, the

current in R is 10 A

(d) Q = × −2 10 3 C

49. Two non-conducting solid spheres of radii

R and 2 R, having uniform volume charge

densities ρ1 and ρ2 respectively, touch

each other. The net electric field at a

distance 2 R from the centre of the

smaller sphere, along the line joining the

centre of the spheres, is zero. The ratio
ρ
ρ2

1

can be (More than One Correct Option, 2013)

(a) − 4 (b) − 32

25

(c)
32

25
(d) 4

50. In the circuit shown in the figure, there

are two parallel plate capacitors each of

capacitance C. The switch S1 is pressed

first to fully charge the capacitor C1 and

then released. The switch S2 is then

pressed to charge the capacitor C2. After

some time, S2 is released and then S3 is

pressed. After some time
(More than One Correct Option, 2013)

(a) the charge on the upper plate of C1 is 2 CV0

(b) the charge on the upper plate of C1 is CV0

(c) the charge on the upper plate of C2 is 0

(d) the charge on the upper plate of C2 is −CV0

51. Two non-conducting

spheres of radii R1

and R2 and carrying

uniform volume

charge densities + ρ
and − ρ, respectively, are placed such that

they partially overlap, as shown in the

figure. At all points in the overlapping

region (More than One Correct Option, 2013)

(a) the electrostatic field is zero

(b) the electrostatic potential is constant

(c) the electrostatic field is constant in

magnitude

(d) the electrostatic field has same direction

52. A particle of mass M and positive charge

Q , moving with a constant velocity

u i1
14= −ms , enters a region of uniform

static magnetic field normal to the x-y

plane. The region of the magnetic field

extends from x = 0 to x L= for all values

of y. After passing through this region,

the particle emerges on the other side

after 10 milliseconds with a velocity

u i + j2 2 3= −( ) ms 1. The correct

statement(s) is (are)
(More than One Correct Option, 2013)

(a) the direction of the magnetic field is −z

direction.

(b) the direction of the magnetic field is +z

direction

(c) the magnitude of the magnetic field is
50

3

πM

Q

units.

(d) the magnitude of the magnetic field is

100

3

πM

Q
units.
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53. A steady current I flows along an

infinitely long hollow cylindrical

conductor of radius R. This cylinder is

placed coaxially inside an infinite

solenoid of radius 2R. The solenoid has n

turns per unit length and carries a steady

current I. Consider a point P at a distance

r from the common axis. The correct

statement(s) is (are)
(More than One Correct Option, 2013)

(a) In the region 0 < <r R, the magnetic field is

non-zero

(b) In the region R r R< < 2 , the magnetic field is

along  the common axis

(c) In the region R r R< < 2 , the magnetic field is

tangential to the circle of radius r , centered

on the axis

(d) In the region r R> 2 , the magnetic field is

non-zero

Passage (Q. Nos. 54-55)

A point charge Q is moving in a circular orbit of

radius R in the x-y plane with an angular

velocity ω. This can be considered as equivalent

to a loop carrying a steady current
Qω

π2
⋅ A

uniform magnetic field along the positive z-axis

is now switched on, which increases at a

constant rate from 0 to B in one second. Assume

that the radius of the orbit remains constant.

The applications of the magnetic field induces

an emf in the orbit.

The induced emf is defined as the work done by

an induced electric field in moving a unit

positive charge around a closed loop. It is known

that, for an orbiting charge, the magnetic dipole

moment is proportional to the angular

momentum with a proportionality constant γ.
(Passage Type, 2013)

54. The change in the magnetic dipole

moment associated with the orbit, at the

end of the time interval of the magnetic

field change, is

(a) γBQR 2 (b) −γBQR 2

2

(c) γBQR 2

2
(d) γBQR 2

55. The magnitude of the induced electric

field in the orbit at any instant of time

during the time interval of the magnetic

field change is

(a)
BR

4
(b)

− BR

2
(c) BR (d) 2BR

Passage (Q. Nos. 56-57)

A thermal power plant produces electric

power of 600 kW at 4000 V, which is to be

transported to a place 20 km away from the

power plant for consumers’ usage. It can be

transported either directly with a cable of

large current carrying capacity or by using a

combination of step-up and step-down

transformers at the two ends. The drawback

of the direct transmission is the large

energy dissipation. In the method using

transformers, the dissipation is much

smaller. In this method, a step-up

transformer is used at the plant side so that

the current is reduced to a smaller value. At

the consumers’ end a step-down transformer

is used to supply power to the consumers at

the specified lower voltage. It is reasonable

to assume that the power cable is purely

resistive and the transformers are ideal

with a power factor unity. All the current

and voltages mentioned are rms values.
(Passage Type, 2013)

56. If the direct transmission method with a

cable of resistance 0 4 1. Ω km
− is used, the

power dissipation (in %) during

transmission is

(a) 20 (b) 30 (c) 40 (d) 50

57. In the method using the transformers,

assume that the ratio of the number of

turns in the primary to that in the

secondary in the step-up transformer is

1 10: . If the power to the consumers has to

be supplied at 200V, the ratio of the

number of turns in the primary to that in

the secondary in the step-down

transformer is

(a) 200 1: (b) 150 1:

(c) 100 1: (d) 50 1:
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Answer with Explanations

1. (b, d) I
V

R
e

tR

L
1 1= −













−

I
V

R
e

tR

L
2

21= −












−

From principle of superposition,

I I I= −1 2

⇒ I
V

R
e e

tR

L

tR

L= −












− −
2 21 …(i)

I is maximum when
dI

dt
= 0, which gives e

tR

L
−

=2 1

2
or

t
L

R
= 2

2ln

Substituting this time in Eq. (i), we get

I
V

R
max =

4

2. (a,b,d)

(a) At origin, B = 0 due to two wires if I I1 2= , hence
( )B

net
at origin is equal to B due to ring. which is

non-zero.

(b) If I1 0> and I2 0< , B at origin due to wires will be

along + $ .k Direction of B due to ring is along − $
k

direction and hence B can be zero at origin.

(c) If I1 0< and I2 0> , B at origin due to wires is

along − $
k and also along − $

k due to ring, hence

B cannot be zero.

(d)

At centre of ring, B due to wires is along X-axis.

Hence Z-component is only because of ring which

B = −µ 0

2

i

R
( $ )k .

3. (1.50)

Applying loop rule,
5

1

3 3

1
0− − =

εr

⇒ 3
2

εr

= ⇒ ε r = 150.

4. (2 m/s) If average speed is considered along X-axis,

R
mv

qB
1

0

1

= , R
mv

qB

mv

qB
2

0

2

0

14
= = ⇒ R R1 2>

Distance travelled along x-axis, ∆ = +x R R2 1 2( )= 5

2
0

1

mv

qB

Total time = + =T T1 2

2 2

π πm

qB

m

qB1 2

+

= + =π π πm

qB

m

qB

m

qB1 1 14

5

4

Magnitude of average speed = =

5

2

5

4

2

0

1

1

mv

qB

m

qB

π
m/s

Z

X R=–

X R=

Y

X

–Y

O

C

I (0, 0, 3 )√ R

R L

2LRII1

V I1 I2 V

I2

Z
B1

Bx

B2

I2 I1

X

1 FµV0=8V
+8 Cµ

–8 Cµ
Before

1 Fµ

1 Fµ

+5 Cµ

–5 Cµ
After

3 Cµ
–3 Cµ

3 Cµ +

–

C

R1
C2

R2
C1



5. (a, b) PQ R= °( ) sin2 60

= =( ) ( )2
3

2
3R R

q Renclosed = λ ( )3

We have, φ
ε

= q enclosed

0

⇒ φ λ
ε

=










3

0

R

Also, electric field is perpendicular to wire, so

Z-component will be zero.

6. (2) a
F

m

qE

m
t= = = 10 103 3sin( )

dv

dt
t= 10 103 3sin( ) ⇒ dv t dt

v t

0

3

0

310 10∫ ∫= sin( )

∴ v t= −10

10
1 10

3

3

3[ cos ( )]

Velocity will be maximum when cos( )10 13t = −

vmax = 2 m/s

7. (5.55) Given, N = 50,

A C R= × = =− −2 10 10 504 2 4m , , ,Ω

B = =0 02 02. , .T θ rad

∴ Ni AB Cg = θ

⇒ i
C

N AB
g = = ×

× × ×

−

−
θ 10 02

50 2 10 0 02

4

4

.

.
= 0.1 A

∴ V i G i i Sab g g= × = −( )

0.1 0.1× = − ×50 1( ) S

5 0 9= ×. S

∴ S = 50

9
Ω = 5.55 Ω

8. (b) List-II

(1) E
Q

d
= 1

4 0
2πε

⇒ E
d

∝ 1
2

(2) E
Q l

d
axis = 1

4

2 2

0
3πε
( ) ⇒ E

d
∝ 1

3

(3) E
d

= λ
πε2 0

⇒ E
d

∝ 1

(4) E
d l d l

l

d
=

−
−

+
=λ

πε
λ

πε
λ
πε2 2

2

20 0 0
2( ) ( )

( )

⇒ E
d

∝ 1
2

(5) E = σ
ε2 0

⇒ E is independent of d

9. (b) When switch is closed for a very long time
capacitor will get fully charged and charge on
capacitor will be q CV=
Energy stored in capacitor,

E CVC = 1

2

2
K(i)

Work done by a battery,

W Vq VCV CV= = = 2

Energy dissipated across resistance

ED = (work done by eq. battery) − ( )energy stored

E CV CV CVD = − =2 2 21

2

1

2
K(ii)

From Eqs. (i) and (ii), we get

E ED C=

10. (a) For process (1)

Charge on capacitor = CV0

3

Energy stored in capacitor = =1

2 9 18
0
2

0
2

C
V CV

Work done by battery = × =CV V CV0 0
2

3 3 9

Heat loss = − =CV CV CV0
2

0
2

0
2

9 18 18

For process (2)

Charge on capacitor = 2

3
0CV

Extra charge flow through battery = CV0

3

Work done by battery = ⋅ =CV V CV0 0 0
2

3

2

3

2

9

Final energy stored in capacitor = 





=1

2

2

3

4

18
0

2
0
2

C
V CV

Energy stored in process 2
4

18 18

3

18
0
2

0
2

0
2

= − =CV CV CV

Heat loss in process (2) = work done by battery in
process (2) − energy store in capacitor process (2)

= − 32

9 18
0
2

0
2CV CV = CV0

2

18
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For process (3)

Charge on capacitor = CV0

Extra charge flown through battery

= CV
CV CV

0
0 02

3 3
− =

Work done by battery in this process

= 





=CV
V

CV0
0

0
2

3 3
( )

Final energy stored in capacitor = 1

2
0
2CV

Energy stored in this process

= − =1

2

4

18

5

18
0
2 0

2
0
2

CV
CV CV

Heat loss in process (3)

= − =CV CV CV0
2

0
2

0
2

3

5

18 18

Now, total heat loss (ED)

= + + =CV CV CV CV0
2

0
2

0
2

0
2

18 18 18 6

Final energy stored in capacitor = 1

2
0
2CV

So we can say that ED = 





1

3

1

2
0
2CV

11. (c) For particle to move in negative y-direction, either

its velocity must be in negative y-direction (if initial
velocity ≠ 0) and force should be parallel to velocity or
it must experience a net force in negative y-direction
only (if initial velocity = 0)

12. (a) F F Fnet = +e B = + ×q qE v B

For particle to move in straight line with constant
velocity, Fnet = 0

∴ q qE v B+ × = 0

13. (c) For path to be helix with axis along positive

z-direction, particle should experience a centripetal
acceleration in xy-plane.

For the given set of options only option (c) satisfy the
condition. Path is helical with increasing pitch.

14. (a)

B
I

d
12

0

4
= +µ

π
α β[sin sin ]

α = °60 and β = − °30

= −










µ
π
0

4

3

2

1

2

I

d

B
I

d
12

0

4

3 1

2
= −









µ
π

d a=
B B0 1212=

= × −







12

4

3 1

2
0µ

π
I

d
= −µ

π
0

4
6 3 1

I

a
[ ]

15. (b,c) (a)| |∆P = 2 p

(b) r R( cos )1 − =θ ⇒ r
R

sinθ = 3

2

sin

cos

θ
θ1

3

2−
=

2
2 2

2
2

3

22

sin cos

sin

θ θ

θ
=

cot
θ
2

3

2
= ⇒ tan

θ
2

2

3
=

⇒ tanθ =







−
= =

2
2

3

1
4

9

4

3
5

9

12

5

sinθ = 12

13
r

R12

13

3

2







= ; r
R P

QB
B

P

QR
= = =13

8

8

13
;

(c)
P

QB

R< 3

2
, B

P

QR
> 2

3

(d) r
mv

QB
= , d r

mv

QB
= =2

2 ⇒ d m∝

a α

a 1

2

d

β

O

p

p

p

d

θ r

r

13
12

5

θ
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16. (a,b) At ω ≈ 0, X
C

C = = ∞1

ω
. Therefore, current is

nearly zero.

Further at resonance frequency, current and voltage
are in phase. This resonance frequency is given by,

ωr
LC

= =
×

=
− −

1 1

10 10
10

6 6

6 rad /s

We can see that this frequency is independent of R.

Further, X L X
C

L C= =ω
ω

,
1

At, ω ω= = =r L CX X106
rad /s, .

For ω ω> >r L CX X, . So, circuit is inductive.

17. (b,d) The net magnetic flux through the loops at time t

is

φ = − =B A A t BA t( )cos cos2 ω ω

so,
d

dt
B A t

φ

 


 = ω ωsin

∴ d

dt

φ

 


 is maximum when φ = =ω πt /2

The emf induced in the smaller loop,

ε ω ω ωsmaller = − =d

dt
BA t B A t( cos ) sin

∴ Amplitude of maximum net emf induced in both the
loops

= Amplitude of maximum emf induced in the smaller
loop alone.

18. (a,b,c)

Since inductors are connected in parallel

V VL L1 2
= ; L

dI

dt
L

dI

dt
1

1
2

2=

L I L I1 1 2 2= ;
I

I

L

L

1

2

2

1

=

Current through resistor at any time t is  given by

I
V

R
e

RT

L= −
−

( )1 , where L
L L

L L
=

+
1 2

1 2

After long time I
V

R
=

I I I1 2+ = K(i)

L I L I1 1 2 2= K(ii)

From Eqs. (i) and (ii), we get

I
V

R

L

L L
1

2

1 2

=
+

⇒ I
V

R

L

L L
2

1

1 2

=
+

(d) Value of current is zero at t = 0

Value of current is V R/ at t = ∞
Hence option (d) is incorrect.

19. (b,c) V V t V tXY = +





−0 0
2

3
sin sinω π ω

= +





+ +V t V t0 0
2

3
sin sin( )ω π ω π

⇒ φ = − =π π π2

3 3

⇒ V V0 02
6

′ = 





cos
π = 3 0V

⇒ V V tXY = + φ3 0 sin( )ω

⇒ ( ) ( )V V
V

XY YZrms rms= = 3
2
0

20. (d) Suppose charger per unit length at
any instant
is λ.

Initial value of λ is suppose λ 0.

Electric field s at a distance r at any
instant is

E
r

= λ
πε2

J E
r

= =σ σ λ
πε2

i
dq

dt
J A J rl= = = −( ) σ π2

d l

dt r
rl

λ λ
πε

σ π= − ×
2

2 (q l= λ )

d
dt

tλ
λ

σ
ελ

λ

0

∫ ∫= −
0

⇒ λ λ
σ
ε=

−
0e

t

J
r r

e J e
t t

= = =
− −σ

πε
λ σλ

πε

σ
ε

σ
ε

2 2
0

0

Here, J
r

0
0

2
= σλ

πε
∴ J t( )decreases exponentially as shown in figure below.

21. (a,b,c,d) Just after pressing key,

5 25000 01− =i

5 50000 02− =i (As charge in both capacitors = 0)

⇒ i i1 202 01= ⇒ =. .mA mA

and V i VB A+ =25000 1 ⇒ − = −V VB A 5 V

After a long time, i1 and i 2 0= (steady state)

⇒ 5
40

0 2001
1− = ⇒ =q

q µC

and 5
20

0 1002
2− = ⇒ =q

q µC

V
q

VB A− =2

20
⇒ V VB A− = + 5 V

L1 L2
+
–V

S R

λ

t

j t( )

(0, 0)
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⇒ (a)  is correct.

For capacitor 1, q e t
1

1200 1= − −[ ]/ µC

i e t
1

11

5
= − / mA

For capacitor 2, q e t
2

1100 1= − −[ ]/ µC

i e t
2

11

10
= − / mA

⇒ V
q

i VB A− + × =2
1

20
25

⇒ V V e eB A
t t− = − −− −5 1 5[ ]

= − − −5 1 2[ ]e t

At t = ln2, V VB A− = − =5 1 1 0[ ]

⇒ (b) is correct.

At t = 1, i i i e e
e

= + = + = ⋅− −
1 2

1 11

5

1

10

3

10

1

At t = 0, i i i= + = + =1 2
1

5

1

10

3

10

⇒ (c) is correct.

After a long time, i i1 2 0= = ⇒ (d) is correct.

22. (d) Balls will gain positive charge and hence move
towards negative plate.

On reaching negative plate, balls will attain negative
charge and come back to positive plate.

and so on, balls will keep oscillating.

But oscillation is not S.H.M.,

As force on balls is not ∝ x.

⇒ option (d) is correct.

23. (a) As the balls keep on carrying charge form one
plate to another, current will keep on flowing even in
steady state. When at bottom plate, if all balls attain
charge q ,

kq

r
V= 0 k =








1

4 0πε
⇒ q

V r

k
= 0

Inside cylinder, electric field

E V V h= − −[ ( )]0 0 = 2 0V h.

⇒ Acceleration of each ball,

a
qE

m

hr

k m
V= = ⋅2

0
2

⇒ Time taken by balls to reach other plate,

t
h

a

h k m

hrV V

k m

r
= = =2 2

2

1

0
2

0

.

If there are n balls, then

Average current,

i
nq

t
n

V r

k
V

r

k m
av = = × ×0

0 ⇒ i Vav ∝ 0
2

24. (c,d) Because of non-uniform evaporation at different
section, area of cross-section would be different at
different sections.

Region of highest evaporation rate would have rapidly
reduced area and would become break up
cross-section.

Resistance of the wire as whole increases with time.

Overall resistance increases hence power decreases.

P
V

R
=






2

or P
R

V∝ 


1
as is constant . At break up

junction temperature would be highest, thus light of
highest band frequency would be emitted at those
cross-section.

25. (a,c) By reciprocity theorem of mutual induction, it can
be assumed that current in infinite wire is varying at
10A/s and EMF is induced in triangular loop.

Flux of magnetic field through triangle loop, if current in
infinite wire is φ, can be calculated as follows:

d
i

y
ydyφ µ

π
= ⋅0

2
2 ⇒ d

i
dyφ µ

π
= 0

⇒ φ µ
π

= 





0

2

i l

⇒ EMF = = 





⋅d

dt

l di

dt

φ µ
π

0

2

= 





=µ
π

µ
π

0 010 10( )cm volt
A

s

If we assume the current in the wire towards right then
as the flux in the loop increases we know that the
induced current in the wire is counter clockwise.
Hence, the current in the wire is towards right.

Field due to triangular loop at the location of infinite
wire is into the paper. Hence, force on infinite wire is
away from the loop.

By cylindrical symmetry about infinite wire, rotation of
triangular loop  will not cause any additional EMF.

26. (a,c) For maximum range of voltage resistance should
be maximum. So, all four should be connected in
series. For maximum range of current, net resistance
should be least. Therefore, all four should be
connected in parallel.

y

2y

dy

i



27. (8)

I
R

max = =ε 5

12
A (Initially at t = 0)

I
R r r R

min = = + +







ε ε
eq

1 1 1

1 2

(finally in steady state)

= + +





5
1

3

1

4

1

12
= 10

3
A

I

I

max

min

= 8

28. (b,c)

When loop was entering (x < L)

φ = BLx

e
d

dt
BL

dx

dt
= − φ = −

| |e BLv=

i
e

R

BLv

R
= = (anticlockwise)

F = ilB (Left direction) = B L v

R

2 2

(in left direction)

⇒ a
F

m

B L v

mR
= = −

2 2

⇒ a v
dv

dx
=

v
dv

dx

B L v

mR
= −

2 2

⇒ dv
B L

mR
dx

v

v x

0

2 2

0

∫ ∫= −

⇒ v v
B L v

mR
x= −0

2 2

(straight line of negative slope for x < L)

I
BL

R
v= ⇒ (I vs x will also be straight line of negative

slope for x < L) L x L≤ ≤ 3

d

dt

φ = 0 e i= =0 0,

F = 0 ⇒ x L> 4 ⇒ e Blv=

Force also will be in left direction.

i
BLv

R
= (clockwise)

a
B L v

mR
v

dv

dx
= − =

2 2

F
B L v

R
=

2 2

− = ∫∫ B L

mR
dx dv

v

v

L

x

i

f2 2

⇒ − −B L

mR
x L

2 2

( )= −v vf i

v v
B L

mR
x Lf i= − −

2 2

( ) (straight line of negative slope)

I
BLv

R
= → (Clockwise) (straight line of negative slope)

29. (6) ANBP is cross-section of a cylinder of length L. The

line charge passes through the centre O and
perpendicular to paper.

AM
a=
2

, MO
a= 3

2

∴ ∠ = 





−AOM
AM

OM
tan 1 = 





= °−tan 1 1

3
30

Electric flux passing from the whole cylinder

φ =
ε

= λ
ε1

0 0

q Lin

∴ Electric flux passing through ABCD plane surface
(shown only AB) = Electric flux passing through
cylindrical surface ANB

= °
°







φ60

360
1( ) = λL

6 0ε

∴ n = 6
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R

v

x

ε=5V

R=12 Ω

L2=2mH r2=4Ω

L1=1mH r1=4Ω

v

X

30° 30°

M BA

O

P

N
a



30. (d) The sphere with cavity can be assumed as a
complete sphere with positive charge of radius R1 +
another complete sphere with negative charge and
radius R2.

E E+ → due to total positive charge

E E− → due to total negative charge.

E E E= ++ −
If we calculate it at P, then E− comes out to be zero.

∴ E E= +

and E + =
ε

1

4 0 1
3π

q

R
OP( ), in the direction of OP.

Here, q is total positive charge on whole  sphere.

It is in the direction ofOP or a .

Now, inside the cavity electric field comes out to be
uniform at any point. This is a standard result.

31. (d)

C
s

d
1

0= ε
, C

s

d

s

d
= =

2
2

2

20
0

ε ε
/

C

s

d

s

d
′ = =

4
2
2

40
0

ε ε
/

and ′′ = =C

s

d

s

d

2
2

0
0

ε ε

C
CC

C C
C

s

d

s

d
2

0 04

3
= ′

+ ′
+ ′′ = +ε ε

= 7

3
0ε s

d

C

C

2

1

7

3
=

32. (b)
1 1 1

R R R
= +

Al Fe

= +







A AAl

Al

Fe

Feρ ρ
1

l

= − +








 ×

×

−

− −
( )

.

7 2

2 7

2

10

10

10

1

50 10

2 2 2 6

8 3

Solving we get, R = × −1875

64
10 6 Ω = 1875

64
µΩ

33. (1)

34. (c) At the shown position, net force on both charges is
zero. Hence they are in equilibrium. But equilibrium of

+q is stable equilibrium. So, it will start oscillations
when displaced from this position. These small
oscillations are simple harmonic in nature. While
equilibrium of −q is unstable. So, it continues to move
in the direction of its displacement.

35. (a,b,c)

Force on the complete wire = force on straight wire PQ

carrying a current I.

F PQ B= ×I( )

= + ×I L R[{ ( )$} ]2 i B

32 Electricity & Magnetism

S/2

S/2

E2

C′′

d/2

d

–+

E1

E1

C

C′

C′′

C C′

+ –

2Ω 1Ω

8Ω
4Ω

2Ω6Ω

12Ω
10Ω

4Ω

2Ω

6.5V

6.5V

2Ω 1Ω

4Ω2Ω6Ω

12Ω
10Ω

4Ω

2Ω

6.5V

2Ω

6Ω 2Ω

4Ω
10Ω

12Ω

⇒
⇒

2Ω

2Ω6Ω

12Ω 4Ω

2Ω

6.5V

6.5V

1

4.5Ω

⇒

2( )L+R
I QP

y

x



This force is zero if B is along $i direction or x-direction.

If magnetic field is along $j direction or $k direction,

| | ( )( )( ) sinF = = + °F I L R B2 90

or F I L R B= +2 ( )

or F L R∝ +( )

∴ Options (a), (b) and (c) are correct.

36. (a,d) F Bev Be
I

nAe

BI

nA
B = = =

F eEe = ⇒ F Fe B=

eE
BI

nA
= ⇒ E

B

nAe
=

V Ed= = ⋅ = =BI

nAe
w

BIw

n wd e

BI

ned( )

V

V

d

d

1

2

2

1

=

⇒ if w w1 22= and d d1 2=

V V1 2=

∴ Correct answers are (a) and (d).

37. (a,c) V
BI

ned
= ⇒ V

V

B

B

n

n

1

2

1

2

2

1

= ×

If B B1 2= and n n1 22= , then V V2 12=
If B B1 22= and n n1 2= , then V V2 10 5= .

∴ Correct answers are (a) and (c).

38. (a,d) C C C= +1 2

C
K A

d
C

A

d
1

0
2

03 2 3= =ε ε/
,

/

⇒ C
K A

d
= +( )2

3
0ε ⇒ C

C

K

K1

2= +

Also, E E
V

d
1 2= = , where V is potential difference

between  the plates.

39. (c, d)
Q

r r4 2 20 0
2

0 0 0πε
λ

πε
σ
ε

= =

Q r= 2 0
2πσ

(a) is incorrect, r0 = λ
πσ

(b) is incorrect, E
r

E r1
0

1 0
2

4





= ( )

As E1 ∝ 1
2r

E
r

E r2
0

2 0
2

2





= ( ) as E2 ∝ 1

r

⇒ (c) is correct

E
r

E r E r3
0

3 0 2 0
2







= =( ) ( )

as E3 ∝ r0

⇒ (d) is incorrect

40. (c) E
kQ

R
1 2

= , where k = 1

4 0πε

E
k Q

R
2 2

2= ( ) ⇒ E
kQ

R
2 2

2=

E
k Q R

R
3 3

4

2
= ( )

( )
⇒ E

kQ

R
3 22

= E E E3 1 2< <

41. (c) (P) Component of forces along x-axis will vanish.
Net force along positive y-axis

(Q) Component of forces along y-axis will vanish. Net
force along positive x-axis

(R) Component of forces along x-axis will vanish. Net
force along negative y-axis

(S)  Component of forces along y-axis will vanish. Net
force along negative x-axis
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F1

F2
F3F4

+Q +Q +Q +Q

+q

F1

F2

+Q +Q –Q –Q

F4

F3

+q

+q

F4 F1

F3F2

+Q –Q –Q +Q

+q

F3 F1

F4

F2

+Q –Q +Q –Q



42. (a,b,d) Let us take VP = 0. Then potentials across

R R1 2, and R3 are as shown in figure (ii)

In the same figure

i i i1 2 3+ =

∴ V V

R

V

R

1 0

1

0

2

0− + − = − −V V

R

0 2

3

( )

Solving this equation we get

V

V

R

V

R

R R R

0

1

1

2

3

1 2 3

0

1 1 1
=

+ −

+ +

Current through R2 will be zero if

V0 0= ⇒ V

V

R

R

1

2

1

3

=

In options (a), (b) and (d) this relation is satisfied.

43. (c) For balanced meter bridge

X

R
=

−
l

l( )100
(where, R = 90 Ω )

∴ X

90

40

100 40
=

−

∴ X = 60 Ω

X R=
−

l

l( )100

∆ ∆ ∆X

X
= +

−
l

l

l

l100
= +0.1 0.1

40 60

∆X = 0.25

So, X = ±( )60 0.25 Ω

44. (3) B
I

x

I

x x
2

0

1

0

0 12 2
= +

−
µ
π

µ

π ( )

(when currents are in opposite directions)

B
I

x

I

x x
1

0

1

0

0 12 2
= −

−

µ

π

µ

π ( )

(when currents are in same direction)

Substituting x
x

1
0

3
= (as

x

x

0

1

3= )

B
I

x

I

x

I

x
1

0

0

0

0

0

0

3

2

3

4

3

4
= − =µ

π
µ
π

µ
π

R
mv

qB
1

1

= and B
I

x
2

0

0

9

4
= µ

π

R
mv

qB
2

2

= ⇒ R

R

B

B

1

2

2

1

9

3
3= = =

45. (5)

i G Vg ( )+ =4990

⇒ 6

1000
4990 30( )G + =

⇒ G + = =4990
30 000

6
5000

,

⇒ G = 10 Ω

V Vab cd= ⇒ ι Γ ι Σγ γ= −( )1.5

⇒ 6

1000
10

6

1000
× = −





1.5 S

⇒ S
n= =60

1494

2

249
⇒ n = × = =249 30

1494

2490

498
5

46. (c) B BR = due to ring

B B1 = due to wire-1

B B2 = due to wire-2

In magnitudes B B1 2
0

2
= = µ

π
I

r

Resultant of B1 and B2

= 2 1B cos θ = 











2
2

0µ
π
I

r

h

r
= µ

π
0

2

Ih

r
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R2

R3

R1

–V2o

i2

i1

O

(ii)

V2

V1 R1R2

R3

(i)

P O

V1

i3

x1 x1

I I

x0

G
V

ig 4990 Ω

S
c d

ba ig

(1.5– )ig

G
1.5 A

a
1 2

h

P

θθ

r

B2 B1

BR



B R

IR

R x
=

+
µ 0

2

2 2 3 22( ) /
= 2

4

0
2

3

µ π
π
I a

r

As, R a x h= =, and a h r2 2 2+ =

For zero magnetic field at P,

µ
π

µ π
π

0
2

0
2

3

2

4

Ih

r

I a

r
= ⇒ πa rh2 2= ⇒ η α≈ 1.2

47. (b) Magnetic field at mid-point of two wires

= 2 (magnetic field due to one wire) = 





2
2

0µ
π

I

d

= ⊗µ
π

0I

d

Magnetic moment of loop M IA= = I aπ 2

Torque on loop = °MB sin 150 = µ 0
2 2

2

I a

d

48. (c,d)
dQ

dt
I= ⇒ Q I dt= ∫ = ∫ ( cos )I t dt0 ω

∴ Q
I

max = =0 1

500ω
= × −2 10 3

C

Just after switching

In steady state

At t = 7

6

π
ω

or ω π
t = 7

6

Current comes out to be negative from the given
expression. So, current is anti-clockwise.

Charge supplied by source from t = 0 to

t = 7

6

π
ω

⇒ Q t dt= ∫0

7

6 500
π
ω cos ( )

= 





sin 500

500 0

7

6t
π
ω =

sin
7

6
500

π

= −1mC

Apply Kirchhoff’s loop law just after changing the
switch to position D

50 01+ − =Q

C
IR

Substituting the values of Q C1, and R we get

I = 10 A

In steady state Q CV2 1= = mC

∴ Net charge flown from battery = 2 mC

49. (b,d) At point P

If resultant electric field is zero then

KQ

R

KQ

R
R1

2
2
34 8

= ⇒ ρ
ρ

1

2

4=

At point Q

If resultant electric field is zero then

KQ

R

KQ

R

1
2

2
24 25

0+ =

ρ
ρ

1

2

32

25
= − (ρ1 must be negative)

50. (b, d) After pressing S1 charge on upper plate of C1 is

+ 2 0CV .

After pressing S2 this charge equally distributes in two
capacitors. Therefore charge an upper plates of both
capacitors will be + CV0 .

When S2 is released and S3 is pressed, charge on
upper plate of C1 remains unchanged ( )= + CV0 but
charge on upper plate of C2 is according to new
battery ( )= −CV0 .

51. (c,d) For electrostatic field,

Field at P

E E EP = +1 2 =
ε

+ −
ε

ρ ρ
3 30

1
0

2C P C P
( )

=
ε

+ρ
3 0

1 2( )C P PC

E C CP = ρ
ε3 0

1 2

For electrostatic. Since, electric field is non-zero so it is
not equipotential.

52. (a,c) u i= 4 ; v i j= +2 3( )
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+ ++ +

–Q1

Q1=1mC

Q1

+ –

R=10Ω

50 V

++++

Q2

–Q2

R=10Ω

50 V

Q C1 C2P

2R 2R

vv

uu

LL

jj

ii
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According to the figure, magnetic field should be in ⊗
direction, or along − z direction.

Further, tanθ = = =
v

v

y

x

2

2 3

1

3

∴ θ = °30 or
π
6

= angle of v with x-axis

= angle rotated by the particle

= Wt = 





BQ

M
t

∴ B
M

Qt
= π

6
= 50

3

πM

Q
units (as t = −10 3 second)

53. (a,d)

In the region, 0 < <r R

BP = 0,

BQ ≠ 0, along the axis

∴ Bnet ≠ 0

In the region, R r R< < 2

BP ≠ 0, tangential to the circle of radius r, centred on
the axis.

BQ ≠ 0, along the axis.

∴ Bnet ≠ 0 neither in the directions mentioned in
options (b) or (c).

In region, r R> 2

BP ≠ 0

BQ ≠ 0

∴ Bnet ≠ 0

54. (b)
M

L

Q

m
=

2

∴ M
Q

m
L= 



2

⇒ M L∝ ,

where γ = Q

m2
= 





Q

m
I

2
( )ω

= 





Q

m
mR

2

2( )ω = Q Rω 2

2

Induced electric field is opposite. Therefore,

ω ω α′ = − t

α τ= = =





 =

I

QE R

mR

Q
BR

R

mR

QB

m

( )
( )

2 2

2

2

∴ ω ω ω′ = − ⋅ = −QB

m

QB

m2
1

2

M
Q R

Q
QB

m

R
f = ′ = −





ω ω
2 2

2 2 2

∴ ∆M M M
Q BR

m
f i= − = −

2 2

4

M
QBR= − γ

2

2
as γ =





Q

m2

55. (b) The induced electric field is given by,

E dl⋅ = − φ∫ d

dt
or El s

dB

dt
= − 





∴ E R R B( ) ( )( )2 2π π= −

or E
BR= −
2

56. (b) P Vi=

∴ i
P

V
= = × =600 10

4000
150

3

A

Total resistance of cables,

R = × =0.4 20 8Ω
∴ Power loss in cables

= i R2 = ( ) ( )150 82

= 180000 W = 180 kW

This loss is 30% of 600 kW.

57. (a) During step-up,

N

N

V

V

p

s

p

s

=

or
1

10

4000=
Vs

or Vs = 40 000, V
In step, down transformer,

N

N

V

V

p

s

p

s

= = =40000

200

200

1

Q

P

R
2R

P Hollow cylindrical
conductor

→

Q Solenoid→

x

y

Q

E
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